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Abstract: A new graph parameter, edge neighbor toughness is introduced to measure how difficult it
is for a graph to be broken into many components through the deletion of the closed neighborhoods
of a few edges. Let G = (V, E) be a graph. An edge e is said to be subverted when its neighborhood
and the two endvertices are deleted from G. An edge set S ⊆ E(G) is called an edge cut-strategy
if all the edges in S has been subverted from G and the survival subgraph, denoted by G/S, is
disconnected, or is a single vertex, or is . The edge neighbor toughness of a graph G is defined
to be tEN(G) = min

S⊆E(G)
{ |S|

c(G/S)}, where S is any edge cut strategy of G, c(G/S) is the number of

the components of G/S. In this paper, the properties of this parameter are investigated, and the
proof of the computation problem of edge neighbor toughness is NP-complete; finally, a polynomial
algorithm for computing the edge neighbor toughness of trees is given.
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1. Introduction

Gunther and Hartnell [1] introduced the idea of modeling a spy network by a graph
whose vertices represent the spies and whose edges represent their connection. If a spy
is arrested, the spies who are in direct contact with them are unreliable; therefore, some
new graphical parameters such as vertex neighbor connectivity [1] and edge neighbor
connectivity [2] were introduced to measure the invulnerability of networks under the
“neighbor” case.

Observing that the behavior of spies in a spy network is similar to the spread of
biological viruses in social networks, we introduced edge neighbor scattering number
(ENS) [3] and vertex neighbor scattering number (VNS) [4]. It is shown that they are
alternative invulnerability measures of the above networks. Since removing some vertices
(or edges) from a graph, all of their adjacent vertices (or edges) are removed simultaneously,
we call ENS and VNS neighbor invulnerability parameters.

Let G = (V, E) be a graph and e ∈ V(G). The open-edge neighborhood of e is defined
N(e) = { f ∈ E(G)| f 6= e, e and f are adjacent}. The closed-edge neighborhood of e is
N[e] = N(e) ∪ {e}. An edge e is said to be subverted when N[e] and the two endvertices
of e are deleted from G. We call S an edge subversion strategy of G if S ⊆ E(G) and each of
the edges in S is subverted from G. The survival subgraph is denoted by G/S. An edge
subversion strategy S is called an edge cut strategy of G if G/S is disconnected, or is a single
vertex, or is .

The edge neighbor scattering number of a connected graph G is defined as [3] ENS(G) =
max

S⊆E(G)
{c(G/S)− |S|}, where S is any edge cut strategy of G, and c(G/S) is the number of

the components of G/S. We call S∗ ⊆ E(G) a ENS-set of G if ENS(G) = c(G/S∗)− |S∗|.
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Inspired by the definitions of vertex neighbor connectivity and toughness, we define
edge neighbor toughness(ENT) of a connected graph G as tEN(G) = min

S⊆E(G)
{ |S|

c(G/S)}, where S

is any edge cut strategy of G, and c(G/X) is the number of the components of G/S. We
call S∗(⊆ E(G)) an tEN-set of G if tEN(G) = |S∗ |

c(G/S∗) .
In this paper, we prove that the computation problem of edge neighbor toughness of a

graph is NP-complete. We also give a polynomial algorithm of the ENT of trees, which is
a class of special and important graphs. Throughout this paper, we consider the simple,
undirected graphs, and use Bondy and Murty [5] for terminologies and notations not
defined here.

2. Preliminaries

Clearly, it is of prime importance to determine the edge neighbor toughness of a graph
when this parameter is used to measure the neighbor invulnerability of a network. In this
section, we give the edge neighbor toughness of several basic graphs.

Theorem 1. Let Pn be a path of order n(≥ 3). Then

tEN(Pn) =

{
1, if n = 3;
1
2 , if n ≥ 4.

Proof. The case n = 3 is trivial. When n ≥ 4, for any edge cut strategy S, c(Pn/S) ≤ |S|+ 1.
We thus have tEN(Pn) ≥ |S|

|S|+1 . Let f (x) = x
x+1 be a function of variate x, where x ∈ Z+.

When x = 1, f (x) reaches its minimum value 1
2 . So, we have tEN(Pn) ≥ 1

2 .
On the other hand, let e = uv be an edge of Pn such that d(u) = d(v) = 2. Then

{e} is an edge cut strategy of Pn and c(Pn/{e}) = 2. By the definition of ENT, we have
tEN(Pn) ≤ |{e}|

c(Pn/{e}) =
1
2 .

Therefore, tEN(Pn) =
1
2 .

Theorem 2. Let Cn be a cycle of order n(≥ 3). Then

tEN(Cn) =

{
2, if n = 4, 5;
1, if n = 3 or n ≥ 6.

Proof. n = 3, 4, 5 is trivial. When n ≥ 6, for any edge cut strategy S of Cn, c(Cn/S) ≤ |S|,
we have tEN(Cn) ≥ 1.

On the other hand, there must exist two edges e, f ∈ V(Cn) such that {e, f } is an edge
cut strategy of Cn and c(Cn/{e, f }) = 2. By the definition of ENT, we have tEN(Cn) ≤
|{e, f }|

c(Cn/{e, f }) = 1.
Therefore, tEN(Cn) = 1.

Theorem 3. Let Kn be a complete graph of order n(≥ 3). Then tEN(Kn) = b n
2 c.

Proof. Observe that for any e ∈ E(Kn), Kn/{e} = Kn−2. Cozzens [6] proved that the
edge neighbor connectivity of Kn is b n

2 c; therefore, if S is an edge cut strategy of Kn, then

|S| ≥ b n
2 c, and c(Kn/S) ≤ 1. By the definition of ENT, we have tEN(Kn) ≥ |S|

c(Kn/S) ≥ b n
2 c.

On the other hand, if n is even, let M = {u1v1, u2v2, . . . , u n
2

v n
2
} be a maximum match-

ing of Kn. Replace u1v1 by u1v2, denote M
′
= (M− {u1v1}) ∪ {u1v2}. Then Kn/M

′
= v1.

By the definition of ENT, we have tEN(Kn) ≤ |M′ |
c(Kn/M′ )

= b n
2 c. If n is odd, then there exists

a maximum matching M in Kn such that |M| = n−1
2 = b n

2 c and Kn/M is an isolated vertex.
So we have tEN(Kn) ≤ b n

2 c, too.
Therefore, tEN(Kn) = b n

2 c.
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Theorem 4. Let Kn1,n2,...,np be a complete p-partite graph with vertex partition (X1, X2, . . . , Xp).
Assume |Xi| = ni, i = 1, 2, . . . , p, p ≥ 2 and np ≥ np−1 ≥ . . . ≥ n1. Then

tVN(Kn1,n2,...,np) =
1

np
(

p−1

∑
i=1

ni − α
′
).

where α
′

is the matching number of Kn1,n2,...,np−1 .

Proof. For convenience, denote Kn1,n2,...,np as G. Obviously, for any edge cut strategy, S, of
G, if G/S 6= , then there exists some i such that all the vertices of G/S are included in Ni.
Let S∗ be a tEN-set of G. It is not difficult to know that c(G/S∗) = np and S∗ ⊂ E(G− Xp)
such that (G− Xp)/S∗ = .

Let M∗ be a maximum matching of G−Xp(that is, Kn1,n2,...,np−1), and U = {u1, u2, . . . , uk}
be the unsaturated vertex set under M∗. Then {u1v1, u2v2, . . . , ukvk} ∪M∗ is a tEN-set of G,
where v1, v2, . . . , vk are arbitrary k vertices in V(G)− Xp −U. Since the unsaturated vertex

number in G− Xp is
p−1
∑

i=1
ni − 2|M∗|, we have tVN(Kn1,n2,...,np) =

1
np
(

p−1
∑

i=1
ni − α

′
).

Remark 1. If Kn1,n2,...,np−1 has a perfect matching, then tVN(Kn1,n2,...,np) = n
2np
− 1

2 , where

n =
p
∑

i=1
ni and np ≥ np−1 ≥ . . . ≥ n1.

Example 1. Let S1,n−1 be a star of order n. Then tEN(S1,n−1) =
1

n−2 .

A comet, denoted by Cn,k, is a graph by coinciding an end vertex of path Pn−k with
the center vertex of a star S1,k, where 1 ≤ k ≤ n− 2 and n ≥ 4. The order of comet Cn,k is n,
and the center of S1,k is called the center of Cn,k.

Theorem 5. Let Cn,k be a comet, where 1 ≤ k ≤ n− 3 and n ≥ 4. Then tEN(Cn,k) =
1

k+1 .

Proof. Let V(Pn−k) = {v1, v2, . . . , vn−k}, and v1 be the center of Cn,k. Obviously, if
S is an edge cut strategy of Cn,k, then |S| ≥ 1. Moreover, for any edge cut strategy S,
c(Cn,k/S) ≤ k + |S| and the function f (x) = x

x+k (x ∈ Z+) is decreased with x, we then
have tEN(Cn,k) ≥ 1

k+1 .
On the other hand, since {v1v2} is an edge cut strategy of Cn,k, and c(Cn,k/{v1v2}) =

k + 1, by the definition of ENT, we have tEN(Cn,k) ≤ 1
k+1 .

Therefore, tEN(Cn,k) =
1

k+1 , and we complete the proof.

3. The Main Result

In this section, we consider the computational problems of ENT. We prove that the
problem of computing the edge neighbor toughness is NP-complete and give a polynomial
algorithm for computing the edge neighbor toughness of trees.

Problem 1. EDGE NEIGHBOR TOUGHNESS
Instance: An undirected graph G; a positive rational number t.
Question: Does there exist an edge cut strategy S of G such that |S|

c(G/S) ≤ t?

We solve this problem by considering the following

Problem 2. EDGE DOMINATION SET
Instance: A bipartite graph G; a positive integer d.
Question: Does there exist an edge dominating set D of G such that |D| ≤ d?

It was proved by Yannakakis and Gavril [7] that Problem 2 is NP-complete. Based
on this conclusion, we prove that Problem 1 is NP-complete by reducing Problem 2 to a
special case of Problem 1.
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Theorem 6. EDGE NEIGHBOR TOUGHNESS is NP-complete.

Proof. Clearly, EDGE NEIGHBOR TOUGHNESS is in the class NP, since a nondeterminis-
tic algorithm need only guess an edge cut strategy S ⊆ E(G) and check in polynomial time
that |S|

c(G/S) ≤ t.
Let G = (V, E) be a bipartite graph of order n. Denote V = {v1, v2, . . . , vn}. Replace

each vertex vi ∈ V by a copy of the complete graph Kn, denote this copy by Gi. Choose a
vertex from Gi, v∗i , add edges v∗i v∗j if vivj ∈ E, i = 1, 2, . . . , n. Denote the resulting graph
by G∗.

Denote the subgraph induced by {v∗1 , v∗2 , . . . , v∗n} in G∗ as G
′
. Obviously, G

′ ∼= G. Let
D be a smallest edge dominating set of G and S∗ be an ENS-set of G∗. In [8], we proved
the following claims.

Fact 1. If e is an edge in Gi, which is not incident with v∗i , then e 6∈ S∗, i = 1, 2, . . . , n.

Fact 2. Let E∗i = {e : e ∈ E(Gi) and e be incident with v∗i }. Then |E∗i ∩ S∗| ≤ 1, i = 1, 2, . . . , n.

Fact 3. There exists a tEN-set S of G∗ such that E(G∗/S) ∩ E(G
′
) = and S ⊆ E(G

′
).

From the above claims, we conclude that tEN(G∗) =
|D|
n . By the construction of G∗

and the NP-completeness of Problem 2, this is sufficient for the conclusion.

Theorem 7. Let T be a tree with order n(≥4). Then tEN(T) = 1
d−2 , where d = max

(u,v)∈E(T)
{d(u) +

d(v)}.

Proof. Let e∗ = u∗v∗ ∈ E(T) such that d = d(u∗) + d(v∗) = max
(u,v)∈E(T)

{d(u) + d(v)}. Since

n ≥ 4, {e∗} is an edge cut strategy of T and |{e∗}|
c(T/{e∗}) =

1
d−2 . Assume that S ⊂ E(T) is any

nonempty edge cut strategy of T. By the selection of e∗, we have

|S|
c(T/S)

≥ |S|
∑

e∈S
c(T/{e} ≥

|S|
|S|ω(T/{e∗}) =

1
d− 2

.

Therefore, by the definition of ENT, {e∗} is a tEN-set of T, and tEN(T) = 1
d−2 .

The proof is completed.

Let T be a tree of order n(≥ 4), V(T) = {v1, v2, . . . , vn} and M(T) = (mij)n×(n−1) be

its incident matrix. Then d(vi) =
n−1
∑

j=1
mij, i = 1, 2, . . . , n.

Based on the above results, we give an algorithm for the problem of computing the
ENT of trees.

Input A tree T = (V; E).
Output tEN(T) and the corresponding tEN-set.
Step 1. Compute the degree d(v) for each vertex v ∈ V(T);
Step 2. Compute de = d(u) + d(v) for each edge e = uv ∈ E(T);
Step 3. Search an edge e∗ = u∗v∗ satisfying d = d(u∗)+ d(v∗) = max

e∈E(T)
de, output tEN(T) =

1
d−2 and a tEN-set {u∗v∗}.

A graph-theoretic algorithm is good if the number of computational steps for its imple-
mentation on any graph is bounded above by a polynomial in the order and the size of the
graph [5]. We show that the above algorithm is good by the following complexity analysis.

Computing the degree for each vertex requires n− 2 additions, so the computations
involved in step 1 require n(n− 2) additions. Computing de = d(u) + d(v) for an edge
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uv ∈ E(T) requires 1 additions only. Since T is a tree, m = n− 1, step 2 requires (n− 1)
additions. To find the edge e∗ = u∗v∗, it is sufficient to sort the n− 1 number de; therefore,
step 3, in the worst case, requires (n− 1) log(n− 1) comparisons (Quick Sort Algorithm).

It is well known that a comparison or an addition is a basic computational unit. So,
the total number of computations of this algorithm is approximately n(n− 2) + (n− 1) +
(n− 1) log(n− 1), and thus is of order n2.

Remark 2. If the adjacency list is used instead of the incidence matrix, the complexity can be
lowered to O(n).

4. Invulnerability Analysis Based on ENT

Observe the definition of the neighbor invulnerability parameters such as ENS, VNS,
and VNT, they all measure the state of a network after being most severely damaged. That
is, the subversion strategy must be a cut strategy. Based on this common characteristic, we
replace the subtraction in ENS by division to define the concept of ENT. By definition, the
larger the ENT is, the more resilient the network is.

The following examples illustrate that the parameters ENT and ENS are independent,
so they are well defined.

Example 2. Consider the comet C10,3 and G1(see Figure 1a). They have the equal order 10, vertex
neighbor connectivity 1, edge neighbor connectivity 1, and ENT 1

4 ; however, ENS(C10,3) = 3,
ENS(G1) = 5. Furthermore, {e} is a tEN-set of G1 but is not an ENS-set; {e, f } is an ENS-set
of G1 but is not a tEN-set of G1.

Example 3. Consider the Petersen graph P(5, 2)(see Figure 1b) and the path P10. They have the
equal order 10 and ENS 1, but tEN(P(5, 2)) = 3

4 , tEN(P10) =
1
2 . The edge set {e, f , g} is both of a

tEN-set and an ENS-set of P(5, 2).

Let T be a tree with order n(≥ 4), {v1, v2, · · · , vn} be the vertex set of T and M(T ) =

(mij)n×(n−1) be its incident matrix. Then the sum of the elements in a row of M(T ) is the degree

of the vertex corresponding to the row, that is, d(vi) = mi1 +mi2 + · · ·+mi,n−1, i = 1, 2, · · · , n.
Based on the above results, we have the following algorithm for the problem of computing

the edge neighbor-toughness of trees.

Input the incident matrix M(T ) of a tree T with order n(≥ 4).

Step 1. Compute the degree d(v) for each vertex v ∈ V (T );

Step 2. Compute de = d(u) + d(v) for each edge e = (u, v) ∈ E(T );

Step 3. Search an edge e∗ = (u∗, v∗) satisfying d = d(u∗)+ d(v∗) = max
e∈E(T )

de, output tEN (T ) =

1
d−2 and a tEN -set {(u∗, v∗)}, stop.

A graph-theoretic algorithm is good if the number of computational steps required for its

implementation on any graph G is bounded above by a polynomial in n andm, where n = |V (G)|
and m = |E(G)| represent the order and the size of G, respectively[7]. We show that the above

algorithm is good by the follows complexity analysis.

Computing the degree for each vertex requires n−1 additions, so the computations involved

in step 1 require n(n − 1) additions. Computing de = d(u) + d(v) for an edge (u, v) ∈ E(T )

requires 1 additions only. Since T is a tree, m = n − 1 the computations involved in step 2

require (n− 1) additions. To find an edge e∗ = (u∗, v∗), it is sufficient to sort the n− 1 number

de : e ∈ E(T ). The computations involved in step 3, in the worst case, require a total of

1
2(n− 1)(n− 2) comparisons.

If we regard either a comparison or an addition as a basic computational unit, the total

number of computations required for this algorithm is approximately n(n− 1)+ (n− 1)+ 1
2(n−

1)(n− 2) = 3
2(n

2 − n), and thus is of order n2.

4 Concluding remarks

The concept of ENT and ENS are defined well, and these two neighbor invulnerability parameters

are independent each other. This can be illustrated by the follows examples.
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4 .
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Figure 1. Two graphs with order 10.

5. Conclusions

The above two examples also show that the parameters ENT and ENS have their own
characteristics and advantages when measuring the neighbor invulnerability of networks.
Network invulnerability is an important problem in graph theory. Many parameters have
been introduced to measure the relationship of invulnerability and structure of networks;
however, there exist a lot of unresolved problems about the parameters computing [3,9,10].
Since trees have special structure and wide range of applications [11,12], the polynomial
algorithm of ENT of trees has a certain theoretical and practical significance.

Observing the conclusion of Theorem 4, it is easy to know that the matching number
of the complete p-partite graph Kn1,n2,...,np is determined by the numbers n1, n2, . . . , np;
therefore, to find a maximum matching of Kn1,n2,...,np is equivalent to divide {1, 2, . . . , p}
into two nonempty subset N1 and N2 such that | ∑

i∈N1

ni − ∑
j∈N2

nj| is as small as possible.

Later, we will consider this integer programming and related problems. Furthermore, the
algorithm and the bound of ENT for graphs of general structure are also worth considering.
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