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Abstract: Let Pn be a pentagonal chain with 2n pentagons in which two pentagons with two edges
in common can be regarded as adding one vertex and two edges to a hexagon. Thus, the linear
pentagonal derivation chains QPn represent the graph obtained by attaching four-membered rings to
every two pentagons of Pn. In this article, the Laplacian spectrum of QPn consisting of the eigenvalues
of two symmetric matrices is determined. Next, the formulas for two graph invariants that can be
represented by the Laplacian spectrum, namely, the Kirchhoff index and the number of spanning
trees, are studied. Surprisingly, the Kirchhoff index is almost one half of the Wiener index of a linear
pentagonal derivation chain QPn.
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1. Introduction

In this work, we will use terminologies and traditional notations from [1]. Let
G = (V(G), E(G)) be a finite, simple, and undirected connected graph with vertex
set V(G) = {v1, v2, · · · , vn} and edge set E(G). The order of G is the number |V(G)| of its
vertices and its size is the number |E(G)| of its edges. The adjacency matrix of G, denoted
by A(G), is a 0− 1 n× n matrix whose (i, j)-entry is equal to 1 if vi and vj are adjacent in G
and 0 otherwise. The degree of vi in G is denoted by di = dG(vi).

The Laplacian matrix of G is the matrix L(G) = D(G)− A(G), where D(G) is the
diagonal matrix of G whose diagonal entries are the degrees of the vertices of G. The
characteristic polynomial of L(G) is defined as

ΦL(G)(λ) = det(λIn − L(G)),

where In is the identity matrix of order n. Note that L(G) is positive semi-definite. The
Laplacian spectrum of G is denoted by spec(L(G)) = {µ1, µ2, · · · , µn}, and we assume that
the eigenvalues are labeled such that 0 = µ1 < µ2 ≤ · · · ≤ µn.

The distance between vertices vi and vj in G, denoted by dij = d(vi, vj), is the length
of the shortest path between them in G. The Wiener index, a distance-based topological
index, was first presented by Wiener in chemistry back in 1947 [2] and in mathematics
about 40 years later [3]. The famous Wiener index W(G) is defined as

W(G) = ∑
i<j

dij,

where the sum is taken over all distances between pairs of vertices of G.
At present, the Wiener index has been widely studied, and many research results have

been obtained [4–9].

Axioms 2022, 11, 278. https://doi.org/10.3390/axioms11060278 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11060278
https://doi.org/10.3390/axioms11060278
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11060278
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11060278?type=check_update&version=2


Axioms 2022, 11, 278 2 of 18

The topological index in a graph distance function can explain the structure and
properties of a graph well. In 1993, Klein and Randić [10] introduced a distance function
named resistance distance on the basis of electrical network theory. The resistance distance
between vertices vi and vj, denoted by rij, is defined to be the effective electrical resistance
between them if each edge of G is replaced by a unit resistor. One famous resistance
distance-based parameter called the Kirchhoff index, K f (G) [10], was given by

K f (G) = ∑
i<j

rij.

Moreover, Klein and Randić [10] proved that rij ≤ dij and K f (G) ≤ W(G) with
equality if and only if G is a tree.

Similar to the Wiener index, the Kirchhoff index is also intrinsic to the graph, not only
with some fine, purely mathematical properties, but also with a substantial potential for
chemical applications. Unfortunately, it is difficult to compute the resistant distance and
Kirchhoff index in a graph due to their computational complexity. Thus, it is necessary to
find closed-form formulas for the Kirchhoff index.

It is worth noting that the resistance distance between any two vertices can be obtained
in terms of the eigenvalues and eigenvectors of the Laplacian matrix in an electronic
network. Therefore, for any connected graph G of order n ≥ 2, it is shown, independently,
by Gutman and Mohar [11] and Zhu et al. [12] that

K f (G) = ∑
i<j

rij = n
n

∑
i=2

1
µi

. (1)

For some graphs with a good structure, such as graphs with good periodicity and
good symmetry, researchers can calculate the closed-form formulas of the Kirchhoff index
of those graphs. Readers are referred to the references [13–18] and the references therein.

A linear pentagonal chain of length n, denoted by Pn, is a pentagonal chain with
2n pentagons in which two pentagons with two edges in common can be regarded as
adding one vertex and two edges to a hexagon. Wang and Zhang [19] obtained the explicit
closed-form formulas of the Kirchhoff index of linear pentagonal chains. Wei et al. [20]
made comparisons between the expected values of the Wiener index and the Kirchhoff
index in random pentachains and presented the average values of the Wiener and Kirchhoff
indices with respect to the set of all random pentachains with n pentagons. Recently, Sahir
and Nayeem [21] derived closed-form formulas for the Kirchhoff index and the Wiener
index of the linear pentagonal cylinder graph and the linear pentagonal Möbius chain
graph. The study of hexagonal systems have attracted interest because they are natural
graph representations of benzenoid hydrocarbon [22], and they have been of great interest
and extensively studied; see [5,17,23].

Consider a linear pentagonal chain Pn consisting of 2n pentagons. The linear pen-
tagonal derivation chain, denoted by QPn, is thus the graph obtained by attaching four-
membered rings to every two pentagons of Pn, as depicted in Figure 1. It is easy to check
that |V(QPn)| = 7n + 2, |E(QPn)| = 10n + 1. Obviously, the linear pentagonal derivation
chain QPn is different from random pentachains, a linear pentagonal cylinder graph, and a
linear pentagonal Möbius chain graph.

Figure 1. The linear pentagonal derivation chain QPn.
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In this paper, we focus on the linear pentagonal derivation chain QPn. Firstly, the
Laplacian spectrum of QPn consisting of the eigenvalues of two symmetric matrices, is
determined. Next, using the decomposition theorem for the Laplacian characteristic polyno-
mial, the explicit closed-form formulas for the Kirchhoff index and the number of spanning
trees of QPn can be represented. Interestingly, the Kirchhoff index is about half of the
Wiener index of a linear pentagonal derivation chain QPn.

2. Laplacian Polynomial Decomposition and Some Preliminary Results

An automorphism of G is a permutation π of V(G), which has the property that vivj is
an edge of G if and only if π(vi)π(vj) is an edge of G. Suppose that G has an automorphism
π. It can then be written as the product of disjoint 1-cycles and transpositions.

Assume we label the vertices of QPn as in Figure 1 and denote

V0 = {1◦, 2◦, . . . , n◦}, V1 = {1, 2, . . . , 3n + 1}, V2 = {1′ , 2
′
, . . . , (3n + 1)

′}.

Therefore,

π = (1◦)(2◦) · · · (n◦)(1, 1
′
)(2, 2

′
) · · · (3n + 1, (3n + 1)

′
)

is an automorphism of QPn. Hence, the Laplacian matrix L(G) of QPn can be written as the
following block matrix:

L(G) =

LV0V0 LV0V1 LV0V2

LV1V0 LV1V1 LV1V2

LV2V0 LV2V1 LV2V2

,

where LViVj is the submatrix formed by rows corresponding to vertices in Vi and columns
corresponding to vertices in Vj for i, j = 0, 1, 2.

Let

T =

In 0 0
0 ( 1√

2
)I3n+1 ( 1√

2
)I3n+1

0 ( 1√
2
)I3n+1 −( 1√

2
)I3n+1


be the block matrix such that the blocks have the same dimension as the corresponding
blocks in L(G). By the unitary transformation TL(G)T, we obtain

TL(G)T =

[
LA 0
0 LS

]
,

where

LA =

[
LV0V0

√
2LV0V1√

2LV1V0 LV1V1 + LV1V2

]
, LS = LV2V2 − LV1V2 . (2)

Based on the arguments above, Yang and Yu [24] derived the following decomposition
theorem for the Laplacian characteristic polynomial of G.

Lemma 1 ([24]). Suppose L(G), LA, and LS are defined as above. We then have

ΦL(G)(λ) = ΦLA(λ)ΦLS(λ).

Lemma 2 ([25]). Let G be a connected graph of order n. Therefore,

τ(G) =
1
n

n

∏
i=2

µi, (3)

where τ(G) is the number of spanning trees of G.
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Lemma 3 ([26]). Let M1, M2, M3, and M4 be, respectively, p × p, p × q, q × p, and q × q
matrices with M1 and M4 being invertible. Thus,

det
(

M1 M2
M3 M4

)
= det(M1) · det(M4 −M3M−1

1 M2)

= det(M4) · det(M1 −M2M−1
4 M3),

where M4 −M3M−1
1 M2 and M1 −M2M−1

4 M3 are called the Schur complements of M1 and M4,
respectively.

Theorem 1 (Vieta’s Formulas [27]). Let

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0

be a polynomial with coefficients in an algebraically closed field K. Here, an 6= 0. Vieta’s formulas
relate the roots x1, . . . , xn (counting multiplicities) to the coefficients ai, i = 0, . . . , n as follows:

∑
1≤j1≤···≤jk≤n

xj1 xj2 · · · xjk = (−1)k an−k
ak

.

3. The Kirchhoff Index and the Number of Spanning Trees of the Linear Pentagonal
Derivation Chain QPn

In this section, on the basis of Lemma 1, we derive the Laplacian eigenvalues of linear
pentagonal derivation chains QPn. Next, we present a complete description of the sum of
the Laplacian eigenvalues’ reciprocals and the product of the Laplacian eigenvalues, which
will be used in obtaining the Kirchhoff index and the number of spanning trees of QPn,
respectively. Finally, we prove that the Kirchhoff index of QPn is approximately one half of
its Wiener index.

Let M be an n× n square matrix. We will then use M[i, j, · · · , k] to denote the sub-
matrix obtained by deleting the i-th, j-th, · · · , k-th rows and the corresponding columns of
M. According to Figure 1, LV0V0 , LV0V1 , LV1V2 , and LV1V1 are given as follows:

LV0V0 =


2 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · 2


n×n

= 2In, LV0V1 =


0 −1 0 0 0 · · · 0 0 0
0 0 0 0 −1 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · −1 0 0


n×(3n+1)

,

LV1V1 =



2 −1 0 · · · 0 0 0
−1 3 −1 · · · 0 0 0
0 −1 3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 3 −1 0
0 0 0 · · · −1 3 −1
0 0 0 · · · 0 −1 2


(3n+1)×(3n+1)

,

LV1V2 =



−1 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
0 0 −1 0 · · · 0 0 0 0
0 0 0 −1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −1 0 0 0
0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 0 0 −1 0
0 0 0 0 · · · 0 0 0 −1


(3n+1)×(3n+1)

.
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Since LV1V0 = LT
V0V1

, LV2V2 = LV1V1 , and LA =

[
LV0V0

√
2LV0V1√

2LV1V0 LV1V1 + LV1V2

]
,

LS = LV2V2 − LV1V2 we have

LA =



2 0 · · · 0 0 −
√

2 0 0 0 · · · 0 0 0
0 2 · · · 0 0 0 0 0 −

√
2 · · · 0 0 0

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
0 0 · · · 2 0 0 0 0 0 · · · −

√
2 0 0

0 0 · · · 0 1 −1 0 0 0 · · · 0 0 0
−
√

2 0 · · · 0 −1 3 −1 0 0 · · · 0 0 0
0 0 · · · 0 0 −1 2 −1 0 · · · 0 0 0
0 0 · · · 0 0 0 −1 2 −1 · · · 0 0 0
0 −

√
2 · · · 0 0 0 0 −1 3 · · · 0 0 0

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
0 0 · · · −

√
2 0 0 0 0 0 · · · 3 −1 0

0 0 · · · 0 0 0 0 0 0 · · · −1 2 −1
0 0 · · · 0 0 0 0 0 0 · · · 0 −1 1


(4n+1)×(4n+1)

,

and

LS =



3 −1 0 0 0 0 · · · 0 0 0 0
−1 3 −1 0 0 0 · · · 0 0 0 0
0 −1 4 −1 0 0 · · · 0 0 0 0
0 0 −1 4 −1 0 · · · 0 0 0 0
0 0 0 −1 3 −1 · · · 0 0 0 0
0 0 0 0 −1 4 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · 4 −1 0 0
0 0 0 0 0 0 · · · −1 3 −1 0
0 0 0 0 0 0 · · · 0 −1 4 −1
0 0 0 0 0 0 · · · 0 0 −1 3


(3n+1)×(3n+1)

.

By Lemma 1, the Laplacian spectrum of QPn consists of eigenvalues of LA and LS.
Hence, assume that the eigenvalues of LA and LS are, respectively, denoted by η0 ≤ η1 ≤
· · · ≤ η4n and ζ1 ≤ ζ2 ≤ · · · ≤ ζ3n+1. Therefore, it is easy to verify that η0 = 0, ηi > 0
(i = 1, 2, · · · , 4n) and ζ j > 0 (j = 1, 2, · · · , 3n + 1).

Considering η0 = 0, we can assume that

ΦLA(λ) =det(λI4n+1 − LA) = λ4n+1 + α1λ4n + · · ·+ α4n−1λ2 + α4nλ, (4)

ΦLS(λ) =det(λI3n+1 − LS) = λ3n+1 + β1λ3n + · · ·+ β3n−1λ2 + β3nλ + β3n+1. (5)

Theorem 2. Let α4n, α4n−1, β3n, and β3n+1 be defined as above. Suppose QPn is a linear pentago-
nal derivation chain with length n. We then have

K f (QPn) =(7n + 2)(−α4n−1

α4n
+

(−1)3nβ3n

det LS
)

=
49n3 + 56n2 + 7n

4

+
(7n + 2)[(5143

√
1365 + 189995)n + 2397

√
1365 + 88559](37 +

√
1365)n−1

65[(79
√

1365 + 2919)(37 +
√

1365)n−1 + (79
√

1365− 2919)(37−
√

1365)n−1]

+
(7n + 2)[(5143

√
1365− 189995)n + 2397

√
1365− 88559](37−

√
1365)n−1

65[(79
√

1365 + 2919)(37 +
√

1365)n−1 + (79
√

1365− 2919)(37−
√

1365)n−1]
.

(6)
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Proof. Since ΦLA(λ) = λ4n+1 + α1λ4n + · · ·+ α4n−1λ2 + α4nλ with α4n 6= 0, η1, η2, · · · , η4n
are the roots of the above equation. By Vieta’s formulas, we obtain

4n

∑
i=1

1
ηi

=
∑4n

i′=1 ∏4n
i=1,i 6=i′

ηi

∏4n
i=1 ηi

= −α4n−1

α4n
.

For ΦLS(λ) = λ3n+1 + β1λ3n + · · · + β3n−1λ2 + β3nλ + β3n+1 with β3n+1 6= 0, we
know ζ1, ζ2, · · · , ζ3n+1 are the roots of the above equation. Applying Vieta’s Formulas to
Equation (5) yields

3n+1

∑
j=1

1
ζ j

=
∑3n+1

j′=1
∏3n+1

j=1,j 6=j′
ζ j

∏3n+1
j=1 ζ j

=
(−1)3nβ3n

det LS
.

Note that |V(QPn)| = 7n + 2. By (1), we obtain

K f (QPn) = (7n + 2)(
4n

∑
i=1

1
ηi

+
3n+1

∑
j=1

1
ζ j
)

= (7n + 2)(−α4n−1

α4n
+

(−1)3nβ3n

det LS
).

(7)

In the following, it suffices to determine −α4n−1, α4n, (−1)3nβ3n, and det LS in Equa-
tion (7).

Claim 1. α4n = 2n−1(7n + 2).

Proof. It is well known that the number α4n is the sum of the determinants obtained by
deleting the i-th row and the corresponding column of LA for i = 1, 2, · · · , 4n + 1 (see also
in [28]), that is

α4n =
4n+1

∑
i=1

det LA[i]. (8)

Case 1. 1 ≤ i ≤ n. Based on the structure of LA (see also in (2)), deleting the i-
th row and the corresponding column of LA is equivalent deleting the i-th row and the
corresponding column of 2In, the i-th row in

√
2LV0V1 , and the i-th column in

√
2LV1V0 .

We denote the resulting blocks as 2In−1, B(n−1)×(3n+1), BT
(n−1)×(3n+1), and C(3n+1)×(3n+1),

respectively. If we then apply Lemma 3 to the resulting matrix, we have

det LA[i] =

∣∣∣∣∣ 2In−1 B(n−1)×(3n+1)
BT
(n−1)×(3n+1) C(3n+1)×(3n+1)

∣∣∣∣∣
=

∣∣∣∣∣2In−1 0
0 C(3n+1)×(3n+1) − 1

2 BT
(n−1)×(3n+1)B(n−1)×(3n+1)

∣∣∣∣∣
=2n−1

∣∣∣C(3n+1)×(3n+1) − 1
2 BT

(n−1)×(3n+1)B(n−1)×(3n+1)

∣∣∣,
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where

C− 1
2

BT B =



1 −1 0 0 · · · 0 · · · 0 0 0
−1 2 −1 0 · · · 0 · · · 0 0 0
0 −1 2 −1 · · · 0 · · · 0 0 0
...

...
...

...
. . .

...
. . .

...
...

...
0 0 0 0 · · · 3 · · · 0 0 0
...

...
...

...
. . .

...
. . .

...
...

...
0 0 0 0 · · · 0 · · · 2 −1 0
0 0 0 0 · · · 0 · · · −1 2 −1
0 0 0 0 · · · 0 · · · 0 −1 1


(3n+1)×(3n+1)

,

and there is only one 3 in the (3i− 1)-th row of C− 1
2 BT B for 1 ≤ i ≤ n.

Applying elementary operations of the determinant, we have

det(C− 1
2

BT B) = 1.

Therefore, for 1 ≤ i ≤ n, we obtain

det LA[i] = 2n−1. (9)

Case 2. n + 1 ≤ i ≤ 4n + 1. In this case, according to the structure of LA , deleting
the i-th row and the corresponding column of LA is equal to deleting the (i− n)-th row
and the corresponding column of LV1V1 + LV1V2 , the (i − n)-th column in

√
2LV0V1 , and

the (i− n)-th row in
√

2LV1V0 . We denote the resulting matrices as 2In, Bn×3n, BT
n×3n, and

C3n×3n, respectively. Thus, by Lemma 3, we obtain

det LA[i] =
∣∣∣∣ 2In Bn×3n
BT

n×3n C3n×3n

∣∣∣∣ = ∣∣∣∣2In 0
0 C3n×3n − 1

2 BT
n×3nBn×3n

∣∣∣∣
=2n∣∣C3n×3n − 1

2 BT
n×3nBn×3n

∣∣,
where

C− 1
2

BT B =

[
E(i−n−1)×(i−n−1) 0

0 F(4n+1−i)×(4n+1−i)

]
3n×3n

,

and the E, F are as follows:

E =



1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


(i−n−1)×(i−n−1)

,

F =



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1


(4n+1−i)×(4n+1−i)

.

By a direct calculation, one can see that det E = det F = 1, so det(C − 1
2 BT B) = 1.

Hence, for n + 1 ≤ i ≤ 4n + 1, we obtain

det LA[i] = 2n. (10)
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Together with (8)–(10), we have

α4n =
4n+1

∑
i=1

det LA[i] =
n

∑
i=1

det LA[i] +
4n+1

∑
i=n+1

det LA[i] = 2n−1(7n + 2).

This completes the proof.

Claim 2. −α4n−1 = 2n−3(49n3 + 56n2 + 7n).

Proof. Note that −α4n−1 is the sum of the determinants of the resulting matrix by deleting
the i-th row and i-th column as well as the j-th row and j-th column for some 1 ≤ i < j ≤
4n + 1 in LA. That is,

− α4n−1 = ∑
1≤i<j≤4n+1

det LA[i, j]. (11)

According to the range of i and j, there are three cases in which the number −α4n−1
can be calculated as follows.

Case 1. 1 ≤ i < j ≤ n. In this case, to delete the i-th and j-th rows and the corre-
sponding columns of LA is to delete the i-th and j-th rows and the corresponding columns
of 2In, the i-th and j-th rows of

√
2LV0V1 , and the i-th and j-th columns of

√
2LV1V0 . If

we denote the resulting matrices, respectively, as 2In−2, B(n−2)×(3n+1), BT
(n−2)×(3n+1), and

C(3n+1)×(3n+1) and apply Lemma 3 to the resulting matrix, we have

det LA[i, j] =

∣∣∣∣∣ 2In−2 B(n−2)×(3n+1)
BT
(n−2)×(3n+1) C(3n+1)×(3n+1)

∣∣∣∣∣ = 2n−2|C− 1
2

BT B|,

where

C− 1
2

BT B =



1 −1 0 0 0 · · · 0 0 0 0
−1 2 −1 0 0 · · · 0 0 0 0
0 −1 2 −1 0 · · · 0 0 0 0
0 0 −1 2 −1 · · · 0 0 0 0
0 0 0 −1 3 · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 · · · 3 −1 0 0
0 0 0 0 0 · · · −1 2 −1 0
0 0 0 0 0 · · · 0 −1 2 −1
0 0 0 0 0 · · · 0 0 −1 1


,

and there is one 3 in the (3i − 1)-th and (3j − 1)-th rows of C − 1
2 BT B for 1 ≤ i < j ≤

n, respectively.
By straightforward computing, we have

|C− 1
2

BT B| = 3j− 3i + 2.

Therefore, when 1 ≤ i < j ≤ n, we obtain

det LA[i, j] = 2n−2(3j− 3i + 2). (12)

Case 2. n + 1 ≤ i < j ≤ 4n + 1. In this case, to delete the i-th and j-th rows and
the corresponding columns of LA is to delete the (i− n)-th and (j− n)-th rows and the
corresponding columns of LV1V1 + LV1V2 , the (i− n)-th and (j− n)-th columns of

√
2LV0V1 ,

and the (i − n)-th and (j − n)-th rows of
√

2LV1V0 . If we denote the resulting blocks,
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respectively, as C(3n−1)×(3n−1), Bn×(3n−1), BT
n×(3n−1), and 2In and apply Lemma 3 to the

resulting matrix, we have

det LA[i, j] =

∣∣∣∣∣ 2In Bn×(3n−1)
BT

n×(3n−1) C(3n−1)×(3n−1)

∣∣∣∣∣ = 2n|C− 1
2

BT B|,

where

C− 1
2

BT B =

E(i−n−1)×(i−n−1) 0 0
0 F(j−i−1)×(j−i−1) 0
0 0 G(4n+1−j)×(4n+1−j)


(3n−1)×(3n−1)

,

and the E, F, G are as follows:

E =



1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


(i−n−1)×(i−n−1)

,F =



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


(j−i−1)×(j−i−1)

,

G =



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1


(4n+1−j)×(4n+1−j)

.

By direct calculation, one can get

det(C− 1
2

BT B) = j− i.

Hence, for n + 1 ≤ i < j ≤ 4n + 1, we obtain

det LA[i, j] = 2n(j− i). (13)

Case 3. 1 ≤ i ≤ n, n + 1 ≤ j ≤ 4n + 1. Similarly, to delete the i-th and j-th rows and
the corresponding columns of LA is to delete the i-th row and the i-th column of 2In, the
(j− n)-th row and (j− n)-th column of LV1V1 + LV1V2 , the i-th row and (j− n)-th column
of
√

2LV0V1 , and the (j− n)-th row and i-th column of
√

2LV1V0 . If we denote the resulting
matrices, respectively, as 2I(n−1), C3n×3n, B(n−1)×3n, and BT

(n−1)×3n and apply Lemma 3 to
the resulting matrix, we have

det LA[i, j] =

∣∣∣∣∣ 2In−1 B(n−1)×3n
BT
(n−1)×3n C3n×3n

∣∣∣∣∣ = 2n−1|C− 1
2

BT B|.
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Subcase 3.1. If 1 ≤ i ≤ n, j = n + 1, then the matrix C− 1
2 BT B is

2 −1 0 0 · · · 0 · · · 0 0 0
−1 2 −1 0 · · · 0 · · · 0 0 0
0 −1 2 −1 · · · 0 · · · 0 0 0
...

...
...

...
. . .

...
. . .

...
...

...
0 0 0 0 · · · 3 · · · 0 0 0
...

...
...

...
. . .

...
. . .

...
...

...
0 0 0 0 · · · 0 · · · 2 −1 0
0 0 0 0 · · · 0 · · · −1 2 −1
0 0 0 0 · · · 0 · · · 0 −1 1


3n×3n

= M1,

and there is only one 3 in the (3i− 2)-th row of M1 for 1 ≤ i ≤ n.
Subcase 3.2. If 1 ≤ i ≤ n, j = n + 3i− 1, then the matrix is

C− 1
2

BT B =

[
E(j−n−1)×(j−n−1) 0

0 F(4n+1−j)×(4n+1−j)

]
3n×3n

= M2,

where

E =



1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


(j−n−1)×(j−n−1)

,

F =



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1


(4n+1−j)×(4n+1−j)

.

Subcase 3.3. If 1 ≤ i ≤ n, j = n + 3i or 1 ≤ i ≤ n, j = n + 3i + 1, then the matrix is

C− 1
2

BT B =

[
E(j−n−1)×(j−n−1) 0

0 F(4n+1−j)×(4n+1−j)

]
3n×3n

= M3,

where

E =



1 −1 0 · · · 0 · · · 0 0 0
−1 2 −1 · · · 0 · · · 0 0 0
0 −1 2 · · · 0 · · · 0 0 0
...

...
...

. . .
...

. . .
...

...
...

0 0 0 · · · 3 · · · 0 0 0
...

...
...

. . .
...

. . .
...

...
...

0 0 0 · · · 0 · · · 2 −1 0
0 0 0 · · · 0 · · · −1 2 −1
0 0 0 · · · 0 · · · 0 −1 2


(j−n−1)×(j−n−1)

,

F =



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1


(4n+1−j)×(4n+1−j)

,
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and there is only one 3 in the (3i− 1)-th row of E, or

E =



1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


(j−n−1)×(j−n−1)

,

F =



2 −1 0 · · · 0 · · · 0 0 0
−1 2 −1 · · · 0 · · · 0 0 0
0 −1 2 · · · 0 · · · 0 0 0
...

...
...

. . .
...

. . .
...

...
...

0 0 0 · · · 3 · · · 0 0 0
...

...
...

. . .
...

. . .
...

...
...

0 0 0 · · · 0 · · · 2 −1 0
0 0 0 · · · 0 · · · −1 2 −1
0 0 0 · · · 0 · · · 0 −1 1


(4n+1−j)×(4n+1−j)

,

and there is only one 3 in the (3i− 2)-th row of F.
By the basic calculation of the determinant, we have det M1 = det M2 = det M3 =

|j− (n + 3i− 1)|+ 1.
Hence, for 1 ≤ i ≤ n, n + 1 ≤ j ≤ 4n + 1, we obtain

det LA[i, j] = 2n−1(|j− (n + 3i− 1)|+ 1). (14)

Combining this with (11)–(14), we obtain

−α4n−1 = ∑
1≤i<j≤4n+1

det LA[i, j]

= ∑
1≤i<j≤n

det LA[i, j] + ∑
n+1≤i<j≤4n+1

det LA[i, j] + ∑
1≤i≤n,n+1≤j≤4n+1

det LA[i, j]

= ∑
1≤i<j≤n

2n−2(3j− 3i + 2) + ∑
n+1≤i<j≤4n+1

2n(j− i)

+ ∑
1≤i≤n,n+1≤j≤4n+1

2n−1(|j− (n + 3i− 1)|+ 1)

=2n−3(n3 + 2n2 − 3n) + 2n−1(9n3 + 9n2 + 2n) + 2n−1
[

6n3 + 9n2 + n
2

]
=2n−3(49n3 + 56n2 + 7n).

This completes the proof.

In order to determine (−1)3nβ3n and det LS in (7), we consider the k order principal
submatrix, Wk, formed by the first k rows and the first k columns of LS, k = 1, 2, · · · , 3n + 1.
Put wk := det Wk. We proceed by proving the following fact.

Fact 1. For 6 ≤ k ≤ 3n, the integers wk satisfy the recurrence

wk = 37wk−3 − wk−6,

with the initial conditions w0 = 1, w1 = 3, w2 = 8, w3 = 29, w4 = 108, and w5 = 295.

Proof. It is easy to verify that w0 = 1, w1 = 3, w2 = 8, w3 = 29, w4 = 108, and w5 = 295.
For 2 ≤ k ≤ 3n, expanding det Wk with regard to its last row, we have

w3i+2 = 3w3i+1 − w3i, i = 0, 1, ...., n− 1;

w3i = 4w3i−1 − w3i−2, i = 1, 2, ...., n;

w3i+1 = 4w3i − w3i−1, i = 1, 2, ...., n− 1.
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For 0 ≤ i ≤ n− 1, let ai = w3i+2; for 1 ≤ i ≤ n, let bi = w3i; for 1 ≤ i ≤ n− 1, let
di = w3i+1. Therefore, 

ai = 3di − bi

bi = 4ai−1 − di−1

di = 4bi − ai−1

.

Hence, ai = 37ai−1 − ai−2, bi = 37bi−1 − bi−2 and di = 37di−1 − di−2. Therefore, for
6 ≤ k ≤ 3n, wk satisfies the recurrence

wk = 37wk−3 − wk−6,

where w0 = 1, w1 = 3, w2 = 8, w3 = 29, w4 = 108 and w5 = 295.

Claim 3. det LS =
( 79

2 + 2919
2
√

1365

)( 37+
√

1365
2

)n−1
+
( 79

2 −
2919

2
√

1365

)( 37−
√

1365
2

)n−1.

Proof. By Fact 1, the characteristic equation of ai is x2 = 37x − 1, whose roots are x1 =
37+
√

1365
2 and x2 = 37−

√
1365

2 . Assume that ai = y1(
37+
√

1365
2 )i + y2(

37−
√

1365
2 )i. Considering

the initial conditions a0 = w2 = 8 and a1 = w5 = 295, we obtain the systems of the
following equations: 

y1 + y2 = 8

y1
37 +

√
1365

2
+ y2

37−
√

1365
2

= 295
.

A direct computation shows that y1 = 4 + 147√
1365

, y2 = 4− 147√
1365

, so

ai = (4 +
147√
1365

)(
37 +

√
1365

2
)i + (4− 147√

1365
)(

37 +
√

1365
2

)i.

In the same way, we can obtain bi and di as follows:
bi =

(1
2
+

√
1365
130

)(37 +
√

1365
2

)i
+
(1

2
−
√

1365
130

)(37−
√

1365
2

)i

di =
(3

2
+

105
2
√

1365

)(37 +
√

1365
2

)i
+
(3

2
− 105

2
√

1365

)(37−
√

1365
2

)i
.

Since w3i = bi, w3i+1 = di and w3i+2 = ai, we obtain

wi =



(1
2
+

√
1365
130

)(37 +
√

1365
2

) i
3 +

(1
2
−
√

1365
130

)(37−
√

1365
2

) i
3 , i f i ≡ 0( mod 3)

(3
2
+

105
2
√

1365

)(37 +
√

1365
2

) i−1
3 +

(3
2
− 105

2
√

1365

)(37−
√

1365
2

) i−1
3 , i f i ≡ 1( mod 3)

(
4 +

147√
1365

)(37 +
√

1365
2

) i−2
3 +

(
4− 147√

1365

)(37−
√

1365
2

) i−2
3 , i f i ≡ 2( mod 3)

. (15)
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By an expansion formula, we can obtain det LS with respect to its last row as

det LS =3 det W3n − det W3n−1

=3w3n − w3n−1

=3
[(1

2
+

√
1365
130

)(37 +
√

1365
2

)n
+
(1

2
−
√

1365
130

)(37−
√

1365
2

)n]
−
[(

4 +
147√
1365

)(37 +
√

1365
2

)n−1
+
(
4− 147√

1365

)(37−
√

1365
2

)n−1]
=
(79

2
+

2919
2
√

1365

)(37 +
√

1365
2

)n−1
+
(79

2
− 2919

2
√

1365

)(37−
√

1365
2

)n−1.

This completes the proof.

Claim 4.

(−1)3nβ3n =
[ (5143

√
1365 + 189995)n
130
√

1365
+

2397
√

1365 + 88559
130
√

1365

](37 +
√

1365
2

)n−1

+
[ (5143

√
1365− 189995)n
130
√

1365
+

2397
√

1365− 88559
130
√

1365

](37−
√

1365
2

)n−1.

Proof. Since (−1)3nβ3n is the sum of all those principal minors of LS, each of which is of
size 3n× 3n, we have

(−1)3nβ3n =
3n+1

∑
i=1

det LS[i] =
3n+1

∑
i=1

∣∣∣∣Wi−1 0
0 H

∣∣∣∣ = 3n+1

∑
i=1

det Wi−1 det H. (16)

Note that H is a (3n + 1 − i) × (3n + 1 − i) matrix obtained from LS by deleting
the first i rows and the corresponding columns. Let q3n+1−i = det H. Whence, we get
qi = 37qi−3 − qi−6, where q0 = 1, q1 = 3, q2 = 11, q3 = 30, q4 = 109, q5 = 406. Thus,

ql =



(1
2
+

23
2
√

1365

)(37 +
√

1365
2

) l
3 +

(1
2
− 23

2
√

1365

)(37−
√

1365
2

) l
3 , i f l ≡ 0( mod 3)

(3
2
+

107
2
√

1365

)(37 +
√

1365
2

) l−1
3 +

(3
2
− 107

2
√

1365

)(37−
√

1365
2

) l−1
3 , i f l ≡ 1( mod 3)

(11
2

+
405

2
√

1365

)(37 +
√

1365
2

) l−2
3 +

(11
2
− 405

2
√

1365

)(37−
√

1365
2

) l−2
3 , i f l ≡ 2( mod 3)

. (17)

Therefore, by (16),

(−1)3nβ3n =
3n+1

∑
i=1

wi−1q3n+1−i =
3n

∑
i=0

wiq3n−i

=
n

∑
l=0

w3lq3n−3l +
n−1

∑
l=0

w3l+1q3n−(3l+1) +
n−1

∑
l=0

w3l+2q3n−(3l+2).

(18)

Combining (15) with (17), we know that
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n

∑
l=0

w3lq3n−3l =
n

∑
l=0

[(1
2
+

√
1365
130

)(37 +
√

1365
2

)l
+
(1

2
−
√

1365
130

)(37−
√

1365
2

)l]
·
[(1

2
+

23
2
√

1365

)(37 +
√

1365
2

)n−l
+
(1

2
− 23

2
√

1365

)(37−
√

1365
2

)n−l]
=
(44
√

1365 + 1430)(n + 1) + 777 + 21
√

1365
130
√

1365

(37 +
√

1365
2

)n

+
(44
√

1365− 1430)(n + 1)− 777 + 21
√

1365
130
√

1365

(37−
√

1365
2

)n,

(19)

n−1

∑
l=0

w3l+1q3n−(3l+1) =
n−1

∑
l=0

[(3
2
+

105
2
√

1365

)(37 +
√

1365
2

)l
+
(3

2
− 105

2
√

1365

)(37−
√

1365
2

)l]
·
[(11

2
+

405
2
√

1365

)(37 +
√

1365
2

)n−l−1
+
(11

2
− 405

2
√

1365

)(37−
√

1365
2

)n−l−1]
=
[ (2919 + 79

√
1365)n + 84

182
+

1554
91
√

1365

](37 +
√

1365
2

)n−1

+
[ (2919− 79

√
1365)n + 84

182
− 1554

91
√

1365

](37−
√

1365
2

)n−1,

(20)

and

n−1

∑
l=0

w3l+2q3n−(3l+2) =
n−1

∑
l=0

[(
4 +

147√
1365

)(37 +
√

1365
2

)l
+
(
4− 147√

1365

)(37−
√

1365
2

)l]
·
[(3

2
+

107
2
√

1365

)(37 +
√

1365
2

)n−l−1
+
(3

2
− 107

2
√

1365

)(37−
√

1365
2

)n−l−1]
=
[ (32109 + 869

√
1365)n

2730
+

1147
130
√

1365
+

31
130

](37 +
√

1365
2

)n−1

+
[ (32109− 869

√
1365)n

2730
− 1147

130
√

1365
+

31
130

](37−
√

1365
2

)n−1.

(21)

Hence, if (19)–(21) is placed into (18), Claim 4 follows directly.

Finally, substituting Claims 1–4 into (1), Theorem 2 follows immediately.

Theorem 3. Let QPn be a linear pentagonal derivation chain with length n. Therefore,

τ(QPn) = 2n−1[(79
2

+
2919

2
√

1365

)(37 +
√

1365
2

)n−1
+
(79

2
− 2919

2
√

1365

)(37−
√

1365
2

)n−1].
Proof. According to Lemma 3, we know that τ(G) = 1

n ∏n
i=2 µi, where µi represents the

Laplacian eigenvalues of G for i = 1, 2, · · · , n. Note that the eigenvalues of LA and LS are ηi
(i = 0, 1, 2, . . . , 4n) and ζ j (j = 1, 2, . . . , 3n + 1), respectively. Therefore, by Claims 2 and 3,

τ(QPn) =
1

7n + 2

4n

∏
i=1

ηi

3n+1

∏
j=1

ζ j

=
1

7n + 2
α4n det LS

= 2n−1[(79
2

+
2919

2
√

1365

)(37 +
√

1365
2

)n−1
+
(79

2
− 2919

2
√

1365

)(37−
√

1365
2

)n−1].
This completes the proof.
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Based on Theorem 2, we can easily obtain the Kirchhoff indices of linear pentagonal
derivation chains from QP1 to QP40, which are listed in Table 1.

By Theorem 3, it is not difficult to obtain the numbers of spanning trees of linear
pentagonal derivation chains from QP1 to QP9, which are shown in Table 2.

Table 1. The Kirchhoff indices of linear pentagonal derivation chains from QP1 to QP40.

n K f (QPn) n K f (QPn) n K f (QPn) n K f (QPn)

1 41.22 11 18,925.15 21 122,861.13 31 385,349.16
2 197.02 12 24,278.65 22 140,762.34 32 423,148.08
3 541.84 13 30,556.18 23 160,322.57 33 463,341.02
4 1149.18 14 37,831.23 24 181,615.33 34 506,001.47
5 2092.54 15 46,171.29 25 204,714.10 35 551,202.95
6 3445.42 16 55,667.88 26 229,692.39 36 599,018.95
7 5281.33 17 66,376.49 27 256,623.70 37 649,522.97
8 7673.75 18 78,376.62 28 285,581.53 38 702,788.51
9 10,696.20 19 91,741.77 29 316,639.39 39 758,889.07

10 14,422.16 20 106,545.44 30 349,870.77 40 817,898.15

Table 2. The number of spanning trees of linear pentagonal derivation chains from QP1 to QP9.

n τ(QPn) n τ(QPn) n τ(QPn)

1 79 4 31944040 7 12916125352384
2 5842 5 2362130992 8 955094596407424
3 431992 6 174669917248 9 70625335632739900

At the end of this section, we characterize the relation between the Kirchhoff index
and the Wiener index of QPn.

Theorem 4. Let QPn be a linear pentagonal derivation chain with length n. Therefore,

lim
n→∞

K f (QPn)

W(QPn)
=

1
2

.

Proof. Firstly, we determine W(QPn), we evaluate dij for all vertices (fixed i and for all j),
and we then add them all together and divide them by two in the end. The expression of
each type of vertex is
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• f (3i, n) =
(3n− 3i + 2)(3n− 3i + 1)

2
+

3i(3i− 1)
2

+
(3n− 3i + 3)(3n− 3i + 2)

2

+
3i

∑
k=2

k +
i−1

∑
k=0

(2 + 3k) +
n−i

∑
k=0

3k

=21i2 − 21ni− 13i +
21n2 + 27n

2
+ 3.

• f (3i + 1, n) =
(3n− 3i + 1)(3n− 3i)

2
+

3i(3i + 1)
2

+
(3n− 3i + 2)(3n− 3i + 1)

2

+
(3i + 2)(3i + 1)

2
− 1 +

n−i−1

∑
k=0

(2 + 3k) +
i

∑
k=0

3k

=21i2 − 21ni + i +
21n2 + 13n

2
+ 1.

• f (3i + 2, n) =
(3n− 3i)(3n− 3i− 1)

2
+

(3i + 2)(3i + 1)
2

+
(3n− 3i)(3n− 3i + 1)

2

+
(3i + 2)(3i + 3)

2
+ 1 +

n−i−2

∑
k=0

(4 + 3k) +
i−1

∑
k=0

(4 + 3k)

=21i2 − 21ni + 15i +
21n2 − n

2
+ 4.

• f (2, n) =
21n2 − n + 8

2
.

• f (3n + 1, n) =
21n2 + 15n + 2

2
.

• f (3n− 1, n) =
21n2 − 13n + 20

2
.

• f (i◦, n) = 2
[ (3n− 3i + 4)(3n− 3i + 3)

2
+

3i(3i− 1)
2

− 1
]
+

n−i◦−1

∑
k=0

(5 + 3k) +
i◦−2

∑
k=0

(5 + 3k)

= 21i2 − 21ni− 27i +
21n2 + 49n

2
+ 8.

• f (1◦, n) =
23n2 + n + 8

2
.

• f (n◦, n) =
23n2 − 11n + 20

2
.

Hence,

W(QPn) =
[ n

∑
i=1

f (3i, n) +
n−1

∑
i=0

f (3i + 1, n) +
n−2

∑
i=1

f (3i + 2, n) + f (2, n) + f (3n + 1, n)

+ f (3n− 1, n)
]
+

∑n−1
i◦=2 f (i◦, n) + f (1◦, n) + f (n◦, n)

2

=
49n3 + 76n2 + 15n + 6

2
.

Together with Theorem 2, our result follows immediately.

4. Conclusions

In this paper, according to the Laplacian spectrum, we obtain the Kirchhoff index and
the number of spanning trees of a linear pentagonal derivation chain. At the same time, we
also compute the Wiener index of the linear pentagonal derivation chain. Surprisingly, the
Kirchhoff index of the linear pentagonal derivation chain is approximately one half of its Wiener
index. Motivated from related works, we believe that the normalized Laplacian spectrum and
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the degree-Kirchhoff index of the linear pentagonal derivation chain, respectively, should be
investigated. We reserve the above problems for further research.
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