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Abstract: The T-spherical fuzzy set (TSFS) is a modification of the fuzzy set (FS), intuitionistic fuzzy
set (IFS), Pythagorean fuzzy set (PyFS), q-rung orthopair fuzzy set (q-ROFS), and picture fuzzy set
(PES), with three characteristic functions: the membership degree (MD) denoted by S, the nonmem-
bership degree (NMD) denoted by D, and the abstinence degree (AD) denoted by I. It can be used
to solve problems of uncertain information with no restrictions. The distance measure (DM) is a tool
that sums up the difference between points, while the similarity measure (SM) is a method applied
to calculate the similarity between objects within an interval of [0,1]. The current work aims to in-
troduce novel DMs and SMs in the environment of TSFSs to show the limitations of the previously
defined DMs and SMs. The suggested DMs and SMs provide more room for all three degrees to be
selected without restriction. We investigated the effectiveness of the proposed DMs and SMs by
applying a pattern-recognition technique, and we determined their applicability for multicriteria
decision making (MCDM) using numerical examples. The newly proposed DMs and SMs are briefly
compared to existing DMs and SMs, and appropriate conclusions are drawn.

Keywords: T-spherical fuzzy set (TSFS); distance measure (DM); similarity measure (SM); pattern
recognition; multicriteria decision making (MCDM)

1. Introduction

In 1965, Zadeh [1] was the first to establish the notion of an FS. S and D are the two
degrees of measurement in an FS. An MD within the interval [0,1] defines the element
of a set in S, whereas D can be generated by subtracting S from 1. Following Zadeh,
Atanassov [2] improved this notion by suggesting the concept of the IFS, in which S and
D are outlined independently but with the requirement that their total belongs to the scale
[0,1]. Furthermore, the term 1 — sum(S, D) was characterized as a hesitancy degree (HD).
There are certain limits in the Atanassov model of IFS, as the total of S and D frequently
falls outside of the interval [0,1]. As a result, Yager [3] introduced a new notion known
as the PyFS, in which the area for assigning the MD and NMD of IFSs is expanded, and
the requirement of the PyFS becomes sum(S?2,D?) € [0, 1]. However, this is not always
applicable, as squaring the sum sometimes results in it falling outside of the unit interval
[0, 1], showing the limitations of the PyFS. As a result, Yager [4] proposed the idea of the
g-ROFS, in which the sum of the g-th power of MD and the g-th power of NMD is equal
to or less than 1. The q-ROFS condition becomes sum(S%,D%) € [0,1].

Without a doubt, Atanassov’s model of IFSs improved Zadeh’s concept of FSs; how-
ever, there are occasions when more than two choices exist, whereby IFSs fail to describe
and solve such problems. Cuong and Kreinovich [5] proposed a novel model called the
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PFS, which includes three characteristic functions defined as S, I, and D, where I is the
abstinence degree (AD), with the requirement that their sum must fall within the interval
[0,1]. The term 1 —sum(S,1,D) refers to the refusal degree (RD) of an element of the PFS.
PFSs broadened the scope of FSs and IFSs; however, the problem still exists that we cannot
assign the values of the MD, NMD, and AD. After realizing certain limitations that exist
in the structures of FSs, IFSs, and PFSs, Mahmood et al. [6] expanded this concept and
presented the notion of the SFS as a modification of PFSs by extending their range. The
sumof S, I, and D may fall outside of the unit interval in the structure of SFSs, but their
square must fall within the unit interval, which is specified as sum(S?,1%,D?) € [0, 1]. SFSs
have a larger domain than PFSs due to their new condition. Sometimes, such a situation
occurs where the total of the squares of S, I, and D falls outside the unit interval, ren-
dering this method insufficient. To cope with such situations, Mahmood et al. [6] devel-
oped an extension of SFSs called the TSFS, which has no restrictions. The TSFS contains
the constraint that sum(S%,19,D%) € [0,1], where q € Z*. Considering the above-de-
scribed research, it can be concluded that the TSFS is a modification of the IFS, PyFS, and
PFES, with no limitations. TSFSs are more important than IFSs, PyFSs, and PESs since they
have greater space. As a result, in TSFSs, we can allocate the values of the MD, NMD, and
AD to our liking due to the greater space available, which is infeasible in IFSs, PyFSs, and
PFSs due to their constrained structure.

The DM is a tool for calculating the difference between distinct items on a scale of
[0,1], while the SM is a scheme that calculates the degree of similarity between two items
on a scale of [0,1]. Several DMs and SMs have been introduced in various extended ver-
sions of FSs. Wang and Xin [7] analyzed the links between the DMs and SMs of IFSs, and
used their suggested DMs and SMs to recognize patterns. Xiao [8] presented a DM for
IFSs based on the Jenson-Shannon divergence and used it as an algorithm for pattern
classification, thus providing a solution to the interference concerns. Jiang et al. [9] sug-
gested a DM and SM for IFSs based on a transformed isosceles triangle, using them to
tackle pattern-recognition difficulties. Du and Hu [10] presented aggregation DMs and
the induced SMs of IFSs and successfully utilized them in a variety of pattern-recognition
applications. DMs and SMs of PyFSs were suggested by Zeng et al. [11] and applied to
MCDM. They also presented a numerical example to test the suggested decision-making
method’s efficacy. On the basis of the Hausdorff metric, Hussain and Yang [12] presented
the DMs and SMs of PyFSs. To test the validity of the suggested DMs and SMs, they were
used to recognize several patterns based on linguistic variables. Wang et al. [13] designed
DMs and SMs of q-ROFSs using cosine functions and applied them to pattern-recognition
and scheme-selection issues. Liu et al. [14] suggested various cosine DMs and SMs of g-
ROFSs and used them to tackle issues such as decision making from both a geometric and
an algebraic perspective. Garg et al. [15] suggested generalized Dice SMs of complicated
g-ROFSs and used them to solve issues such as pattern recognition and medical diagnosis.
Khan et al. [16] suggested better cosine and cotangent function-based SMs of q-ROFSs and
tested their validity using numerical examples. The notion of complex q-ROF variation
coefficient SMs was presented by Liu et al. [17], and the suggested SMs were used for
medical diagnosis and pattern-recognition challenges. Donyatalab et al. [18] presented
DMs and SMs of q-ROFSs based on the square root cosine similarity measure and ex-
panded them in two states: with and without HD. Khan et al. [19] proposed bi-parametric
DMs and SMs of PFSs and used them in medical diagnosis. Cosine SMs of PFSs were
developed by Wei [20], and the proposed SMs were applied to strategic decision-making
issues. Wei [21] introduced SMs of PFSs and offered examples to demonstrate their valid-
ity for building material recognition and mineral field recognition. Jan et al. [] presented
a set of generalized DMs and SMs of PFSs and used them to tackle issues such as building
material detection and MADM. Khan et al. [22] introduced DMs and SMs of SFSs and
used them to solve data mining, medical diagnosis, and MADM problems. Rafiq et al. [23]
presented cosine SMs of SESs and used them to solve issues involving MADM. Wei et al.
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[24] proposed certain SMs of SFSs based on cosine functions and used them to solve pat-
tern-recognition and medical diagnosis problems. Shishavan et al. [25] proposed various
new SMs of SFSs and used them to solve problems such as medical diagnosis and green
supplier selection. Wu et al. [26] presented cosine-based SMs of TSESs and used them for
pattern-recognition issues. Ullah et al. [27] proposed SMs of TSFSs and used them for pat-
tern-recognition tasks. Abid et al. [28] suggested a novel SM for TSFSs and discussed its
applications in pattern recognition and decision making. Ibrahim et al. [29] discussed (3,
2)-fuzzy sets and suggested their applications to topology and optimal choices. Al-shami
et al. [30] suggested SR-fuzzy sets and discussed their applications to weighted aggre-
gated operators in MADM.

Several SMs and DMs have been developed so far and discussed previously, such as
the SMs suggested by Wang et al. [13], Liu et al. [14], Garg et al. [15], Khan et al. [16], Peng
and Liu [31], Zeng et al. [32], and Zeng et al. [33]. All of these studies discussed only two
aspects of imprecise and uncertain information and hence led towards information loss.
In the context of TSFSs, we develop several SMs and DMs that address four characteristics
of information that are ambiguous and imprecise. In handling issues with ambiguous
knowledge, these SMs and DMs provide higher accuracy, reliability, and fascinating flex-
ibility. We draw a comparison between the proposed and past SMs and DMs to see how
adaptive the proposed method is. We discuss all four degrees of TSFESs, i.e., MD, AD,
NMD, and RD, demonstrating the novelty of this concept. Because all of these degrees are
present, the spectrum of TSFSs expands, revealing the limitations of all previously de-
scribed notions such as IFSs, PyFSs, g-ROFSs, and PESs. Existing conceptions are unable
to handle the difficulties when discussed in a TSF environment due to their limited range
and lack of degrees. When data are provided in a TSF environment, the proposed DMs
and SMs can solve any real-life difficulty by analyzing the facts. The significance of the
topic stems from its concept, which demonstrates that the previously defined DMs and
SMs failed to solve challenges when information was delivered in a TSF setting due to
their limited range and low adaptability. As a result of the constraints of existing DMs
and SMs, the suggested DMs and SMs can alleviate problems when data are presented in
a TSF environment.

The remaining portion of the paper is arranged based on some definitions of TSFSs,
as presented in Section 2. Sections 3 and 4 define new DMs and SMs, respectively. Section
5 looks at some numerical examples and applications of presented DMs and SMs for de-
veloping an algorithm for pattern recognition and MCDM. Section 6 discusses some of
the current work’s consequences. Finally, in Section 7, we present our conclusion.

2. Preliminaries

In this section, we discuss some definitions of SFSs and TSFSs. The definitions dis-
cussed here provide the basis of our work. We consider X a universe of discourse
throughout our study.

Definition 1. [4] A g-ROFS on X is written as:
P ={xS5(),D(x):0<sum(5%,D9) <1}

such that S and D ranging from 0 to 1 denote the MD and NMD of x € X, respectively, and

for g = 1and r(x) = 11— sum(S9,D7) is the refusal degree (RD). (S,D) is termed as a g-
rung orthopair fuzzy number (g-ROFN).

Definition 2. [6] A TSFS on X is written as

P={xSx),I1(x),D(x):0<sum(5%,19,D9) <1}

such that S, I, and D ranging from 0O to 1 denote the MD, AD, and NMD of x € X, respec-
tively, and q € Z* and r(x) = ‘1/1 —sum(S9,19,D9) is the RD. (S,1,D) is termed a T-spher-
ical fuzzy number (TSFN). We denote the set of all TSFSs by TSFS(X).
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Definition 3. Let M,N € TSFS(X). Then

(1) M€= {{x,Sm(x), In(X), Dy(x)|x € X)}

(2) MENiff vx € X,Sy(x) < Sy(%), and Iy(%) = Iy(x), and Dy (%) = Dy(x)
(3) M= Niff vx € X,Su(x) = Sy(%), and Iy(x) = Iy(x), and Dy(x) = Dy(x)
(4) MNN={(xSux) ASyX), Inx) VIy), Du(x) A Dy(x))|x € X}

(5) MUN = {(x,Snu&) v Sy(x), In() Aly(x),and Dy (%) V Dy(x))|x € X}

(6) MON = {(x. \/ (%) + Sy ) = Sy S, (%) Iy(x), Du(x) Dy(X)) |x € X}
7) M®N =
EEMGENE) \[ 09+ 169 ~ 101, °[Df 9 + DY ~ DD s € X)

1-S§() Iy’ Dy()

min {IN( ), IN()S)HMOS)}

®) M9N={(>s. J RO I Dl X} LA Su(®) 2 Sy, In(®) <

TN (%)
©) MQN=](x 2 [RORO CPROD, |l e 0 2 1,00, 5u09) <
N ENR SN’ 1—13(&) ’ 1—D§,(>s) % ! M%) = Tyl smix) =
min {SN()S) SNS)ZS(X)}

3. Distance Measures for TSFSs

Here, we propose some DMs based on T-spherical fuzzy information. The proposed
new DMs are supported by examples, and their exceptional cases are studied.

Definition 4. Let M,N,0 € TSFS(X). A DM denoted by D(M,N) is a mapping of
D:TSFSs(X) X TSFSs(X) — [0,1], possessing the features listed below:

(I) 0<D(M,N) <1

(2 DMM,N) =D, M).

(3) D(MN) =0 iff M=N.

4) D(M,M°) = 1.

®5) IfMeNgcO, then D(M,N) <D(M,0) and D(N,0) < D(M, 0).

Theorem 1. Let M,N € TSFS(X). Then D;(M,N)(i = 1,2,...,12) isa DM.

1 ISH () = Sy )| + [IG ) — )| + [P ) — Dy )| +
D)= 2|X|Zsex< 509 — 9|

D,(M,N) = zmz (IS509 = S50 = 1560 + 169 — DI + DY) @)
/(Z S () = S| + 176 — I (x)|+>\
|\ S DR () = DREO| + [ri () — ry )] I
D3(M,N)=—

SHO) — () — DH()) -
SHG9) — 1§ 69-DI))

e

1
D,(MN) = le(Z (158500 = S§E0l v |60 — K9] v [0 (x)—D&(x)D) @
XE

2 Su®) = Sy®)| v [[yx) — XV [Dy() - Di(X)
Ds<MN>—|X|<Z (15469 = SHO| v [1400 ~ KO v[PiGy >s|>> .

wex 1+ (|00 = {9 v 109 — )| v [D§ 60 - D))
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2 Yex (|00 = SyGO| v |G 0 — )| v [P () — Dg()|)
Sex (14 ([560 = 5§00 v [ 1509 — 1G] v D9 - DE o))

Ds(M,N) = ®)

Thex (S50 AS{09) T (e AK)
Bex (SIOVSI®) T Teex (100 V)
Tex (DGO ADY ()

-y - ,a+[)’+)/=1;a;ﬁ;]’[0'1]
Seex (DA V DI(0)

D7(M!N)=1_a

ee (Swasi®)
Dg(M,N) =1 _mzxexm

R GIORE

IX] £ (Iq(x) VINE)

Dq AD]
Z M()S) ()S)) a+ B + Y= 1, «a, B, }/[0,1]
X XEX (Dq()g) v Dq(&))

; ®)

Dy(MN) = 1— 1 (5{2(&)/\5,;7(&)) (Iﬁ(x)/\l‘*(x)) ( M()S)ADg()g))

X1 Ssex (000 v sg9) + (1560 v {0 + (DGO v DY)

)

Tex (S50 A ST + (160 AR ) + (DEG A DY)

Duah) =12 (s509vsie0) + (1Go v 109 + (DfGo v DIGO)

(10)

Dyy (M,N)

=1

1w (Seasieo)+ (1K) a(1- )+ (1-bi®) A (1-Die) (D
Xl Sosex (500 v s 00) + (1= 1860) v (1-1509)) + (1 = DfG0) v (1-D5 (o))

Diz (M)

Thex (S50 AS§00) + (1= K60 A (1= 1) + (1= D) A (1-D®) 1

Seex (5860 v51) + (1= 1) v (1= 9 + (1= D§9) v (1-D§ )

Proof of Theorem 1. We only give the proof of (2).

D,(M,N) = ZIXIZ |5869 - 53 — (1860 ~ 18 - (DR — DI
z|x|Z ( (9) — 1569 — (SH 9 - 5369) — (Do) — D()S)))

DZ(M.o>=mZ |5509) - 5309 - (1860 — 180 — (P& — D3|

= 5751 2o (1809 = 109 = (5300 - 55) - (P9 - DY)

Suppose A D, =D,(M,0) — D,(M,N);
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AD, = ﬁzxex (5309 = S360 + 1309 — 1360 + D9 — DIG0)
>0, ie, D,(M,0) = D,(M,N).
Hence, D,(M,0) = D,(N, 0).
(1) Similarly, from (1).
(2) From the formula, we obtain
D(M,N) = _Z |50 = Sg )| Vv [ — I5®)| V [Di () — D)
X ex 1+ 5860 = S| v 100 = )| v | DE GO - D (9|

_ 2 Z 1
|X| XEX 1

[5869 = SE00| v [0 — 16| v [P GO — DI G| i

[SE ) = SE)| v [E) — 13| v D) — DAX)|
D:(M,0) = —
5(.0) |X|Z>sexl+Iqu(x,)—Sg(&)lvllﬁ(x)—lg(x)l v|DI) = DIC]

2 Z 1
|X| XEX 1

5760 — SaGO[ V1960 — 136 v [DRGo — DAGo]

Because S —SeE)| V [Inx) — 13| V D) — DX)| = [Sp(x) — Sg()| v
[T ) — 13| v DR (%) — DG(%)|, so Ds(M,N) < Ds(M,0). Hence, D5(M, 0) = Ds(N, ).

(3) Similarly, from (5).

(4) From the formula, we obtain

dex(sg(’s)/\SN(X)) Suex(ROA®)  Sex(DfeoAneo)
Cre(h0vsi®) | me(150viI00) ) Sex( DR 0VDE00)

D;(M,N) =1—

erx Sm(’S) Yixex Iq()S) nyex DE/[()S)
Tex SY®)  yexIn(®)  Tyex DY)’

1—«

Tiex (SHDAS500)  Teex (RO A1) Tyex (DGO A DY)
Teex (SR VSI®)  Tex (RGO VIAX) szex(n‘*(x)vn ®)

D,(M,0)=1—-«a

Z)gEX SM ()S) Z)gEX I ()S) Z)gEX D ()S)
Z)SEX S ()S) Z)gEX 113[ ()S) Z)SEX Dq ()S)

=1-qa

Because

Txex S0 | Tuex SO Luex N _ Fuex 1)
Z)gEX S;\l] ()S) B Z)gEX Sg ()S) ’ Z)gEX I?/{()S) Z)gEX I]v[()S)

So D,(M,N) < D,(M,0). Likewise, D,(M,0) < D,(N,0). o

Example 1. Let M,N € TSFS(X) as given in Table 1. Both M and N are TSFSs for q = 3.
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Table 1. Two TSFSs, M and N.
M N
MD AD NMD RD MD AD NMD RD
X1 0.56 0.47 0.22 0.892076 0.81 0.30 0.37 0.731180
X2 0.11 0.11 0.11 0.998667 0.59 0.66 0.66 0.603342
X3 0.35 0.45 0.61 0.856205 0.42 0.56 0.71 0.945407

We applied the DMs D;(i = 1,2,3...12) defined above to the two sets provided in
Table 1, and the outcomes are portrayed in Table 2.

Table 2. DMs between M and N.

DMS VALUES
D;(M,N) 0.470220
D,(M,N) 0.170083
D;(M,N) 0.259433
D,(M,N) 0.272106
Ds(M,N) 0.422257
Ds(M,N) 0.427803
D,(M,N) 0.844794
Dg(M,N) 0.796716
Do (M, N) 0.781236
D;o(M,N) 0.811193
Dy, (M) 0.224520
Dy, (M, ) 0.226194

The results of Table 2 are represented graphically in Figure 1 below.

0.9

0.8

0.5

0.4

0.3

0.2

0.1

0

DMs between M and N

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Figure 1. DMs between M and N.

4. Similarity Measures for TSFSs

We present various SMs based on TSF information in this section. Examples are pro-
vided to support the suggested new SMs, and their special circumstances are investigated.

Definition 5. Let M,N,0 € TSFS(X). An SM S(M,N) is a mapping S:TSFSs(X) X
TSFSs(X) — [0,1], possessing the features listed below:
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1 0<SMN)<1;

) SOMN) = SN, M);

B) SMN) =1 M=N;

(4) S(M,M) =0 if Misacrisp set;

6) IfMcSNcoO, then S(M,0) <SM,N) and S(M,0) < S(N, 0).

Theorem 2. Let M,N,O0 € TSFS(X). Then, SS(M,N) = (i =1,2,3,...12) isan SM:

|Su (%) — 5q(>s)|+|1“(>s)—1q(>s)|+>
SS(MN) =1— 13
(= 2|X|Z>SEX( Di(®) — Dy()| + 1{ (%) — i )| 1

1
S,(M,N) = 1_ﬁ<z ¥ (%) — S§(x) — Ui (%) — Iy(%)) — (Dgy (x)—Dq(x)|> (14)

/ / Zﬂ(ﬁﬁ(x) —S{®| + [H® - ) +> \\

| |DR () = DYG)| + |nd (%) — if (%)
W'\ 2l
XEX

Ss(MN) = 1 S809) — sq(x)) (NG = §69) — D
DA ~ DY) / }
SN = 1-— (1509 = SHWIV I — 10l v PG - DY) 16
X1

(15)

- <|SIZ(>5) —Sy)| Vv | — )| V>
_ |Dih (%) — DR ()|

SN =1 |X|erx <|Sq(>s) Sy v IIq(&)—Iq(x)|V>
|DY (%) — D]

Tuex 1= (ISH®) = Sy )| V [ = R ®)| v [P (%) — DY ()])

Teex 1+ ([S569 = SY | v 109 — 9| v Do) — D))
Zeer (SO ASIW) T (e AKE)
Sex (SO VSI®)  Teer (1O V )

eex (DHCO ADJ ()

Zeex (08GO v D§(0)

@ Der(S0 AS{0) g Tuex (1560 AHGO)

X1 e (Sﬁ(x) vV Sy ()s)) X1y e (Iﬁ(x) v I§(>s))

. l;_l Teex (DO ADJ () y

Seex (DS V D0

(17)

Se(M,N) = (18)

S;(MN) =a

(19)

,a+pB+y=1a/pB,y€[01]

Sg(M,N) =

(20)

+B+y=1,apB,y €[01]

SOLN) = Z (S50 ASE60) + (K0 A 0) + (DE ) A DY)
9 AV
Ml Snex (5509 v 5300 + (160 v ) + (P v D)

21

Saer (5509 A5§9) + (1560 A ) + (DF GO A DY) )

510(M: N) =
Tex ((s;z V30 + (160 V) + (0460 v D (x)))

(22)
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S11(M,N
_ i Z) (S50 ASYe0) + (1= 1) A (1= 160) + (1= D) A (1-DFG)) (3
Ml &sex (saco v sg ) + (1= 189) v (1= 59) + (1= D39 v (1 - DY)
S12(M, )
 Tex (SR ASIE) + (1= H) A (1= K) + (1= D§) A (1-DE®) (g
Seex (509 v 5500) + (1= 1500) v (1= ) + (1= D) v (1 - D§9)

Proof of Theorem 2. Straight forward. o
Example 2. Let M,N € TSFS(X), as shown in Table 3. Both M and N are TSFSs for q = 3.

Table 3. Two TSFSs, M and N.

M N
MD AD NMD RD MD AD NMD RD
x; 0.56 0.47 0.22 0.892076 0.81 0.30 0.37 0.731180
x; 0.11 0.11 0.11 0.998667 0.59 0.66 0.66 0.603342
x3  0.35 0.45 0.61 0.856205 0.42 0.56 0.71 0.945407

We applied the SMs S;(i = 1,2,3...12) defined above to the two sets given in Table
3, and the outcomes are portrayed in Table 4.

Table 4. SMs between M and N.

SMs Values
S1(M,IN) 0.529780
S2(M, ) 0.829916
S3(M, ) 0.740567
S,(MN) 0.727894
S5(M, ) 0.701391
Se(M, ) 0.572196
§7(M, ) 0.155205
Sg(M,IN) 0.203284
So(M,IN) 0.218764

S10(M,N) 0.188807
S$11(MN) 0.775480
S12(M, ) 0.773805

The results of Table 4 are graphically represented in Figure 2 below.
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SMs between M and N
0.9

0.8

0.7
0.6
0.5
0.4
0.3
0.2
1l

0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10  Ss11

Figure 2. SMs between M and N.

S12

Theorem 3. Fori =1,23,..13. If a = = %, 50:

(1) S;(M,N°) = 5;(M,N°), i # 11,12;
2)  S;(M,N) = S;(MNN,M U N);
3) SI(MMNN) =S;(N,MUN);
(4) S (MMUN) =S;(N,MnN);

Proof of Theorem 3. Straight forward. o

Theorem 4: For i = 1,2,3,...6, so:

Proof of Theorem 4. Straight forward. o

Theorem 5. For i=1,4,56, and Vx€X,S5(%) —Sy(x) = LIG(%) — Iy(%) = 1, D (%) —
DY (%) = 1 we have

(1) Si(Ml M @ N) = Si(Nl N e M)HSM()S) < SN()S)HIM()S) 2, IM()S);
(2) Si(Ml M e N) = Si(Nl N @ M)HSM()S) < SN()S)HIM()S) 2, IM()S);

Proof of Theorem 5. Straight forward. o

5. Consequences of the Current Work

This section aims to examine some consequences of the current work. An extensive
amount of work has already been conducted on the theory of SMs and DMs. After looking
at the limitations of the existing DMs and SMs, new DMs and SMs are presented. The
newly presented DMs and SMs are the generalized form of the existing DMs and SMs.

1. If wehave q = 2, then:
(@) TheDMs D;(i = 1,2,3...12) reduce to the layout of SFSs.
(b) TheSMs S;(i = 1,2,3...12) reduce to the layout of SFSs.
2. If wehave q =1, then:
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(@) TheDMs D;(i = 1,2,3...12) reduce to the layout of PFSs.
(b) TheSMs S;(i =1,2,3...12) reduce to the layout of PFSs.
3. If we neglect the AD, then:
(@) TheDMs D;(i = 1,2,3...12) reduce to the layout of q-ROFSs.
(b) TheSMs S;(i=1,2,3..12) reduce to the layout of q-ROFSs.
4. If wehave q =2 and neglect the AD, then:
(@) TheDMs D;(i = 1,2,3..12) reduce to the layout of PyFSs.
(b) TheSMs S;(i = 1,2,3...12) reduce to the layout of PyFSs.
5. If wehave q =1 and neglect the AD, then:
(@) TheDMs D;(i = 1,2,3...12) reduce to the layout of IFSs.
(b) TheSMs S;(i =1,2,3...12) reduce to the layout of IFSs.

6. Algorithm and Applications

This section aims to check the effectiveness of the presented DMs and SMs. For this
purpose, we design an algorithm for pattern recognition to check which pattern is useful.
Moreover, we provide some applications of the newly introduced DMs and SMs in
MADM to check which is the best selection for MADM while using the newly introduced
DMs and SMs.

6.1. Algorithm in Pattern Recognition

Let X={X;,%X; ..,%,} be a finite parameter; there are m patterns N;=
{ (S (%), Iy (%), Dy (%3) /% € X} (G=123,..,m) and a test sample N=
{Sy G, In(x), Dy (x%:)/%; € X}. To check the closeness, we ask to which pattern does the
sample N belong to? The recognition steps are listed below:

Step 1. Firstt we have to evaluate the DM D(Nj, I}I)(j =12,..,m) and SMs
S(I}Ij,N)(j =1,2,..,m) between N; and N, respectively.

Step 2. Then, we have to select the minimum D(N]-O, I}I) from D(I}Ij, N)(j =12,..,m)
and maximum S(I}Ijo,l}l) from S(I}Ij,N)(j =1,2,..,m), respectively, ie., D(N]-O, N) =
min {D(N;,N)} and S(Njo,N) = fﬁlﬂﬁ{s(Ni‘ N)}. Then, the test sample N is classified into

1<jsm
pattern Nj, according to the principle of the minimum of DMs and maximum of SMs.

Example 6.1. We use the DMs and SMs given in this research to tackle the challenge of
recognizing construction materials presented by Ullah et al. [27]. Let us assume TSFNs
N;(i = 1,2,3,4) which show building materials of four types. Let us consider X = {x;:i =
1,2,3,..,7} as the attributes. There is another unknown material N. Using some DMs and
SMs defined for TSFSs, we will define the class from four materials of unknown material
denoted by N;(i = 1,2,3,4). Then, we have to evaluate class N; to N.

Step 1. All the information provided in Table 5 is about the type of TSENSs. It is worth
noting that all of the numbers in Table 5 are TSFNs for n = 4, signaling that neither IFS
nor PFS methods can handle this type of data.

Step 2. The DM of each TSEN given in Table 5 is evaluated with N using the newly
defined DMs in Section 3.
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Table 5. Data on building materials.

Ny N, Ns Ny N
x; 056 0.47 0.22 0.81 0.30 0.37 043 0.43 055 0.57 0.51 0.39 0.34 0.56 0.78
x, 0.11 0.11 0.11 0.59 0.66 0.66 091 0.34 0.68 056 0.76 0.31 0.47 0.38 0.84
x; 0.35 0.45 0.61 042 056 0.71 0.81 0.41 0.35 0.27 0.59 0.72 0.55 0.44 0.65
x, 033 0.54 0.31 0.59 045 09 044 055 0.77 0.46 046 0.45 0.76 0.46 0.85
xs 035 0.2 0.64 0.16 033 0.42 055 044 0.77 0.57 0.66 0.91 0.13 0.35 0.57
X, 0.47 0.37 0.68 0.68 0.46 0.88 0.47 0.66 0.75 041 0.73 041 0.24 0.54 0.45
x, 0.78 0.55 0.03 0.49 0.54 0.39 0.58 0.34 0.23 0.21 0.43 0.13 0.82 0.46 0.69

Step 3. Examining Table 6, for DMs the result obtained is
Ny, N) < (N, ) < (N3, N) < (N, )

Table 6. DM of N; with N.

DMs (Nlt N) (NZ' N) (NS' N) (Nlh N)
Dy 0.362768 0.363894 0.452119 0.511623
D, 0.096853 0.159078 0.183696 0.155122
D3 0.229811 0.261486 0.317907 0.333373
D, 273785 0.291556 0.344432 0.376600
Dy 0.423967 0.447694 0.622836 0.552754
Dg 0.429876 0.451480 0.512383 0.547146
D, 0.720886 0.679505 0.668698 0.824774
Dg 0.960127 0.954215 0.952671 0.974968
Dy 0.861950 0.874685 0.866928 0.926015
Dy 0.754929 0.700429 0.730597 0.836401
D4 0.186668 0.233649 0.242184 0.280998
Dy, 0.191473 0.241229 0.246095 0.284689

Hence, the pattern N; is closer to N as the DM of (N4, N) is smaller than all the re-
maining pairs. Therefore, it is said that the unknown pattern N belongs to an N;-type
pattern.

The results obtained in Table 6 are shown in Figure 3 below, which indicates that the
distance of the unknown pattern N is closer to Nj.

DMs of Unknown Patterns with Known Pattern

1.2

1

0.8

0.6

0.4

0.2

Ol.lIIIIIII |
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

W (N1,N) m(N2,N) (N3,N) (N4,N)

Figure 3. Results of DMs of unknown patterns with a known pattern.
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Comparative Study: This section aims to compare the results achieved using DM for
TSESs in the current work with results obtained using DM for TSFSs, as proposed by Ullah
et al. [27] and Wu and Chen [26]. Here, we also present the limitations of the previously
defined DMs of IFSs and PESs. A brief discussion of the calculated results of this paper
compared with other papers is given in Table 7 below.

Table 7. Comparative study.

DM Environment Results
DM for TSFESs (Current Work) TSFSs (N, N) < (N, N) < (N3, N) < (Ng, N)
DM for TSESs (Current Work) TSESs (NLN) < (NG N) < (N, N) < (N3, N)
DM for TSESs (Current Work) TSESs (N, N) < (No,N) < (N3, N) < (Ng,N)
DM for TSFSs (Current Work) TSFSs (NL,N) < (N, N) < (N3, N) < (Ng, N)
DM for TSESs (Current Work) TSFSs (N, N) < (N, N) < (Ng,N) < (N3, N)
DM for TSESs (Current Work) TSFSs (N, N) < (N, N) < (N3, N) < (Ng, N)
DM for TSFESs (Current Work) TSFSs (N3, N) < (N,,N) < (N, N) < (Ng, N)
DM for TSESs (Current Work) TSESs (N3, N) < (N,,N) < (N, N) < (N, N)
DM for TSESs (Current Work) TSESs (N, N) < (N3, N) < (N, N) < (Ng,N)
DM for TSFESs (Current Work) TSFSs (N, N) < (N3, N) < (Ni,N) < (Ng,N)
DM for TSFSs (Current Work) TSFSs (N, N) < (N, N) < (N3, N) < (Ng, N)
DM for TSFESs (Current Work) TSFSs (N, N) < (N, N) < (N3, N) < (Ng, N)
DM for TSESs Ullah et al. [27] TSFSs (N, N) < (N3, N) < (N, N) < (N, N)
DM for TSESs Ullah et al. [27] TSFSs (N, N) < (N, N) < (N3, N) < (Ng,N)
DM for TSESs Ullah et al. [27] TSFSs (N3, N) < (Np,N) < (Ni,N) < (Ng, N)

DM for TSESs Wu and Chen [26] TSFSs (N, N) < (N3, N) < (Ni,N) < (Ng,N)
DM for TSESs Wu and Chen [26] TSFSs (N, N) < (N;,N) < (N3, N) < (Ng, N)
DM for TSESs Wu and Chen [26] TSFSs (N, N) < (N3, N) < (N, N) < (Ng,N)
DM for TSFSs Wu and Chen [26] TSFSs (N, N) < (N3, N) < (Ny,N) < (Ny, N)
DM for TSFSs Wu and Chen [26] TSFSs (N, N) < (N3, N) < (Ny,N) < (Ng,N)
DM for TSFSs Wu and Chen [26] TSFSs (N, N) < (N, N) < (N3, N) < (Ng,N)
DM for TSESs Wu and Chen [26] TSFSs (N, N) < (No,N) < (N3, N) < (Ng,N)
DM for TSESs Wu and Chen [26] TSFSs (N, N) < (N, N) < (N3, N) < (Ng,N)
DM for TSEFSs Wu and Chen [26] TSFSs (N, N) < (N, N) < (N3, N) < (Ng,N)

The results shown in Table 7 support our hypothesis that the DM of TSFSs can man-
age large amounts of data. The benefit of the introduced DMs is that there are no re-
strictions on giving values to membership degrees in the environment of TSFSs as it in-
cludes all four degrees. There are restrictions when assigning values to membership de-
grees in IFSs, PyFSs, and PFSs. All the existing DMs failed to solve the issues due to the
absence of RD and the restricted range when the data are given in the TSF environment.
It is also concluded from Table 8 that N; is close to N as the distance of (N;,N) is
smaller than all the remaining pairs. Therefore, it is concluded that the unknown pattern
N belongs to an N;-type pattern, which supports our results.

Figure 4 depicts a comparison of our work with that of others, and explains that our
results are more convenient and accurate than those of previous work.
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Comparison of current work with existing work
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Figure 4. Comparison of the current work with the existing work.

The SM of each TSEN given in Table 5 is evaluated with N using the newly defined
SMs in Section 4.
Examining Table 8, for SMs the result obtained is

(N4 N) < (N3, N) < (N2, N) < (Ng,IN)

Table 8. SM of N; with N.

SMs (Nll N) (NZ! N) (NB' N) (N4’ N)
S1 0.637232 0.636106 0.547881 0.518229
S, 0.903147 0.840922 0.816304 0.844878
S3 0.770189 0.738514 0.682093 0.666627
M 0.726215 0.708444 0.655568 0.623400
Ss 0.619747 0.595512 0.570856 0.498807
Se 0.570124 0.548520 0.487617 0.452854
S, 0.279114 0.320495 0.331302 0.175226
Sg 0.039873 0.045785 0.047329 0.025032
So 0.138050 0.125315 0.133072 0.073985
Sio0 0.245071 0.299571 0.269403 0.163599
S11 0.813332 0.766351 0.757816 0.719002
Siz 0.808527 0.758771 0.753905 0.715311

Hence, the pattern N, is close to N, as the SM of (N;,N) is greater than all the re-
maining pairs. Therefore, it is said that the unknown pattern N belongs to an N;-type
pattern.

The results obtained in Table 8 are shown in Figure 5 below, which indicates that the
similarity of the unknown pattern N is close to N;.
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Figure 5. Results of SMs of unknown patterns with a known pattern.

Comparative Study: This section aims to compare the results achieved using SM for
TSFSs in the current work with results obtained using SM for TSFs, as proposed by Ullah
et al. [27] and Wu and Chen [26]. Here, we also present the restrictions of the previously
defined SMs of IFSs and PFSs. A brief discussion of the calculated results of this paper
compared with other papers is given in Table 9 below.

Table 9. Comparative study.

SM Environment

Results

SM for TSESs (Current Work)
SM for TSESs (Current Work)
SM for TSESs (Current Work)
SM for TSFSs (Current Work)
SM for TSFSs (Current Work)
SM for TSFSs (Current Work)
SM for TSFSs (Current Work)
SM for TSESs (Current Work)
SM for TSESs (Current Work)
SM for TSFSs (Current Work)
SM for TSFSs (Current Work)
SM for TSFSs (Current Work)
SM for TSFSs Ullah et al. [27]
SM for TSFSs Ullah et al. [27]
SM for TSFSs Ullah et al. [27]
SM for TSFSs Wu and Chen [26]
SM for TSFSs Wu and Chen [26]
SM for TSFSs Wu and Chen [26]
SM for TSFSs Wu and Chen [26]
SM for TSFSs Wu and Chen [26]
SM for TSFSs Wu and Chen [26]
SM for TSFSs Wu and Chen [26]
SM for TSFSs Wu and Chen [26]
SM for TSFSs Wu and Chen [26]

TSESs
TSESs
TSESs
TSFSs
TSFSs
TSFSs
TSFSs
TSESs
TSESs
TSFSs
TSFSs
TSFSs
TSFSs
TSEFSs
TSESs
TSESs
TSESs
TSFSs
TSFSs
TSESs
TSESs
TSESs
TSESs
TSFSs

(N‘l-'N) < (N3'N) < (NZIN) < (Nl!N)
(N3'N) < (NZ'N) < (N4’ N) < (Nl'N)
(Ne, ) < (N3, N) < (N2, N) < (Ny, )
(Na, ) < (N3, ) < (N2, ) < (N, )
(N‘l-'N) < (N3'N) < (NZIN) < (Nl!N)
(Ng, ) < (N3, ) < (N2, ) < (N, )
(N‘l-'N) < (Nl'N) < (NZ'N) < (N?HN)
(N4'N) < (Nl'N) < (NZ'N) < (N3'N)
Ny, ) < (N2, N) < (N3, N) < (Ny, )
Na, ) < (N, N) < (N3, N) < (N2, )
(Na, ) < (N3, ) < (N2, ) < (N, )
(Ng, ) < (N3, ) < (N2, ) < (N, )
(N‘l-'N) < (Nl'N) < (NS'N) < (NZ!N)
(N4'N) < (N3'N) < (Nlﬂ N) < (NZ'N)
(Ne, ) < (N, ) < (N, N) < (N3, )
(Ng, N) < (N, ) < (N3, N) < (N2, IN)
Ny, ) < (N3, ) < (N, N) < (N2, )
(Na, ) < (N2, ) < (N3, ) < (N, )
(N‘l-'N) < (Nl'N) < (NS'N) < (NZ!N)
(N4'N) < (Nl'N) < (NS'N) < (NZ'N)
(N4'N) < (N3'N) < (Nl! N) < (NZ'N)
(Ng, ) < (N3, N) < (N2, N) < (N3, IN)
(Ne, ) < (N3, N) < (N, N) < (N2, )
N N) < (N3, M) < (NN < (N2, D
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The results in Table 9 support our hypothesis that the SM of TSFSs can manage large
amounts of data. The benefit of the introduced SMs is that there are no restrictions on
giving values to membership degrees in the environment of TSFSs as it includes all four
degrees, but there are restrictions on assigning values to membership degrees in IFSs,
PyFESs, and PESs. All existing SMs failed to solve the issues due to the absence of RD and
the restricted range, especially when the data are given in the environment of TSFSs. It is
also concluded from Table 9 that N, is close to N as the similarity of (N;,N) is more
significant than all the remaining pairs. Therefore, it is said that the unknown pattern N
belongs to an N;-type pattern, which supports our results.

Figure 6 depicts a comparison of our work with that of others and also explains that
our results are suitable and more accurate than those of previous work.

Comparison of current work with existing work
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Figure 6. Comparison of the current work with the existing work.

6.2. Applications in MCDM
Here, we will present the applications of the introduced DMs and SMs for MCDM.

Example 6.2. We use the DMs and SMs given in this research to tackle the challenge of
MCDM presented by Ullah et al. [34]. Islamabad, Pakistan’s capital, is regarded as one of
the world’s most beautiful cities. A large number of people regularly frequent Islamabad’s
parks and picnic areas. The Metropolitan Corporation of Islamabad (MCI), is in charge of
the city’s administration. To maintain its appeal, the MCI decided to refurbish all of the
parks and picnic areas. The MCI needed to recruit some private contractors to do so. The
MCI chose four private companies for further consideration after some preliminary
screening. N;: Bilawal Builders, N,: Hussain Estate and Builders, N;: Nimo Engineering,
Construction and Interiors, and N,: Scholar Builders. The MCI's specialists devised five-
point criteria for selecting the best corporation or company: M;: cost, M,: previous per-
formance, Mj: time constraints, M,: quality assurance, and Ms: labor quantity. The deci-
sion-making committee provided all of the information regarding TSFNs, which is given
in Table 10. The evaluation steps for the MCDM algorithm are given as:

Step 1. Table 10 contains the decision maker’s suggestions in the form of TSFNs. As-
suming that all of the values in Table 10 are simply TSENs for n = 5, it is demonstrated
that neither IFS nor PFS operators can solve this problem.
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Table 10. Data for MCDM of the alternatives.

M, M, Ms M, Ms
N, 01 07 04 05 08 09 08 08 08 06 07 08 03 05 07
N, 02 07 06 06 07 08 03 07 07 01 07 09 04 06 08
N, 05 06 06 05 06 07 05 07 01 09 06 02 05 06 09
N, 05 06 08 08 07 04 08 07 03 06 06 01 08 04 04
M 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

Step 2. The DM of each TSEN given in Table 10 is calculated with M(1,0,0), which
describes an ideal TSFN using newly introduced DMs, as shown in Section 3.
Step 3. Analyzing Table 11, for DMs the result obtained is

Ny < Ng< Ny <Ny

Table 11. DMs of N; with M.

DMs (N, M) (N2, M) (N3, M) (N4, M)
Dy 0.228043 0.245462 0.214225 0.195397
D, 0.175194 0.178774 0.140006 0.119011
Dy 0.197735 0.218285 0.187124 0.163446
D, 0.228043 0.245462 0.214225 0.195397
Ds 0.237325 0.247650 0.225878 0.217792
Dg 0.949301 0.990603 0.903515 0.871168
D, 0.982434 0.996369 0.971380 0.956318
Dg 0.995608 0.999092 0.992845 0.989079
Dy 0.978043 0.995462 0.642255 0.945397
Dio 0.946347 0.987729 0.870932 0.805294
D14 0.866796 0.869182 0.843337 0.829340
D, 0.467185 0.476730 0.373351 0.316872

Therefore, N, is the best choice as the DM of (N4, N) is smaller than all the remain-
ing pairs. Furthermore, due to the complex nature of TSFNs, the DMs of IFSs and PFSs
cannot be applied to this sort of data.

The outcomes of Table 11 are portrayed in Figure 7, which shows that after applying
the proposed DMs, N, is the best choice for MCDM purposes.

DMs applications for MCDM
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Figure 7. Results of DMs for MCDM.
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Comparative Study: This section aims to compare the results achieved using DM for
TSESs in the current work with results obtained using DM for TSFs, as proposed by Ullah
et al. [27]. Here, we also present the limitations of the previously defined DMs of IFSs and
PFSs. A brief discussion of the calculated results of this paper compared with other papers
is given in Table 12 below.

Table 12. Comparative study.

DM Environment Results
DM for TSESs (Current Work) TSFSs N, < N3< N; <N,
DM for TSFESs (Current Work) TSFSs Ny < Nz3< N, <N,
DM for TSFSs (Current Work) TSESs N, < N;< N; <N,
DM for TSESs (Current Work) TSFSs Ny, < N;< N; <N,
DM for TSESs (Current Work) TSFSs N, < N;3< N; <N,
DM for TSESs (Current Work) TSFSs Ny, < N3 < N; <N,
DM for TSFSs (Current Work) TSESs N, < N;< N; <N,
DM for TSFSs (Current Work) TSFSs Ny < N3< N, <N,
DM for TSFSs (Current Work) TSESs N, < N;< N; <N,
DM for TSESs (Current Work) TSFSs Ny, < N;3< N; <N,
DM for TSESs (Current Work) TSESs Ny, < N;< N; <N,
DM for TSESs (Current Work) TSFSs Ny < N;< N; <N,
DM for TSFSs Ullah et al. [27] TSFSs N,< Ns< N; <N,

The results in Table 12 support our hypothesis that the DM of TSFSs can manage
large amounts of data. The benefit of the introduced DMs is that there are no restrictions
on giving values to membership degrees in the environment of TSFSs as it includes all
four degrees, but there are restrictions on giving values to membership degrees in IFSs,
PyFESs, and PFSs. All the existing DMs failed to solve the issues due to the absence of RD
and the restricted range when the data are given in the TSF environment. It is also con-
cluded from Table 13 that N, is the best choice as the DM of (N4, N) is smaller than all
the remaining pairs. Therefore, it is said that N, is the best choice for MCDM purposes,
which supports our results.

Figure 8 depicts a comparison of our study with others, and it also explains that our
results are suitable and more accurate than those of previous work.

Comparison of current work with the existing work

Current Current Current Current Current Current Current Current Current Current Current Current Ullah et

Work

Work Work Work Work Work Work Work Work Work Work Work al.

EN1 mN2 mN3 mN4

Figure 8. Comparison of the current work with the existing work.
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The SM of each TSFN given in Table 10 is calculated with M(1,0,0), which describes
an ideal TSFN, using newly introduced SMs, as shown in Section 4.
Analyzing Table 13, for SMs the result obtained is

N, < N; < N3 <Ny

Table 13. SMs of N; with M.

SMs (N4, M) (N2, M) (N3, M) (N4, M)
S1 0.771957 0.754538 0.785775 0.804603
S, 0.824806 0.821226 0.859993 0.880989
S3 0.802265 0.781715 0.812876 0.836553
S, 0.771957 0.754538 0.785775 0.804603
S5 0.012675 0.002349 0.024121 0.032208
Se 0.050698 0.009396 0.096485 0.128831
Sy 0.017565 0.003630 0.028620 0.043682
Sg 0.004391 0.000908 0.007155 0.010921
Sy 0.021957 0.004538 0.035775 0.054603
S10 0.053653 0.012271 0.129067 0.194706
S11 0.133203 0.130817 0.156662 0.170659
Si2 0.532815 0.523269 0.626649 0.683127

Hence, N, is the best choice as the SM of (N4, N) is greater than all the remaining
pairs. Furthermore, due to the complex nature of TSFNs, the SMs of IFSs and PFSs cannot
be applied to this sort of data.

The outcomes of Table 13 are portrayed in Figure 9, which shows that after applying
the proposed SMs, N, is the best choice for MCDM purposes.

SMs applications for MCDM
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 .
S1 S2 S3 sS4 S5 S6 S7 S8 S9 S10 S11 S12

EN1 mN2 mN3 mN4
Figure 9. Results of SMs for MCDM.

Comparative Study: This section aims to compare the results achieved using SM for
TSESs in the current work with results obtained using SM for TSFSs, as proposed by Ullah
et al. [27]. Here, we also present the limitations of the previously defined SMs of IFSs and
PFSs. A brief discussion of the calculated results of this paper compared with other papers

is given in Table 14 below.
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Table 14. Comparative study.

SM Environment Results
SM for TSESs (Current Work) TSFSs N, < N; < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < Ny < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < Ny < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < Ny < N3 <Ny
SM for TSESs (Current Work) TSFSs N, < Ny < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < N; < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < N; < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < Ny < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < Ny < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < Ny < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < Ny < N3 <N,
SM for TSFSs (Current Work) TSFSs N, < Ny < N3 <N,
SM for TSFSs Ullah et al. [27] TSFSs N, < N; < N3 <N,

The results in Table 14 support our hypothesis that the SM of TSFSs can manage large
amounts of data. The benefit of the introduced SMs is that there are no restrictions on
giving values to membership degrees in the environment of TSFSs as it includes all four
degrees but there are restrictions on giving values to membership degrees in IFSs, PyFSs,
and PFSs. All existing SMs failed to solve the issues due to the absence of RD and restricted
range, especially when the data are given in the environment of TSFSs. It is also concluded
from Table 14 that N, is the best choice as the SM of (N,,N) is greater than all the re-
maining pairs. Therefore, it is said that N, is the best choice, which supports our claim.

Figure 10 depicts a comparison of our study with others, and it also explains that our
results are suitable and more accurate than those of previous work.

Comparison of current work with existing work

I“‘|||_L¥-.||“Iu

Current Current Current Current Current Current Current Current Current Current Current Current Ullah et

Work

Work

Work Work Work Work Work Work Work Work Work Work al.

EN1 mN2 mN3 mN4

Figure 10. Comparison of the current work with the existing work.

7. Conclusions

The background of FSs, IFSs, PyFSs, q-ROFSs, and PFESs is briefly presented in this
work, along with their possible limitations. It is also shown how the TSFS framework
modifies all known theories and provides a strong foundation with no limitations at all.
The primary goal of this work is to describe several new DMs and SMs, keeping in view
the restrictions of previously defined DMs and SMs. Here, in this paper, we propose some
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new formulas for DMs and SMs. Because of their more comprehensive range, the pro-
posed DMs and SMs are more essential and innovative than previously defined ones. We
cannot assign values to MD, NMD, and AD independently because the previously speci-
fied DMs and SMs have a limited structure. However, because the range of TSFSs is so
large, we can assign values to MD, NMD, and AD without any restrictions or limitations.
When data are presented in a TSF setting, it can be determined that the recommended
DMs and SMs are more suitable and accurate for solving problems. The proposed DMs
and SMs are used to construct pattern-recognition and MCDM algorithms, which are then
applied to real-life issues. A comparison of existing and developing notions and the short-
comings of existing theories is established. We also prove that the proposed DMs and SMs
are more suitable to use when the data are provided in a TSF environment with no re-
strictions at all. The effectiveness of the proposed DMs and SMs is also evaluated, and it
is proved that the proposed DMs and SMs are more effective than the previously defined
DMs and SMs due to the limitations of the latter. In the future, the proposed work could
be used in several other ambiguous situations, such as interval-valued TSFSs, complex
TSFSs, medical diagnosis, and manufacturing industry digital reforms [33]. A limitation
of our current work is that when the data are provided in an interval-valued TSF environ-
ment and complex TSF environment, then our proposed DMs and SMs fail to solve such
challenges. In the near future, we aim to extend our theory to the environment of complex
TSFSs [35], bipolar soft sets [36], picture FSs [37], and bipolar hesitant FSs [38,39].
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