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Abstract: Let D be a connected bounded domain in R2, S be its boundary, which is closed and
C2-smooth. Consider the Dirichlet problem ∆u = 0 in D, u|S = h, where h ∈ L1(S). The aim of this
paper is to prove that the above problem has a solution for an arbitrary h ∈ L1(S), and this solution
is unique. The result is new. The method of its proof is new. The definition of the L1(S)-boundary
value of a harmonic in the D function is given. No embedding theorems are used. The history of the
Dirichlet problem goes back to 1828. The result in this paper is, to the author’s knowledge, the first
result in the 194 years of research (since 1828) that yields the existence and uniqueness of the solution
to the Dirichlet problem with the boundary values in L1(S).
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1. Introduction

Let D be a connected bounded domain on the complex plane, S be its boundary, which
is closed and C2-smooth.

The aim of this paper is to prove that an arbitrary h ∈ L1(S) can be the boundary
value of a harmonic in the D function. The boundary value h ∈ L1(S) uniquely determines
the harmonic function in D.

There is a large body of literature on the Dirichlet problem for elliptic equations
going back to 1828; see references. There are three basic directions of research: non-
smooth domains, non-smooth coefficients and non-smooth boundary values. This paper
deals with smooth domains, the simplest elliptic operator, the Laplacean and non-smooth
boundary values. In the published papers and books, the boundary values of harmonic
functions were always assumed to be smoother than L1(S). For example, the maximal
non-smoothness, allowed in [1], is bounded continuous function h on S with finitely many
points of discontinuity of the first kind. In [2], the boundary conditions in L1(S) are not
considered at all.

We deal with the smooth two-dimensional domains (n = 2) for definiteness. In the two-
dimensional case, the kernel of the integral equation of the potential theory is continuous,
and the corresponding integral operator A is compact in L1(S). The compactness of A
in L1(S) holds for any finite dimension n ≥ 2, but the kernel A(t, s) of A, defined below
formula (2), is not continuous for n > 2. This does not prevent A from being compact
in L1(S). Our arguments are based on the new definition of the boundary values of a
harmonic function in L1(S); see Definition 1 below. To our knowledge, in this paper, the
L1(S)-boundary values of harmonic functions are considered for the first time.

The problem we study is:

∆u = 0 in D, u|S = h. (1)

This problem has been studied in many papers and books for a long time. We mention only
a few names: G. Green (1828), Gauss, Thomson, Dirichlet (1850), Hilbert (1900). One of the
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methods to solve this problem is based on the potential theory. Let us look for the solution
in the form of the double-layer potential

u(x) =
∫

S

∂g(x, s)
∂N

µ(s)ds, N := Ns. (2)

Here g = − 1
2π ln r, r := rxy = |x− y|, x, y ∈ R2, A(t, s) := ∂g(t,s)

∂N = − 1
2π

Ns ·r0

rts
, r0 = s−t

|s−t| ,
N = Ns is the unit normal to S at the point s, N is directed out of D, µ = µ(s) is the
unknown function. The kernel A(t, s) is a continuous function of t and s on S× S when
D ⊂ R2 and S is C2−smooth. We could assume S to be C1,a− smooth, a ∈ (0, 1], but this is
not important in this paper.

In our case, operator

Aµ =
∫

S
A(t, s)µ(s)ds (3)

is well defined as an operator in L1(S) and is compact in this space, see [3–5] for the
compactness test of L1(S).

Let us check that the kernel A(t, s) is continuous on S× S if n = 2 and S ∈ C2. For
|t − s| > ε this kernel is C1−smooth. Therefore, only its behavior as t → s should be
considered. This behavior is determined by the function Ns ·r0

−2πrts
. Choose the coordinate

system in which the y−axis is directed along Nt, so Nt = j, where i and j are the orthogonal
unit vectors of the coordinate system. The equation of S in a neighborhood of t in this system
is y = f (x), f (0) = f ′(0) = 0, the vector t = (0, 0), the vector s = xi + j f (x), the vector
s − t = xi + j f (x), r0 = xi+ f (x)j

(x2+ f 2(x))1/2 , Ns = f ′(x)i−j
(1+( f ′)2)1/2 , Ns · r0 = x f ′(x)− f (x)

(x2+ f 2(x))1/2(1+( f ′)2)1/2 .

Denote Ns ·r0

rts
:= J. In our coordinate system f (0) = f ′(0) = 0, so f (x) ∼ f ′′(0)x2

2 as

x → 0. Therefore, one gets J(0) = − limx→0
f ′′(0)x2

2x2 = − f ′′(0)
2 . Thus, the kernel A(t, s) is

continuous as t→ s. Therefore, it is continuous on S× S.
If D ⊂ Rn, n > 2, and S is smooth, then the kernel A(t, s) is O( 1

rn−2
ts

). Therefore, if

n > 2, operator A is compact in L1(S), but the kernel is not continuous on S× S.
If one looks for the solution to Equation (1) of the form (2) and µ ∈ C1(S), then the

integral equation for µ is:

h(t) = −µ(t)
2

+
∫

S
A(t, s)µ(s)ds. (4)

Equation (4) holds everywhere with respect to the Lebesgue measure on S if A(t, s) is con-
tinuous. See, for example, [6], where the derivation of Equation (4) under the assumption
µ ∈ C1(S) is given. It is well known that the set C1(S) is dense in L1(S) in the norm of
L1(S). Equation (4) holds almost everywhere with respect to Lebesgue’s measure on S if
h ∈ L1(S).

Let us recall M. Riesz’s compactness criterion for sets in L1(S):

Proposition 1. For a bounded set M ⊂ L1(S) to be compact in L1(S), it is necessary and sufficient
that for an arbitrary small ε > 0 there exists a δ > 0 such that if |σ| ≤ δ, then for any h ∈ M one
has ‖h(s + σ)− h(s)‖ < ε, where s + σ ∈ S.

Here and below, the norm is the L1(S) norm, ‖h‖ =
∫

S |h(s)|ds. Proofs of Proposition 1
can be found in [3,5].

Lemma 1. If A(t, s) is continuous on S× S and a set M ∈ L1(S) is bounded, then the set AM is
compact in L1(S).
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Proof. By Proposition 1, it is sufficient to check that ‖(Ah)(t + σ) − (Ah)(t)‖ ≤ ε for
|σ| ≤ δ, where h ∈ M is arbitrary. Let |S| denote the length of S. One has

‖(Ah)(t + σ)− (Ah)(t)‖ ≤ |S| sup
s,t∈S
|A(t + σ, s)− A(t, s)|‖h‖ ≤ cε, (5)

provided that |σ| ≤ δ. Here c > 0 does not depend on δ, it comes from the bound ‖h‖ ≤ c1
for all h ∈ M, c = |S|c1. We have used the continuity of A(t, s) on S× S to conclude that

sup
s,t
|A(t + σ, s)− A(t, s)| ≤ ε, (6)

if |σ| is sufficiently small. Lemma 1 is proven. 2

We want to make sense of the method of integral equation for solving the Dirichlet
problem (1), assuming that h ∈ L1(S).

Lemma 2. Operator A is compact in L1(S). Operator − I
2 + A is Fredholm-type, where I is the

identity operator. The null-space of operator − I
2 + A is trivial.

Proof. Operator A : L1(S)→ L1(S) is compact by Lemma 1. This is also true if n > 2 and
A(t, s) = O(|t− s|−(n−2)). Operator − I

2 + A, where I is the identity operator, is bounded
and continuous as an operator from L1(S) into itself. It is known (see, e.g., ref. [1]) that the
homogeneous problem (1) has only the trivial solution in the space C(S). We claim that
the same is true in the space L1(S). Indeed, if µ solves the homogeneous Equation (4) and
n = 2, then µ ∈ C(S) because (Aµ) ∈ C(S) if µ ∈ L1(S) since the kernel A(t, s) ∈ C(S× S).
Therefore, the null-space of operator − I

2 + A is trivial in L1(S) as well.
Since A is compact and the null-space of operator − I

2 + A is trivial, the Fredholm
alternative holds: the inverse operator (− I

2 + A)−1 exists, is bounded, and it maps L1(S)
onto itself. This means not only that Equation (4) makes sense for µ ∈ L1(S) and h ∈ L1(S),
but also that µ depends continuously on h in the norm of L1(S).

Lemma 2 is proved. 2

Remark 1. It follows from Lemma 2 that the only solution in L1(S) of the homogeneous problem (1)
is u = 0. This result is new because L1(S) boundary values of harmonic functions were not
considered earlier.

Remark 2. One can find a harmonic function u in the circle D = {x, y : (x − 1)2 + y2 < 1},
which is zero on S = {x, y : (x− 1)2 + y2 = 1}, except at one point x = 0, y = 0, and which is
not zero in D. For example, u = 1− 2Re z−1, z = x + iy. Of course, u|S in this example does not
belong to L1(S).

To check this, write u = (x−y)2

x2+y2 and use the polar coordinates x − 1 = r cos φ,
y = r sin φ. Then S has representation x = 1 + cos φ, y = sin φ and the point (0, 0) has
coordinates r = 1, φ = π. One has

∫ 2π

0

(x− y)2

x2 + y2 dφ =
∫ 2π

0

1− sin(2φ)

2 + 2 cos φ
dφ.

The integrand in the above integral is not absolutely integrable in a neighborhood of the
point φ = π. The function (x− y)2 = 0 on S because the equation (x− 1)2 + y2 = 1 of S is
equivalent to the equation (x− y)2 = 0.

This example shows that the assumption h ∈ L1(S) is necessary for the uniqueness of
the solution to the Dirichlet problem (1).
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Our next step is to define the limx→t Axµ for µ ∈ L1(S), where

Axµ :=
∫

S
A(x, s)µ(s)ds, (7)

and the kernel of operator Ax is A(x, s) := ∂g(x,s)
∂Ns

.
By x → t we mean a non-tangential limit x → t, where x ∈ D and t ∈ S.
Let h ∈ L1(S) be arbitrary. Choose any sequence hδ ∈ C1(S) such that

lim
δ→0
‖h− hδ‖ = 0. (8)

By Lemma 2, Equation (8) implies

lim
δ→0
‖µ− µδ‖ = 0, (9)

where µδ is the unique solution to the equation:

− µδ(t)
2

+
∫

S

∂g(t, s)
∂Ns

µδ(s)ds := hδ. (10)

Definition 1. We define
Axµ := lim

δ→0
Axµδ, x ∈ D, (11)

and

Atµ := lim
δ→0

lim
x→t

∫
S

∂g(x, s)
∂Ns

µδ(s)ds, t ∈ S. (12)

This definition gives meaning to the boundary condition in Equation (1) if h ∈ L1(S).
The existence of the limit

lim
δ→0

∫
S

∂g(x, s)
∂N

µδ(s)ds =
∫

S

∂g(x, s)
∂N

µ(s)ds

is obvious for x ∈ D because of relation (9) and because kernel ∂g(x,s)
∂N is smooth when

x ∈ D.
The existence of the limit

lim
x→t

∫
S

∂g(x, s)
∂N

µδ(s)ds = −µδ(t)
2

+ Aµδ (13)

is known from the potential theory if µδ ∈ C1(S), see, for example, ref. [6], pp. 148–152.
The existence of the limit

lim
δ→0

(
− µδ(t)

2
+ Aµδ

)
= −µ(t)

2
+ Aµ (14)

is clear from relation (9) and Lemma 2.
For the convenience, of the reader we sketch a proof of Equation (13) following [6].

The proof is shorter than in [6] because the kernel ∂g(t,s)
∂N is continuous if n = 2.

Note that J(x) := limx→t
∫

S
∂g(x,s)

∂N ds = −1 if x ∈ D; J(x) = 0 if x ∈ D′, where D′ is
defined by the formula: D′ := R3 \ D̄; J(x) = − 1

2 if x = t ∈ S. This result is well known
and is proven by applying Green’s formula and the equation ∆g(x, y) = −δ(x− y), where
δ(x) is the delta function.

Let µδ ∈ C1(S). Then,

M :=
∫

S

∂g(x, s)
∂N

µδ(s)ds = J(x)µδ(t) +
∫

S

∂g(x, s)
∂N

[µδ(s)− µδ(t)]ds := J(x)µδ(t) + K.
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One has (the + sign denotes the non-tangential to S limit when x ∈ D, x → t ∈ S and the
− sign denotes the similar limit when x ∈ D′, x → t ∈ S):

M+ = −µδ(t) + lim
x→t,x∈D

K := J+, M− = 0 + lim
x→t,x∈D′

K := J−. M0 = −1
2

µδ(t) + K.

If one proves that K is continuous when x passes t along the normal Nt, then M0 =

− 1
2 µδ + K(t) and the desired statement is proven. Here K(t) =

∫
S

∂g(t,s)
∂N [µδ(s)− µδ(t)]ds.

If µδ ∈ C1(S), then |µδ(s)− µδ(t)| ≤ c|s− t|. Therefore,

|K(x)− K(t)| ≤ c
∫

S
|N · r

0
xs

|x− s| −
N · r0

ts
|t− s| ||t− s|ds := L.

The function r0
xs is continuous with respect to x. The function |t− s|/|x− s| is continuous

with respect to x when x → t along the normal Nt. This implies continuity of L when x
crosses t along Nt. Therefore, M is a continuous function of x when x crosses t along Nt, as
we claimed.

Since operator A is compact in L1(S), the Fredholm alternative yields the unique
solution to Equation (4) with an arbitrary h ∈ L1(S), because Equation (4) with h = 0
has only the trivial solution in L1(S). Given an arbitrary h ∈ L1(S), one finds hδ ∈ C1(S)
such that

lim
δ→0
‖hδ − h‖ = 0.

If limδ→0 ‖hδ − h‖ = 0, then limδ→0 ‖µδ − µ‖ = 0 since the inverse operator
(
− I

2 + A
)−1

is continuous and defined on all of L1(S). The function u(x) = Axµ, where µ is the
unique solution to Equation (4), solves the Dirichlet problem (1). We have proven the
following result:

Theorem 1. Assume that h ∈ L1(S) is arbitrary. Then there exists a unique harmonic in the D
function u = Axµ, x ∈ D, such that u = h on S. The boundary value of u on S is defined by
formula (12).

2. Conclusions

The history of the Dirichlet problem goes back to 1828. The result in this paper is, to
the author’s knowledge, the first result in the 194 years of research since 1828 that yields
the existence and uniqueness of the solution to the Dirichlet problem with the boundary
values in L1(S).

It is proven that the Dirichlet problem (1) with the boundary function h ∈ L1(S) has a
solution, and this solution is unique.

Open problem. Let us keep our assumption about D. Given a harmonic function
u(x, y) in D; one can use the Schwarz operator to construct the conjugate harmonic function
v(x, y) (up to an additive constant) and to get the corresponding analytic function f (z) =
u + iv, z = x + iy, in D. The open problem is:

What is the set of boundary values of f (z) on S when the values h of u on S run through all of
L1(S)?

The Schwarz operator is known explicitly if, for example, D is the unit disc; see, for
example, ref. [7]. In [8,9], one can find information about the action of singular integral
operators in Lebesgue’s spaces Lp(S), 1 < p < ∞.
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