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Abstract: Cubic sets are a very useful generalization of fuzzy sets where one is allowed to extend the
output through a subinterval of [0, 1] and a number from [0, 1]. In this article, we first highlight some
of the claims made in the previous article about cubic sets. Then, the concept of semi-coincidence in
cubic sets, cubic neighborhood system according to cubic topology, and cubic bases and subbases
are introduced. This article deals with a cubic closure and a cubic interior and how to obtain their
various properties. In addition, cubic compact spaces and their properties are defined and a useful
example is given. We mainly focus on the concept of cubic continuities and deepen our research by
finding its characterization. One of the most important discoveries of this paper is determining that
there is a cubic product topology induced by the projection mappings, and discovering sufficient
conditions for the projection mappings to be cubic open.

Keywords: cubic set; cubic quasi-coincidence; cubic topology; cubic neighborhood; cubic base and
subbase; cubic closure and interior; cubic continuous mapping; cubic quotient mapping
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1. Introduction

In 2012, Jun et al. [1] defined a cubic set by combining with an interval-valued fuzzy
set (see [2]) and a fuzzy set (see [3]). After that, Kang and Kim [4] and Chinnadurai et al. [5]
discussed some properties of the image and the preimage of mappings of cubic sets under
a mapping and under various characterizations of cubic sets, respectively. Kim et al. [6]
studied various properties for cubic relations. Smarandache et al. [7] proposed the concept
of neutrosophic cubic sets as the extension of cubic sets and obtained some of its properties.
Rashid et al. [8] dealt with decision-making problems based on cubic sets. Furthermore,
many researchers [9–18] applied cubic sets to various algebraic structures. Zeb et al. [19]
investigated topological structures via cubic sets; however, they studied only some basic
properties of topological structures based on a cubic set.

Neighborhood structures in a topological space is very important to study separation
axioms, connectedness, nets, etc. As such, our research aims to study neighborhood
structures, closures and interiors, and continuities based on cubic sets which play important
roles in a topology. To do this, this paper includes the following: We recall basic concepts
related to cubic sets in Section 2. We define a quasi-coincidence in cubic sets and obtain
some of its properties in Section 3. In Section 4, first, we introduce the notion of cubic
neighborhood systems with respect to a cubic topological space and find its some properties
(see Theorems 5 and 6). Next, we define a cubic base and a cubic subbase and discuss some
of their properties. We propose the concepts of cubic closures and cubic interiors, as well as
deal with their various properties in Section 5. In Section 6, we define cubic continuous
mapping and give its characterization (see Theorem 15). Moreover, we confirm that the
concrete category PCTop has an initial structure (see Remarks 11 and 13). In addition,
we introduce the notion of cubic quotient mappings and find its some properties. Lastly,
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we provide the sufficient conditions for the projection mappings to be cubic open (see
Proposition 16).

Throughout this paper, the classical unit interval [0, 1] is denoted as I, J denotes a
index set and X, Y, Z are nonempty sets.

2. Preliminaries

In this section, we list some basic definitions and one result needed in the next sections.
A mapping A : X → I is called a fuzzy set in X (See [3]). The fuzzy empty set and the

fuzzy whole set in X, denoted by 0 and 1, is defined by, respectively: for each x ∈ X,

0(x) = 0 and 1(x) = 1.

IX denotes the collection of all fuzzy sets in X.
Let [I] be the set of all closed subintervals of I, i.e., [I] = {ã = [a−, a+] : 0 ≤ a− ≤

a+ ≤ 1}. Each member of [I] is called interval number. Refer to [1] for the definitions of the
order (≤) between two interval-valued numbers, the inf (

∧
) and the sup (

∨
) of a family of

interval-valued numbers, and the the complement (c) of an interval-valued number.
A mapping Ã = [A−, A+] : X → [I] is called an interval-valued fuzzy set (briefly, IVFS)

in X (See [2,20,21]). The interval-valued fuzzy empty set and the interval-valued fuzzy whole set
in X, denoted by 0̃ and 1̃, is defined by, respectively: for each x ∈ X,

0̃(x) = [0, 0] and 1̃(x) = [1, 1].

The set of all IVFSs is denoted by IVFS(X).

Definition 1 ([22]). Let P(X) be the power set of X, let Ã = [A−, A+] ∈ IVS(X) and A ∈ P(X).
Then A =

〈
Ã, A

〉
is called a cubic crisp set (briefly, CCS) in X. We can consider special cubic

crisp sets:
X̂ =

〈
X̃, X

〉
, ∅̂ =

〈
∅̃, ∅

〉
, Ẍ =

〈
X̃, ∅

〉
, ∅̈ =

〈
∅̃, X

〉
.

where X̃ = [X, X], ∅̃ = [∅, ∅]. X̂ [resp. ∅̂] is called a cubic crisp whole [resp. empty] set in X.
CCS(X) denotes the set of all CCSs in X.

We define two types of orders between two cubic numbers, and two types of infimums

and supremums for any collection of cubic numbers: for any cubic number ˜̃a, ˜̃b and each
collection (˜̃aj)j∈J of cubic numbers,

(i) (P-order) ˜̃a ≤P
˜̃b⇐⇒ ã ≤ b̃, a ≤ b,

(ii) (R-order) ˜̃a ≤R
˜̃b⇐⇒ ã ≤ b̃, a ≥ b,

(iii) (P-inf)
∧P

j∈J
˜̃aj =

〈∧
j∈J ãj,

∧
j∈J aj

〉
,

(iv) (P-sup)
∨P

j∈J
˜̃aj =

〈∨
j∈J ãj,

∨
j∈J aj

〉
,

(v) (R-inf)
∧R

j∈J
˜̃aj =

〈∧
j∈J ãj,

∨
j∈J aj

〉
,

(vi) (R-sup)
∨R

j∈J
˜̃aj =

〈∨
j∈J ãj,

∧
j∈J aj

〉
.

Definition 2 ([1]). A mapping A =
〈

Ã, A
〉

: X → [I]× I is called a cubic set in X. Consider
the following special cubic sets in X defined by:

0̈ =
〈
0̃, 1
〉
, 1̈ =

〈
1̃, 0
〉

, 0̂ =
〈
0̃, 0
〉
, 1̂ =

〈
1̃, 1
〉

.

Then 0̂ [resp. 1̂] is called the cubic empty [resp. whole] set in X. CS(X) denotes the set of all
cubic sets in X.



Axioms 2022, 11, 406 3 of 23

Remark 1. For each A ∈ P(X), let χA be the characteristic function of A. Then χA =
{〈[χA , χA ], χA〉} ∈ CS(X). Thus, a cubic set is the generalization of a classical set. More-
over, it is well known [22] that a cubic crisp set is the generalization of a classical set and the special
case of a cubic set.

Definition 3 ([1]). For A, B ∈ CS(X), the following relations are defined:

(i) (Equality) A = B ⇔ Ã = B̃ and A = B,
(ii) (P-inclusion) A @ B ⇔ Ã ⊂ B̃ and A ⊂ B,
(iii) (R-inclusion) A b B ⇔ Ã ⊂ B̃ and A ⊃ B.

For A ∈ CS(X) and (Aj)j∈J ⊂ CS(X), the definitions of the complement Ac of A, and
P-union tj∈JAj, P-intersection uj∈JAj, R-union dj∈JAj and R-intersection ej∈JAj of (Aj)j∈J
refer to [1].

Remark 2. From Definitions 1 and 3, it is clear that 0̂ @ A @ 1̂ and 0̈ b A b 1̈ for each
A ∈ CS(X). Furthermore, 0̂ @ 0̈, 1̈ @ 1̂ and 0̈ b 0̂, 1̂ b 1̈. Then we can see that 0̂ [resp. 1̂] is the
smallest [resp. largest] element of CS(X) in the sense of P-order and 0̈ [resp. 1̈] is the smallest [resp.
largest] element of CS(X) in the sense of R-order.

It is well known [1] that the following hold:

(1) 0̌c = 1̌, 1̌c = 0̌, 0̈c = 1̈ and 1̈c = 0̈,
(2) for each A ∈ ([I]× I)X , (Ac)c = A,
(3) for any (Aj)j∈J ⊂ ([I]× I)X ,

(tj∈JAj)
c = uj∈JAc

j , (uj∈JAj)
c = tj∈JAc

j ,

(dj∈JAj)
c = ej∈JAc

j , (ej∈JAj)
c = dj∈JAc

j .

Result 1 (Proposition 3.4, [6]). Let A, B, C ∈ CS(X), let (Aj)j∈J ⊂ CS(X).

(1) AtA = A, AuA = A, AdA = A, AeA = A.
(2) At B = B tA, Au B = B uA, Ad B = B dA, Ae B = B eA.
(3) At (B t C) = (At B) t C, Au (B u C) = (Au B) u C,

Ad (B d C) = (Ad B)d C, Ae (B e C) = (Ae B)e C.
(4) At (B u C) = (At B) u (At C), Au (B t C) = (Au B) t (Au C),

Ad (B e C) = (Ad B)e (Ad C), Ae (B d C) = (Ae B)d (Ae C).
(4)
′ At (uj∈JAj) = uj∈J(AtAj), Au (tj∈JAj) = tj∈J(AuAj),
Ad (ej∈JAj) = ej∈J(AdAj), Ae (dj∈JAj) = dj∈J(AeAj).

3. P-Quasi-Coincidence and R-Quasi-Coincidence

In this section, first, we recall the notions of fuzzy points and interval-valued fuzzy
points and define an interval-valued fuzzy quasi-coincidence, and find some of its proper-
ties. Next, we introduce the notions of P-quasi-coincidences and R-quasi-coincidences, and
obtain some of their properties.

Definition 4 ([23]). xa ∈ IX is called a fuzzy point with the support x ∈ X and the value a ∈ I
with a > 0, if for each y ∈ X,

xa =

{
a if y = x
0 otherwise.

FP(X) is the set of all fuzzy points in X. Let xa ∈ FP(X) and A, B ∈ IX . Then

(i) xa is said to belong to A, denoted by xa ∈ A, if A(x) ≥ a,
(ii) xa is said to quasi-coincident with A, denoted by xa qA, if A(x) > Ac(x), i.e., a + A(x) > 1,
(iii) A is said to be quasi-coincident with B, denoted by AqB, if there is x ∈ X such that

A(x) > Bc(x), i.e., A(x) + B(x) > 1.
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It is well-known [24] that A =
⋃

xa∈A xa for each A ∈ IX .

Definition 5 ([21]). xã ∈ IVFS(X) is called an interval-valued fuzzy point (briefly, IVFP) with
the support x ∈ X and the value ã ∈ [I] with a− > 0, if for each y ∈ X,

xã =

{
ã if y = x
[0, 0] otherwise.

IVFP(X) is the set of all IVFPs in X. Let xã ∈ IVFP(X) and Ã ∈ IVFS(X). Then
xã is said to belong to Ã, denoted by xã ∈ Ã, if ã ≤ Ã(x), i.e., a− ≤ A−(x), a+ ≤ A+(x).

It is well-known [21] that Ã =
⋃

xã∈Ã xã for each Ã ∈ [I]X .

Definition 6. Let Ã, B̃ ∈ IVFS(X). Then Ã and B̃ are said to be intersecting, if there is x ∈ X
such that (Ã ∩ B̃)(x) 6= [0, 0]. In this case, we say that Ã and B̃ intersect at x.

Definition 7. Let xã ∈ IVFP(X) and and let Ã, B̃ ∈ IVFS(X).

(i) xã is said to be quasi-coincident with Ã, denoted by xã qÃ, if ã > Ãc(x), i.e.,

a− + A+(x) > 1, a+ + A−(x) > 1.

When xã is not quasi-coincident with Ã, we write xã¬qÃ.
(ii) Ã is said to be quasi-coincident with B̃, denoted by ÃqB̃, if there is x ∈ X such that Ã(x) >

B̃c(x), i.e.,
A−(x) + B+(x) > 1, A+(x) + B−(x) > 1.

In this case, we say that Ã and B̃ are quasi-coincident (with each other) at x. When Ã is not
quasi-coincident with B̃, we write Ã¬qB̃.

It is obvious that, if Ã and B̃ are quasi-coincident at x, then they are intersect at x.
From Definitions 5 and 7, we have the following.

Lemma 1. Let xã ∈ IVFP(X) and and let Ã ∈ IVFS(X). Then xã ∈ Ã if and only if xã¬qÃc.

Also from Definition 5 and Lemma 1, we obtain the following.

Lemma 2. Let Ã, B̃ ∈ IVFS(X). Then the following are equivalent:

(1) Ã ⊂ B̃,
(2) xã ∈ B̃ for each xã ∈ Ã,
(3) Ã¬qB̃c.

Lemma 3. Let Ã, B̃ ∈ IVFS(X), let (Ãj)j∈J ⊂ IVFS(X) and let xã ∈ IVFP(X).

(1) xã q
⋃

j∈J Ãj if and only if there is j0 ∈ J such that xã qÃj0 .
(2) xã q(Ã ∩ B̃) if and only if xã qÃ and xã qB̃.

Proof. (1) Suppose xã q
⋃

j∈J Ãj. Then we have
ã > (

⋃
j∈J Ãj)

c(x)
= (

⋂
j∈J Ãc

j )(x)
= [

∧
j∈J(1− A−j (x)),

∧
j∈J(1− A+

j (x))]
= [(1−∨j∈J A−j (x), 1−∨j∈J A+

j (x)].
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Thus, a− > 1−∨j∈J A−j (x), a+ > 1−∨j∈J A+
j (x). So there is j0 ∈ J such that

a− > 1− A−j0 (x), a+ > 1− A+
j0
(x).

Hence, xã qÃj0 .
Conversely, suppose the necessary condition holds. Then clearly, xã q

⋃
j∈J Ãj.

(2) Suppose xã q(Ã ∩ B̃). Then we have
ã > (Ã ∩ B̃)c(x)
= (Ãc ∪ B̃c)(x)
= Ãc(x) ∨ B̃c(x).

Thus, ã > Ãc(x) and ã > B̃c(x). So xã qÃ and xã qÃ.
The proof of the converse is easy.

Lemma 4. Let Ã ∈ IVFS(X) and let Ã(x) = b̃ 6= [0, 0]. Then for any interval number ã such
that [0, 0] < ã < b̃, xãc qÃ.

Proof. Since ãc = [1− a+, 1− a−], we get
1− a+ + A+(x) = 1− a+ + b+ [Since Since ã < b̃]

= 1 + (b+ − a+)
> 1. [Since ã < b̃]

Similarly, we have 1− a− + A−(x) > 1. Thus, xãc qÃ.

Definition 8 ([6]). Let ˜̃a = 〈ã, a〉 be any cubic number such that a− > 0 and a > 0. Then
x˜̃a ∈ CS(X) is called a cubic point in X with the support x ∈ X and the value ˜̃a, if for each y ∈ X,

x˜̃a =
{ ˜̃a if y = x
〈[0, 0], 0〉 otherwise.

CP(X) is set of all cubic points in X. It is obvious that A = tx˜̃a∈PAx˜̃a for each A ∈ CS(X).

Definition 9 ([6]). Let x˜̃a ∈ CP(X) and let A ∈ CS(X).

(i) x˜̃a is said to P-belong to A, denoted by x˜̃a ∈P A, if
ã ≤ Ã(x) and a ≤ A(x), i.e., xã ∈ Ã and xa ∈ A.

(ii) x˜̃a is said to R-belong to A, denoted by x˜̃a ∈R A, if
ã ≤ Ã(x) and a ≥ A(x), i.e., xã ∈ Ã and x1−a ∈ Ac.

Definition 10. Let x˜̃a ∈ CP(X) and and let A, B ∈ CS(X).

(i) x˜̃a is said to be P-quasi-coincident with A, denoted by x˜̃a qPA, if ˜̃a >P Ac(x), equivalently,
ã > Ãc(x), a > Ac(x), i.e.,

a− + A+(x) > 1, a+ + A−(x) > 1, a + A(x) > 1.

When x˜̃a is not P-quasi-coincident with A, we write x˜̃a¬qPA.
(ii) A is said to be P-quasi-coincident with B, denoted by AqPA, if there is x ∈ X such that such

that A(x) >P B(x), equivalently, Ã(x) > B̃c(x), A(x) > Bc(x), i.e.,

A−(x) + B+(x) > 1, A+(x) + B−(x) > 1, A(x) + B(x) > 1.

In this case, we say that A and A are P-quasi-coincident (with each other) at x. When A is
not P-quasi-coincident with B, we write A¬qPB.
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(iii) x˜̃a is said to be R-quasi-coincident with A, denoted by x˜̃a qRA, if ˜̃a >R Ac(x), equivalently,
ã > Ãc(x), a < Ac(x), i.e.,

a− + A+(x) > 1, a+ + A−(x) > 1, a + A(x) < 1.

When x˜̃a is not R-quasi-coincident with A, we write x˜̃a¬qRA.
(iv) A is said to be R-quasi-coincident with B, denoted by AqRB, if there is x ∈ X such that

A(x) >R Bc(x), equivalently, Ã(x) > B̃c(x), A(x) < Bc(x), i.e.,

A−(x) + B+(x) > 1, A+(x) + B−(x) > 1, A(x) + B(x) < 1.

In this case, we say that A and A are R-quasi-coincident (with each other) at x. When A is
not R-quasi-coincident with B, we write A¬qRB.

Remark 3. From Definition 10, we can easily obtain the following.

(1) x˜̃a qPA if and only if xã qÃ, xa qA and x˜̃a¬qPA if and only if x˜̃a ∈P Ac.

(2) x˜̃a qRA if and only if xã qÃ, a + A(x) < 1 and x˜̃a¬qPA if and only if x˜̃a ∈R Ac.

(3) A¬qPB if and only if Ã @ B̃c and A¬qRB if and only if A b Bc.

Theorem 1. Let x˜̃a ∈ CP(X) and let A, B ∈ CS(X). The the following are equivalent:

(1) A @ B,
(2) x˜̃a ∈P B for each x˜̃a ∈P A,
(3) A¬qPBc.

Proof. From Theorem 3.7 (1) in [6], it is clear that (1)⇐⇒ (2) holds. From Remark 3 (3), it
is obvious that (1)⇐⇒ (3) holds.

Theorem 2. Let x˜̃a ∈ CP(X) and let A, B ∈ CS(X). The the following are equivalent:

(1) A b B,
(2) x˜̃a ∈R B for each x˜̃a ∈R A,
(3) A¬qRBc.

Proof. From Theorem 3.7 (2) in [6], it is obvious that (1)⇐⇒ (2) holds. From Remark 3 (3),
it is clear that (1)⇐⇒ (3) holds.

Definition 11. Let A, B ∈ CS(X). Then A and B are said to be intersecting, if there is x ∈ X
such that (Ã ∩ B̃)(x) 6= [0, 0] and (A ∩ B)(x) 6= 0. In this case, we say that Ã and B̃ intersect at
x and (Au B)(x) 6= 〈[0, 0], 0〉.

From Definition 10, it is clear that if A and B are quasi-coincident at x, then A and B
intersect at x.

4. P-Cubic Neighborhoods [Resp. Q-Neighborhoods]

In this section, we define a cubic neighborhood of a cubic point with respect to a cubic
topology and find some of its properties. Next, we introduce the notion of cubic bases and
cubic subbases and obtain some of their properties.

Definition 12. A ∈ CS(X) is called a constant cubic set in X, if there is ˜̃a ∈ [I]× I such that˜̃A(x) = ˜̃a for each x ∈ X. In this case, we will write A = C˜̃a.

Definition 13. Let τ ⊂ CS(X). Consider the following conditions:
(PCO1) 0̈, 1̈, 0̂, 1̂ ∈ τ,
(PCO1′ ) for each ˜̃a ∈ [I]× I, C˜̃a ∈ τ,
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(PCO2) Au B ∈ τ for any A, B ∈ τ,
(RCO2) Ae B ∈ τ for any A, B ∈ τ,
(PCO3) tj∈JAj ∈ τ for each (Aj)j∈J ⊂ τ,
(RCO3) dj∈JAj ∈ τ for each (Aj)j∈J ⊂ τ.

(i) τ is called a P-cubic topology on X in Chang’s sense, if it satisfies the conditions (PCO1),
(PCO2) and (PCO3) (see [19]).

(ii) τ is called a R-cubic topology on X in Chang’s sense, if it satisfies the conditions (PCO1),
(RCO2) and (RCO3) (see [19]).

(iii) τ is called a P-cubic topology on X in Lowen’s sense, if it satisfies the conditions (PCO1′ ),
(PCO2) and (PCO3).

(iv) τ is called a R-cubic topology on X in Lowen’s sense, if it satisfies the conditions (PCO1′ ),
(RCO2) and (RCO3).

In either case, the pair (X, τ) is called a P-cubic topological space [resp. R-cubic topological
space] and each member of τ is called a P-cubic open set (briefly, PCOS) [resp. R-cubic open set
(briefly, RCOS)]. We will denote the set of all P-cubic topologies in Chang’s sense [resp. Lowen’s
sense] on X as PCT(X) [resp. PCTL(X)]. Moreover, we will denote the set of all R-cubic topologies
in Chang’s sense [resp. Lowen’s sense] on X as RCT(X) [resp. RCTL(X)]. A cubic set A is called
a P-cubic closed set (briefly, PCCS) [resp. R-cubic closed set (briefly, RCCS)] in X, if Ac ∈ τ. For a
P-cubic topological space X, we denote the set of all PCOs [resp. PCCSs] in X as PCO(X) [resp.
PCC(X)]. Furthermore, for a R-cubic topological space X, we denote the set of all RCOs [resp.
RCCSs] in X as RCO(X) [resp. RCC(X)].

Example 1. (1) Let X = {x, y} and let Aj ∈ CS(X) defined as follows:

A1(x) = 〈[0.6, 0.8], 0.8〉, A1(y) = 〈[0.5, 0.9], 0.7〉, A2(x) = 〈[0.4, 0.7], 0.4〉,

A2(y) = 〈[0.7, 0.8], 0.9〉, A3(x) = 〈[0.6, 0.9], 0.8〉, A3(y) = 〈[0.7, 0.9], 0.9〉,

A4(x) = 〈[0.4, 0.8], 0.4〉, A4(y) = 〈[0.5, 0.8], 0.7〉, A5(x) = 〈[0.6, 0.8], 1〉,

A5(y) = 〈[0.5, 0.9], 1〉, A6(x) = 〈[0.4, 09], 1〉, A6(y) = 〈[0.7, 0.8], 1〉,

A7(x) = 〈[1, 1], 0.8〉, A7(y) = 〈[1, 1], 0.7〉, A8(x) = 〈[1, 1], 0.4〉,

A8(y) = 〈[1, 1], 0.9〉, A9(x) = 〈[0, 0], 0.8〉, A9(y) = 〈[0, 0], 0.7〉,

A10(x) = 〈[0, 0], 0.4〉, A10(y) = 〈[0, 0], 0.9〉, A11(x) = 〈[0.6, 0.8], 0〉,

A11(y) = 〈[0.5, .90], 0〉, A12(x) = 〈[0.4, 0.9], 0〉, A12(y) = 〈[0.7, 0.8], 0〉.

Then we can easily check that the family τ = {0̈, 1̈, 0̂, 1̂}⋃12
j=1Aj ∈ PCT(X).

(2) Let X be a nonempty set. Then we can easily see that

τ = {0̈, 1̈, 0̂, 1̂, C〈[0.4,0.7],0.6〉, C〈[0.4,0.7],1〉, C〈[0,0],0.6〉, C〈[1,1],0.6〉, C〈[0.4,0.7],0〉} ∈ PCR(X).

Definition 14 (See [22]). Let T ⊂ CCS(X). Consider the following axioms:
(PCCO1) ∅̂, X̂, ∅̈, Ẍ ∈ T ,
(PCCO2) A∩P B ∈ T for any A,B ∈ T ,
(RCCO2) A∩R B ∈ T for any A,B ∈ T ,
(PCCO3)

⋃
P, j∈J Aj ∈ T for each (Aj)j∈J ⊂ T ,

(RCCO3)
⋃

R, j∈J Aj ∈ T for each (Aj)j∈J ⊂ T .
Then T is called a P-cubic crisp topology (briefly, PCCT) [resp. R-cubic crisp topology (briefly,

RCCT)] on X, if it satisfies the axioms (PCCO1), (PCCO2) and (PCCO3) [resp. (RCCO1), (RCCO2)
and (RCCO3)]. The pair (X, T ) is called a P-cubic crisp topological space (briefly, PCCTS) [resp.
an R-cubic crisp topological space (briefly, RCCTS) and each member of T is called a P-cubic crisp
open set (briefly, PCCOS) [resp. an R-cubic crisp open set (briefly, RCCOS)] in X. A CCS A is
called a P-cubic crisp closed set (briefly, PCCCS) [resp. an R-cubic crisp closed set (briefly, RCCCS)]
in X, if Ac ∈ T.
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PCCT(X) [resp. RCCT(X)] denotes the set of all PCCTs [resp. RCCTs] on X. For a PCCTS
X, PCCO(X) [resp. PCCC(X)] is the set of all PCCOs [resp. PCCCSs] in X. Moreover, for a
RCCTS X, RCCO(X) [resp. RCCC(X)] represents the set of all RCCOs [resp. RCCCSs] in X.

Remark 4. (1) From Definition 13, it is clear that {0̈, 1̈, 0̂, 1̂} and CS(X) are both PCTs and
RCTs on X. In this case, {0̈, 1̈, 0̂, 1̂} [resp. CS(X)] is called the cubic indiscrete topology [resp.
cubic discrete topology] on X and will be denoted by I [resp. D]. The pair (X, I) [resp. (X,D)] is
called a cubic indiscrete space [resp. cubic discrete space]. It is obvious that that I ⊂ τ ⊂ D for
each τ ∈ PCT(X) [resp. τ ∈ RCT(X)]. Moreover, we can see that for each τ ∈ PCT(X) [resp.
τ ∈ RCT(X)], τ have the least element 0̂ [resp. 0̈] and greatest element 1̂ [resp. 1̈].

(2) From Definition 13, it is clear that if τ ∈ PCT(X), then the family

{
〈

Ã, Ac
〉
∈ CS(X) : A =

〈
Ã, A

〉
∈ τ} ∈ RCT(X).

The converse holds.
(3) Let IVFT(X) [resp. FT(X)] denote the set of all interval-valued fuzzy topologies (see [21])

[resp. all fuzzy topologies (see [25,26])] on X. Then

τ ∈ PCT(X)⇐⇒ τIVF ∈ IVFT(X) and τF ∈ FT(X),

where τIVF = {Ã ∈ IVFS(X) : A ∈ τ} and τF = {A ∈ IX : A ∈ τ}.
Additionally, we have

τ ∈ RCT(X)⇐⇒ τIVF ∈ IVFT(X) and τc
F
∈ FT(X),

where τc
F
= {Ac ∈ IX : A ∈ τF}.

(4) (See Remarks 4.3 (1) and 4.17 (1) in [22]) Let T ∈ PCCT(X) [resp. RCCT(X)]. Then
we can easily check that

χT = {〈χA , χA〉 ∈ CS(X) : Ã = 〈A, A〉 ∈ T } ∈ PCT(X) [resp. RCT(X)].

Then we have the relationships among classical topology, IVT, PCCT and PCT, RCCT and
RCT:

Classical topology=⇒IVT=⇒PCCT=⇒PCT,

Classical topology=⇒IVT=⇒RCCT=⇒RCT.

Proposition 1. Let τ ∈ PCT(X) [resp. RCT(X)] or τ ∈ PCTL(X) [resp. RCTL(X)] and let
τc = {Ac : A ∈ τ}. Then τc satisfies the following conditions:

(PCC1) 0̈, 1̈, 0̂, 1̂ ∈ τc,
(PCC1′ ) for each ˜̃a ∈ [I]× I, C˜̃a ∈ τc,
(PCC2) At B ∈ τc [resp. (RCC2) Ad B ∈ τc] for any A, B ∈ τc,
(PCC3) uj∈JAj ∈ τc [resp. (PCC3) ej∈JAj ∈ τc] for each (Aj)j∈J ⊂ τc.
In this case, τc will be called a P-cubic cotopology [resp. R-cubic cotopology] on X.

Proof. The proof is straightforward from Definition 13.

Now we will discuss P-cubic neighborhoods [resp. Q-neighborhoods].

Definition 15. Let (X, τ) be a P-cubic topological space or an R-cubic topological space, let
A ∈ CS(X) and let x˜̃a ∈ CP(X).

(i) A is called a P-cubic neighborhood (briefly, PCN) of x˜̃a , if there is B ∈ τ such that x˜̃a ∈P B @
A. A PCN A is said to be P-cubic open, if A ∈ τ. The collection of all PCNs of x˜̃a is called the
system of P-cubic neighborhoods of x˜̃a and will be denoted by NP(x˜̃a).
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(ii) A is called a P-cubic Q-neighborhood (briefly, PCQN) of x˜̃a , if there is B ∈ τ such that
x˜̃a qPB @ A. The family of all PCQNs of x˜̃a is called the system of P-cubic Q-neighborhoods of
x˜̃a and will be denoted by NP,Q(x˜̃a).

(iii) A is called a R-cubic neighborhood (briefly, RCN) of x˜̃a , if there is B ∈ τ such that x˜̃a ∈R
B b A. A RCN A is said to be R-cubic open, if A ∈ τ. The collection of all RCNs of x˜̃a is
called the system of R-cubic neighborhoods of x˜̃a and will be denoted by NR(x˜̃a).

(iv) A is called a R-cubic Q-neighborhood (briefly, RCQN) of x˜̃a , if there is B ∈ τ such that
x˜̃a qRB b A. The family of all RCQNs of x˜̃a is called the system of R-cubic Q-neighborhoods
of x˜̃a and will be denoted by NR,Q(x˜̃a).
Let Ñ(xã) be the set of all interval-valued fuzzy neighborhoods of an interval-valued

fuzzy point xã (see [21]) and let N(xa) [resp. NQ(xa)] denote the set of all fuzzy neighbor-
hoods [resp. Q-neighborhoods] of a fuzzy point xa (see [23]).

Remark 5. From Remark 4 (3), Definitions 9 and 15, it is obvious that

A ∈ NP(x˜̃a)⇐⇒ Ã ∈ ÑτIVF
(xã), A ∈ NτF

(xa)

and
A ∈ NR(x˜̃a)⇐⇒ Ã ∈ ÑτIVF

(xã), Ac ∈ Nτc
F
(x1−a).

From Remark 5, Theorem 7 in [21] and Proposition 1.8 in [24], we obtain the following.

Theorem 3. Let (X, τ) be a P-cubic topological space and let A ∈ CS(X). Then A ∈ τ if and
only if A ∈ NP(x˜̃a) for each x˜̃a ∈P A.

Definition 16. Let (X, τ) be an interval-valued fuzzy topological space (see [21]), let xã ∈
IVFP(X) and let Ã ∈ IVFS(X). Then Ã is called an interval-valued fuzzy Q-neighborhood
(briefly, IVFN) of xã , denoted by xã qÃ, if and only if there is B̃ ∈ τ such that xã qB̃ ⊂ Ã. The set of
all IVFNs of xã is called the system of IVFNs of xã and denoted by ÑQ(xã).

Remark 6. From Remark 4 (3), Definitions 9 and 15, it is clear that

A ∈ NP,Q(x˜̃a)⇐⇒ Ã ∈ ÑτIVF ,Q(xã), A ∈ NτF ,Q(xa)

and
A ∈ NR,Q(x˜̃a)⇐⇒ Ã ∈ ÑτIVF ,Q(xã) and Ac ∈ Nτc

F
,Q(x1−a).

Lemma 5. Let (X, τ) be an interval-valued fuzzy topological space and let Ã ∈ IVFS(X). Then
Ã ∈ τ if and only if Ã ∈ ÑQ(xã) for each xã ∈ IVFP(X) such that [0, 0] < ã < Ã(x) and xã qÃ.

Proof. Suppose Ã ∈ τ and let xã ∈ IVFP(X) such that xãqÃ. Then clearly, xãqÃ ⊂ Ã.
Thus, Ã ∈ NQ(xã).

Conversely, suppose the necessary condition holds and let xã ∈ Ã. Since [0, 0] <
ã < Ã(x). By Lemma 4, xãc qÃ. By the hypothesis, Ã ∈ ÑQ(xãc ). Then there is Ũxãc ∈ τ

such that xãc qŨ ⊂ Ã. Thus, we have ãc > Ũc
xãc

(x), i.e., U+
xãc

(x) > a+, U−xãc
(x) > a−. So

xã ∈ Ũxãc ⊂ Ã. Hence, Ã =
⋃

xã∈Ã Ũxãc . Therefore, by (PCO3), Ã ∈ τ.

From Remark 6, Lemma 5 and Theorem 3.2 in [27], we have the following.

Theorem 4. Let (X, τ) be a P-cubic topological space and let A ∈ CS(X). Then A ∈ τ if and
only if A ∈ NP,Q(x˜̃a) for each x˜̃a ∈ CP(X) such that ã 6= Ã(x), a 6= A(x) and x˜̃a qPA.
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Definition 17 ([21]). Let [0, 0] 6= ã, b̃ ∈ [I]. Then b̃ is said to be admissible with ã, if it satisfies
the following conditions:

(i) b− ≥ 0, b+ > 0, (ii) b− = 0 if and only if a− = 0, (iii) 0 ≤ a− − b− < a+ − b+.

Result 2 (Theorems 8 and 9, [21]). Let X be an interval-valued fuzzy topological space and let
xã ∈ IVFP(X).

(N1) If Ã ∈ Ñ(xã), then xã ∈ Ã.
(N2) If Ã, B̃ ∈ Ñ(xã), then Ã ∩ B̃ ∈ Ñ(xã).
(N3) If Ã ∈ Ñ(xã) and Ã ⊂ B̃, then B̃ ∈ Ñ(xã).
(N4) If Ã ∈ Ñ(x

ã−b̃
) for each admissible b̃, then Ã ∈ Ñ(xã),

where ã− b̃ = [a− − b−, a+ − b+].
(N5) If Ã ∈ Ñ(xã), B̃ ∈ Ñ(yã), then Ã ∪ B̃ ∈ Ñ(xã ∪ yã).
(N6) If Ã ∈ Ñ(xã), then there is B̃ ∈ Ñ(xã) such that B̃ ⊂ Ã and B̃ ∈ Ñ(y

b̃
) for y

b̃
∈ B̃.

Conversely, if for each xã ∈ IVFP(X), Ñxã
satisfies the conditions (N1)–(N5), then the family

τ of cubic sets in X given by:

τ = {Ã ∈ IVFS(X) : Ã ∈ Ñxã
for each xã ∈ Ã}

is an interval-valued fuzzy topology on X. Furthermore, if Ñxã
satisfies the condition (N6),

then Ñxã
is exactly the system of interval-valued fuzzy neidhborhood of xã with respect to τ, i.e.,

Ñxã
= Ñ(xã).

The following is an immediate consequence of Remark 6, Proposition 2.2 in [23] and
Result 2.

Theorem 5. Let X be a P-cubic topological space and let x˜̃a ∈ CP(X).

(1) If A ∈ NP(x˜̃a), then x˜̃a ∈P A.
(2) If A, B ∈ NP(x˜̃a), then Au B ∈ NP(x˜̃a).
(3) If A ∈ NP(x˜̃a) and A @ B, then B ∈ NP(x˜̃a).
(4) If A ∈ NP(x˜̃a), then there is B ∈ NP(x˜̃a) such that B @ A and B ∈ NP(y˜̃b) for y˜̃b ∈P B.

Conversely, if for each x˜̃a ∈ CP(X), NP,x˜̃a satisfies the conditions (1)–(3), and for each

xã ∈ IVFP(X), Ñxã
satisfies the conditions (N4) and (N5), then the family τ of cubic sets in X

given by:
τ = {0̈, 1̈} ∪ {A ∈ CS(X) : A ∈ NP,x˜̃a for each x˜̃a ∈P A}

is a P-cubic topology on X. Furthermore, if NP,x˜̃a satisfies the condition (4), then NP,x˜̃a is exactly

the system of P-cubic neidhborhood of x˜̃a with respect to τ, i.e., NP,x˜̃a = NP(x˜̃a).
Theorem 6. Let X be an R-cubic topological space and let x˜̃a ∈ CP(X).

(1) If A ∈ NR(x˜̃a), then x˜̃a ∈R A.
(2) If A, B ∈ NR(x˜̃a), then Ae B ∈ NR(x˜̃a).
(3) If A ∈ NR(x˜̃a) and A b B, then B ∈ NR(x˜̃a).
(4) If A ∈ NR(x˜̃a), then there is B ∈ NR(x˜̃a) such that B b A and B ∈ NR(y˜̃b) for y˜̃b ∈R B.

Conversely, if for each x˜̃a ∈ CP(X), NR,x˜̃a satisfies the conditions (1)–(3), and for each

xã ∈ IVFP(X), Ñxã
satisfies the conditions (N4) and (N5), then the family τ of cubic sets in X

given by:
τ = {0̂, 1̂} ∪ {A ∈ CS(X) : A ∈ NR,x˜̃a for each x˜̃a ∈R A}

is an R-cubic topology on X. Furthermore, if NR,x˜̃a satisfies the condition (4), then NR,x˜̃a is exactly

the system of R-cubic neidhborhood of x˜̃a with respect to τ, i.e., NR,x˜̃a = NR(x˜̃a).
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Proof. It can be proved similarly to Theorem 5 by using Remark 5.

Lemma 6. Let (X, τ) be an interval-valued fuzzy topological space and let xã ∈ IVFP(X).

(1) If Ã ∈ ÑQ(xã), then xã qÃ.
(2) If Ã, B̃ ∈ ÑQ(xã), then Ã ∩ B̃ ∈ Ñ(xã).
(3) If Ã ∈ ÑQ(xã) and Ã ⊂ B̃, then B̃ ∈ ÑQ(xã).
(4) If Ã ∈ ÑQ(xã), then there is B̃ ∈ ÑQ(xã) such that B̃ ⊂ Ã and B̃ ∈ ÑQ(yb̃

) for y
b̃
qB̃.

Conversely, if for each xã ∈ IVFP(X), ÑQ,xã
satisfies the conditions (1)–(3), then the family

τ of cubic sets in X given by:

τ = {Ã ∈ IVFS(X) : Ã ∈ NQ,xã
for each xã qÃ}

is an interval-valued fuzzy topology on X. Furthermore, if ÑQ,xã
satisfies the condition (4), then

ÑQ,xã
is exactly the system of P-cubic Q-neighborhood of xã with respect to τ, i.e., ÑQ,xã

= ÑQ(xã).

Proof. (1) Suppose Ã ∈ ÑQ(xã). Then there is Ũ ∈ τ such that xã ∈ Ũ ⊂ Ã. Thus,

ã > Ũc(x), i.e., a− + U+(x) > 1, a+ + U+(x) > 1.

Since Ũ ⊂ Ã, a− + A+(x) > 1, a+ + A+(x) > 1. So ã > Ãc(x). Hence, xã qÃ.
(2) Ã, B̃ ∈ ÑQ(xã). Then there are Ũ, Ṽ ∈ τ such that xã qŨ ⊂ Ã and xã qṼ ⊂ B̃. Thus,

ã > Ũc(x) and ã > Ṽc(x). By Theorem 1 (ix) in [21], ã > Ũc(x) ∨ Ṽc(x) = (Ũ ∩ Ṽ)c(x). So
xã q(Ũ ∩ Ṽ). Moreover, Ũ ∩ Ṽ ⊂ Ã ∩ B̃ and Ũ ∩ Ṽ ∈ τ. Hence, Ã ∩ B̃ ∈ Ñ(xã).

(3) The proof is straightforward.
(4) Suppose Ã ∈ ÑQ(xã). Then there is B̃ ∈ τ such that xã qB̃ ⊂ Ã. Since B̃ ⊂ B̃,

B̃ ∈ ÑQ(xã) and moreover, B̃ ∈ ÑQ(yb̃
) for each y

b̃
qB̃.

Conversely, suppose ÑQ,xã
satisfies the conditions (1)–(3) for each xã ∈ IVFP(X). From

the definition of τ, it is clear that 0̃, 1̃ ∈ τ. Now let Ã, B̃ ∈ τ and let xã q(Ã ∩ B̃). Then by
Lemma 3 (2), xã qÃ and xã qB̃. So by the definition of τ, Ã ∈ ÑQ,xã

and B̃ ∈ ÑQ,xã
. By the

condition (2), Ã ∩ B̃ ∈ ÑQ,xã
. Hence, Ã ∩ B̃ ∈ τ. Finally, let (Ãj)j∈J ⊂ τ, let Ã =

⋃
j∈J Ãj

and let xã qÃ. By Lemma 3 (1), there is j ∈ J such that xã qÃj. Since Ãj ∈ τ, Ãj ∈ ÑQ,xã
. Since

Ãj ⊂ Ã, by the condition (3), Ã ∈ τ, i.e.,
⋃

j∈J Ãj ∈ τ. Therefore, τ is an interval-valued
fuzzy topology on X.

Now suppose ÑQ,xã
satisfies the conditions (4). Then we can easily show that ÑQ,xã

=

ÑQ(xã).

The following is an immediate consequence of Lemma 6 and Proposition 2.2 in [23].

Theorem 7. Let X be a P-cubic topological space and let x˜̃a ∈ CP(X).

(1) If A ∈ NP,Q(x˜̃a), then x˜̃a qPA.
(2) If A, A ∈ NP,Q(x˜̃a), then Au B ∈ NP,Q(x˜̃a).
(3) If A ∈ NP,Q(x˜̃a) and A @ B, then B ∈ NP,Q(x˜̃a).
(4) If A ∈ NP,Q(x˜̃a), then there is B ∈ NP,Q(x˜̃a) such that B @ A and B ∈ NP,Q(y˜̃b)

for y˜̃b qPB.

Conversely, if for each x˜̃a ∈ CP(X), NP,Q,x˜̃a satisfies the conditions (1)–(3), then the family τ

of cubic sets in X given by:

τ = {0̈, 1̈} ∪ {A ∈ CS(X) : A ∈ NP,Q,x˜̃a for each x˜̃a qPA}
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is a P-cubic topology on X. Furthermore, if NP,Q,x˜̃a satisfies the condition (4), then NP,Q,x˜̃a is

exactly the system of P-cubic Q-neighborhood of x˜̃a with respect to τ, i.e., NP,Q,x˜̃a = NP,Q(x˜̃a).
Theorem 8. Let X be an R-cubic topological space and let x˜̃a ∈ CP(X).

(1) If A ∈ NR,Q(x˜̃a), then x˜̃a qRA.
(2) If A, A ∈ NR,Q(x˜̃a), then Ae B ∈ NR,Q(x˜̃a).
(3) If A ∈ NR,Q(x˜̃a) and A b B, then B ∈ NR,Q(x˜̃a).
(4) If A ∈ NR,Q(x˜̃a), then there is B ∈ NR,Q(x˜̃a) such that B b A and B ∈ NR,Q(y˜̃b)

for y˜̃b qRB.

Conversely, if for each x˜̃a ∈ CP(X), NR,Q,x˜̃a satisfies the conditions (1)–(3), then the family τ

of cubic sets in X given by:

τ = {0̂, 1̂} ∪ {A ∈ CS(X) : A ∈ NR,Q,x˜̃a for each x˜̃a qRA}

is a P-cubic topology on X. Furthermore, if NR,Q,x˜̃a satisfies the condition (4), then NR,Q,x˜̃a is

exactly the system of R-cubic Q-neighborhood of x˜̃a with respect to τ, i.e., NR,Q,x˜̃a = NR,Q(x˜̃a).
Proof. It can be proved similarly to Theorem 7 by using Remark 6.

From Lemma 3 (1) and Proposition 2.2 in [23], we get the following.

Theorem 9. Let x˜̃a ∈ CP(X) and let (Aj)j∈J ⊂ CS(X).

(1) x˜̃a qP tj∈J Aj if and only if there is j ∈ J such that x˜̃a qPAj.
(2) x˜̃a qR dj∈J Aj if and only if there is j ∈ J such that x˜̃a qRAj.

Definition 18. Let (X, τ) be a P-cubic topological space and let β ⊂ τ, σ ⊂ τ.

(i) β is called a P-cubic base for τ, if for each A ∈ τ, there is βA ∈ β such that A = tβA .
(ii) σ is called a P-cubic subbase for τ, if the family β = {uη : η is a finite subset of σ} is a

P-cubic base for τ.

Remark 7. Let (X, τ) be a P-cubic topological space and let β [resp. σ] be a P-cubic base [resp.
subbase] for τ. Then from Remark 4 (3), we can easily see that

(1) β IVF = {Ã ∈ IVFS(X) : A ∈ β} is an interval-valued fuzzy base for τIVF and βF = {A ∈
IX : A ∈ β} [resp. β−

IVF
= {A− ∈ IX : A ∈ β} and β+

IVF
= {A+ ∈ IX : A ∈ β}] is a

fuzzy base for τF [resp. τ−
IVF

and τ+
IVF

].
(2) σIVF = {Ã ∈ IVFS(X) : A ∈ σ} is an interval-valued fuzzy subbase for τIVF and σF =

{A ∈ IX : A ∈ σ} [resp. σ−
IVF

= {A− ∈ IX : A ∈ σ} and σ+
IVF

= {A+ ∈ IX : A ∈ σ}] is
a fuzzy subbase for τF [resp. τ−

IVF
and τ+

IVF
].

Lemma 7. Let (X, τ) be an interval-valued fuzzy topological space and let β ⊂ τ. Then β is an
interval-valued fuzzy base for τ if and only if for each xã ∈ IVFP(X) and for each interval-valued
open Q-neighborhood Ã of xã , there is B̃ ∈ β such that xã qB̃ ⊂ Ã.

Proof. Suppose β is an interval-valued fuzzy base for τ. Then from the definition of
an interval-valued fuzzy base and Lemma 3 (1), it can be easily seen that the necessary
condition holds.

Conversely, suppose the necessary condition holds. Assume that β is not an interval-
valued fuzzy base for τ. Then there is Ã ∈ τ such that Ũ =

⋃{B̃ ∈ β : B̃ ⊂ Ã} 6= Ã. Thus,
there is x ∈ X such that Ũ(x) < Ã(x). Let ã = Ũc(x) = [1, 1]− Ũ(x). Then clearly, ã > [0, 0]
and we obtain an interval-valued fuzzy point xã . Moreover, Ã(x) + ã > Ũ(x) + ã > [1, 1].
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Thus, xã qÃ. On the other hand, let B̃ ∈ β such that B̃ ⊂ Ã. Then clearly, B̃ ⊂ Ũ. Thus,
B̃(x) + ã ≤ Ũ(x) + ã = [1, 1]. So xã¬qB̃. This contradicts the hypothesis.

From Theorem 9 and Lemma 7, and Proposition 2.4 in [23], we obtain the following.

Theorem 10. Let (X, τ) be a P-cubic topological space and let β ⊂ τ. Then β is a P-cubic base for
τ if and only if for each x˜̃a ∈ CP(X) and for each P-cubic open Q-neighborhood A of x˜̃a , there is
B ∈ β such that x˜̃a qPB @ A.

The following gives a necessary and sufficient condition for a subset of CS(X) to be a
P-cubic base for a P-cubic topology on a set X.

Theorem 11. Let X be a set and let β ⊂ CS(X). Then β is a P-cubic base for some P-cubic
topology τ if and only if the following hold:

(1) 1̂, 0̈, 1̈ ∈ β,
(2) if B1, B̃2 ∈ β and x˜̃a ∈P B1 u B2, then there is B ∈ β such that

x˜̃a ∈P B @ B1 u B2.

In this case, τ is called the P-cubic topology on X generated by β.

Proof. Suppose β is a P-cubic base for a P-cubic topology τ. Since 1̂, 0̈, 1̈ ∈ τ, 1̂, 0̈, 1̈ ∈ β.
Then the condition (1) holds. Now suppose B1, B̃2 ∈ β and x˜̃a ∈P B1 u B2. Since β ⊂ τ,

B1, B̃2 ∈ τ. Then B1 u B2 ∈ τ. Since x˜̃a ∈P B1 u B2, B1 u B2 6= 0̂. By the definition of

a P-cubic base, there is β
′ ⊂ β such that B1 u B2 = tβ

′
. So there is B ∈ β such that

x˜̃a ∈P B @ B1 u B2. Hence, the condition (2) holds.
Conversely, suppose the conditions (1) and (2) hold and let

τ = {U ∈ CS(X) : U = 0̂ or there is β
′ ⊂ β such that U = tβ

′}.

Then clearly, 0̂, 1̂, 0̈, 1̈ ∈ τ. Thus, the condition (PCO1) holds. Now suppose U1, U2 ∈
τ and x˜̃a ∈P U1 u U2. Then there are B1, B2 ∈ β such that x˜̃a ∈P B1 @ U1 and x˜̃a ∈P
B2 @ U2. Thus, x˜̃a ∈P B1 u B2 @ U1 u U2. By the condition (2), there is B ∈ β such that
x˜̃a ∈P B @ U1 u U2. So U1 u U2 ∈ τ. Hence, the condition (PCO2) holds. Since τ consists of
all P-cubic unions of members of β, the P-cubic union of any family of members of τ is also
a member of τ. Then (PCO3) holds.

Theorem 12. Let X be a set and let σ be a cubic sets in X such that 1̂, 0̈, 1̈ ∈ σ. Then there is a
unique P-cubic topology τ on X such that σ is a P-cubic subbase for τ. In this case, τ is called the
P-cubic topology on X generated by σ.

Proof. Let β = {uη : η is a finite subset of σ} and let

τ = {U ∈ CS(X) : U = 0̂ or there is β
′ ⊂ β such that U = tβ

′}.

Then clearly, 0̂, 1̂, 1̈, 0̈ ∈ τ by the definition of τ. Thus, τ satisfies the condition (PCO1).
Let Uj ∈ τ for each j ∈ J. Then there is β j ⊂ β such that Uj = t{B ∈ CS(X) : B ∈ β j}.
Thus, tj∈JUj = tj∈J(tB∈β jB. So tj∈JUj ∈ τ. Hence, the condition (PCO3) holds. Finally,
suppose U1, U2 ∈ τ and x˜̃a ∈P U1 u U2. Then there are B1, B2 ∈ β such that x˜̃a ∈P B1 u B2,
B1 @ U1 and B2 @ U2. Since each of B1 and B2 is the P-intersection of a finite number
of members of σ, B1 u B2 ∈ β. So there is β

′ ⊂ β such that U1 u U2 = tB∈β
′B. Hence,

U1 u U2 ∈ τ, i.e., the condition (PCO2) holds. Therefore, τ ∈ PCT(X). It is obvious that τ is
the unique P-cubic topology on X having σ as a P-cubic subbase.
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5. Cubic Interiors and Cubic Closures

In this section, we define a cubic closure and a cubic interior, and discuss some
properties related to them.

Definition 19. Let (X, τ) be a P-cubic topological space and let A ∈ CS(X). Then the cubic
interior of A, denoted by A◦P or intP(A) or intP,τ (A), is a cubic set in X defined as follows:

intP(A) = t{U ∈ τ : U @ A}.

It is obvious that intP(A) is the largest cubic open set contained in A.

Remark 8. Let (X, τ) be a P-cubic topological space and let A ∈ CS(X). Then, from Remark 4
(3) and Definition 19, we can easily see that

intP,τ (A) =
〈

intτIVF
(Ã), intτF

(A)
〉

,

where intτIVF
(Ã) denotes the interval-valued fuzzy interior of an interval-valued fuzzy set Ã in X

and intτF
(A) denotes the fuzzy interior of a fuzzy set Ã in X (see [21,23] for each definition).

Proposition 2. Let (X, τ) be a P-cubic topological space and let A, B ∈ CS(X). Then the
following hold:

(1) intP(1̂) = 1̂, intP(1̈) = 1̈,
(2) intP(A) @ A,
(3) intP(intP(A)) = intP(A),
(4) intP(AuA) = intP(A) u intP(A),
(5) A ∈ τ if and only if intP(A) = A.

Proof. The proofs are straightforward.

Theorem 13. Let (X, τ) be a P-cubic topological space, let x˜̃a ∈ CP(X) and let A ∈ CS(X).
Then x˜̃a ∈ intP,τ (A) if and only if Ã ∈ ÑτIVF

(xã) and A ∈ NτF
(xa), i.e., xã ∈ intτIVF

(Ã) and
xa ∈ intτF

(A).

Proof. The proof follows from Definition 19, Remark 8, Definition 2.6 and Theorem 10
in [21], and Theorem 4.1 in [23].

Definition 20. Let (X, τ) be a P-cubic topological space and let A ∈ CS(X). Then the cubic
closure of A, denoted by clP(A) or clP,τ (A), is a cubic set in X defined as follows:

clP(A) = u{F ∈ τc : F A A}.

It is obvious that clP(A) is the smallest cubic cubic set containing A and clP(clP(A)) =
clP(A).

Remark 9. Let (X, τ) be a P-cubic topological space and let A ∈ CS(X). Then, from Remark 4
(3) and Definition 20, we can easily see that

clP,τ (A) =
〈

clτIVF
(Ã), clτF

(A)
〉

,

where clτIVF
(Ã) denotes the interval-valued fuzzy closure of an interval-valued fuzzy set Ã in X

and clτF
(A) denotes the fuzzy closure of a fuzzy set Ã in X (see [21,23] for each definition).
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Proposition 3. Let (X, τ) be a P-cubic topological space and let A, B ∈ CS(X). Then the
following hold:

(1) clP(0̂) = 0̂, clP(0̈) = 0̈,
(2) A @ clP(A),
(3) clP(clP(A)) = clP(A),
(4) clP(At B) = clP(A) t intP(B),
(5) A ∈ τc if and only if clP(A) = A.

Proof. The proofs are straightforward.

Lemma 8. Let (X, τ) be an interval-valued fuzzy topological space, let xã ∈ IVFP(X) and let
Ã ∈ IVFS(X). Then xã ∈ clτ (Ã) if and only if for each Ũ ∈ ÑQ(xã), ŨqÃ.

Proof. Suppose xã ∈ clτ (Ã) and assume that the necessary condition does not hold, i.e.,
there is Ũ ∈ ÑQ(xã) such that Ũ¬qÃ. Then there is B̃ ∈ τ such that xã qB̃ ⊂ Ũ. Since Ũ¬qÃ,
by Lemma 2, Ũ ⊂ Ãc. By Lemma Theorem 2 (viii) in [21], Ũc ⊃ Ã. Thus, B̃c ⊃ Ã and
B̃c ∈ τc. Since xã qB̃, ã > B̃c(x). So ã > Ã(x). Hence, xã 6∈ clτ (Ã). This contradicts the
hypothesis. Therefore, the necessary condition holds.

The proof of the converse is similar.

From Lemma 8 and Theorem 4.1
′

in [23], we have the following.

Theorem 14. Let (X, τ) be a P-cubic topological space, let x˜̃a ∈ CP(X) and letA ∈ CS(X). Then
x˜̃a ∈ clP,τ (A) if and only if for each U ∈ NQ(x˜̃a), UqPA.

Definition 21. Let X be an interval-valued fuzzy topological space, let xã ∈ IVFP(X) and let
Ã ∈ IVFS(X). Then xã is called an interval-valued fuzzy closure point or interval-valued fuzzy
adherence point of Ã, if for each Ũ ∈ ÑQ(xã), ŨqÃ.

Lemma 9. Let X be an interval-valued fuzzy topological space and let Ã ∈ IVFS(X). Then cl(Ã)
is the union of all the interval-valued fuzzy closure points of Ã, i.e., cl(Ã) =

⋃{xã ∈ IVFP(X) :
xã is an interval − valued f uzzy closure point o f Ã}.

Proof. The proof is easy from Lemma 8 and Definition 21.

Definition 22. Let X be a P-cubic topological space, let x˜̃a ∈ CP(X) and letA ∈ CS(X). Then x˜̃a
is called an P-cubic closure point or P-cubic adherence point of A, if for each U ∈ NQ(x˜̃a), UqPA.

Lemma 10. Let X be a P-cubic topological space and let A ∈ CS(X). Then clP(A) is the union of
all the P-cubic closure points of A, i.e.,

clP(A) = t{x˜̃a ∈ CP(X) : x˜̃a is a P-cubic closure point of A}.

Proof. The proof follows from Definition 20, Remark 9, Lemma 8 and Corollary in [23].

Proposition 4. Let X be a P-cubic topological space and let A ∈ CS(X). Then clP(A) =
[intP(Ac)]c.

Proof. The proof follows from Remarks 8 and 9, and Theorems 12 in [21] and 4.2 in [23].

Definition 23. A mapping f : IVFS(X)→ IVFS(X) is called an interval-valued fuzzy closure
operator on X, if it satisfies the following conditions: for any Ã, B̃ ∈ IVFS(X),

[IVFK 1] f (0̃) = 0̃,
[IVFK 2] Ã ⊂ f (Ã),
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[IVFK 3] f ( f (Ã)) = f (Ã),
[IVFK 4] f (Ã ∪ B̃) = f (Ã) ∪ f (B̃).

The following Lemma shows that an interval-valued fuzzy closure operator deter-
mines completely an interval-valued fuzzy topology τ on X and that f = clτ .

Lemma 11. Let f : IVFS(X) → IVFS(X) be an interval-valued fuzzy closure operator on a
nonempty set X. Let ρ = {F̃ ∈ IVFS(X) : f (F̃) = F̃} and let τ = {Ũ ∈ IVFS(X) : Ũc ∈ ρ}.
Then τ is an interval-valued fuzzy topology on X. Furthermore, if clτ is the interval-valued fuzzy
closure operator defined by τ, then f (Ã) = clτ (Ã) for each Ã ∈ IVFS(X).

Proof. It can be proved almost similarly to Theorem 3.2.3 in [28].

Definition 24. A mapping f : CS(X)→ CS(X) is called an P-cubic closure operator on X, if it
satisfies the following conditions: for any A, B ∈ IVFS(X),

[CK 1] f (0̂) = 0̂, f (0̈) = 0̈,
[CK 2] A @ f (A),
[CK 3] f ( f (A)) = f (A),
[CK 4] f (At B) = f (A) t f (B).

Moreover, we give a P-cubic topology on X by a P-cubic closure operator on X.

Proposition 5. Let f : CS(X) → CS(X) be a P-cubic closure operator on a nonempty set X.
Let ρ = {F ∈ CS(X) : f (F ) = F} and let τ = {U ∈ CS(X) : U c ∈ ρ}. Then τ is a
P-cubic topology on X. Furthermore, if clP,τ is the P-cubic closure operator defined by τ, then
f (A) = clP,τ (A) for each A ∈ CS(X).

Proof. The proof is straightforward from Lemma 11 and Theorem 4.4 in [23].

6. Cubic Continuous Mappings

In this section, we introduce the notion of cubic continuities and give its characteriza-
tion. Next, we propose the concept of cubic quotient mappings and deal with some of their
properties. Furthermore, we find the sufficient condition for the projection mappings to be
cubic open.

Definition 25 (See [4]). Let f : X → Y be a mapping and let A ∈ CS(X), B ∈ CS(Y).

(i) The pre-image of B under f , denoted by denoted by f−1(B) =
〈

f−1(B̃), f−1(B)
〉

, is a cubic
set in X defined as follows: for each x ∈ X,

f−1(B)(x) =
〈

f−1(B̃)(x), f−1(B)(x)
〉
=
〈

B̃( f (x)), B( f (x))
〉

.

(ii) The P-image and the R-image of A under f , denoted by f P(A) and f R(A), are cubic sets in
Y respectively defined as follows: for each y ∈ Y,

f P(A)(y) =
{ 〈∨

x∈ f−1(y) Ã(x),
∨

x∈ f−1(y) A(x)
〉

if f−1(y) 6= ∅

〈[0, 0], 0〉 otherwise,

f R(A)(y) =
{ 〈∨

x∈ f−1(y) Ã(x),
∧

x∈ f−1(y) A(x)
〉

if f−1(y) 6= ∅

〈[0, 0], 1〉 otherwise.

It is obvious that f P(A) =
〈

f (Ã), f (A)
〉

and f R(A) =
〈

f (Ã), f R(A)
〉

, where f (Ã) and

f (A) denote the image of Ã and A under f , respectively, and f R(A) is a fuzzy set in X defined as
the second component of f R(A) (see [9] for the definition of f R(A).
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Proposition 6. Let f : X → Y be a mapping, let A, A1,A2 ∈ CS(X), B, B1,B2 ∈ CS(Y) and
let (Aj)j∈J ⊂ CS(X), (Bj)j∈J ⊂ CS(Y).

(1) f−1(Bc) = [ f−1(B)]c.
(2) f−1(0̂) = 0̂, f−1(0̈) = 0̈, f−1(1̂) = 1̂, f−1(1̈) = 1̈.
(3) f P(Ac) A [ f P(A)]c and f R(Ac) c [ f R(A)]c.
(4) If B1 @ B2, then f−1(B1) @ f−1(B2).
(5) If B1 b B2, then f−1(B1) b f−1(B2).
(6) If A1 @ A2, then f P(A1) @ f P(A2).
(7) If A1 b A2, then f R(A1) b f R(A2).
(8) f P( f−1(B)) @ B. In particular, if f is surjective, then f P( f−1(B)) = B.
(9) A @ f−1( f P(A)). In particular, if f is injective, then A = f−1( f P(A)).
(10) f R( f−1(B)) b B. In particular, if f is surjective, then f R( f−1(B)) = B.
(11) A b f−1( f R(A)). In particular, if f is injective, then A = f−1( f R(A)).
(12) If f P(A) @ B, then A @ f−1(B).
(13) If f R(A) b B, then A b f−1(B).
(14) For each x˜̃a ∈ CP(X), f P(x˜̃a) ∈ CP(Y) and f P(x˜̃a) = [ f (x)]˜̃a .
(15) For each x˜̃a ∈ CP(X), if x˜̃a qA, then f P(x˜̃a)q f P(A).
(16) f P(tj∈JAj) = tj∈J f P(Aj).
(17) f R(dj∈JAj) = dj∈J f R(Aj).
(18) f−1(tj∈JBj) = tj∈J f−1(Bj) and f−1(dj∈JBj) = dj∈J f−1(Bj).
(19) f−1(uj∈JBj) = uj∈J f−1(Bj) and f−1(ej∈JBj) = ej∈J f−1(Bj).
(20) If g : Y → Z is a mapping, then (g ◦ f )−1(C) = f−1(g−1(C)) for each C ∈ CS(Z), where

g ◦ f denotes the composition of g and f .

Proof. The results related to the P-image are proved from Definition 25, (Theorem 2, [21]),
(Theorem 4.1, [25]) and (Lemma 1.1, [29]).

(3) We prove only the second part. It is clear that f (Ãc) ⊃ [ f (Ã)]c by Theorem 2
(ii) in [21]. Then it is sufficient to show that f R(Ac) ⊂ [ f R(A)]c. Let y ∈ Y such that
f−1(y) 6= ∅. Then we have

[ f R(Ac)](y) =
∧

x∈ f−1(y) Ac(x)
=
∧

x∈ f−1(y)(1− A(x))
= 1−∨x∈ f−1(y) A(x)
≤ (1−∧x∈ f−1(y) A(x))
= (1− f R(A)(y))
= [ f R(A)]c(y).

Thus, f R(Ac) ⊂ [ f R(A)]c. So f R(Ac) c [ f R(A)]c.
(10) Let y ∈ Y. Suppose f−1(y) 6= ∅. Then we have

[ f R( f−1(B))](y) =
∧

x∈ f−1(y)

f−1(B)(x) =
∧

x∈ f−1(y)

B( f (x)) = B(y).

Thus, f R( f−1(B)) = B. Suppose f−1(y) = ∅. Then clearly, [ f R( f−1(B))](y) = 1.
Thus, f R( f−1(B)) ⊃ B. So, by Definition 25 and Theorem 2 (v) in [21], f R( f−1(B)) b B.
The proof of the second part is easy.

(11) Let x ∈ X. Then we have

[ f−1( f R(A))](x) = [ f R(A))]( f (x)) =
∧

y∈ f−1( f (x))

A(y) ≤ A(x).

Thus, f−1( f R(A)) ⊂ A. So, by Definition 25 and Theorem 2 (vi) in [21], A b
f−1( f R(A)). The proof of the second part is straightforward.

(13) The proof follows from (11).
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Definition 26. Let (X, τ), (Y, η) be P-cubic topological spaces and let f : X → Y be a mapping.

(i) f is said to be cubic continuous, if f−1(V) ∈ τ for each V ∈ η.
(ii) f is called a cubic homeomorphism, if f is bijective, and f and f−1 is cubic continuous.

In this case, (X, τ) and (Y, η) are said to be cubic homeomorphic and 1̂ is called the cubic
homeomorphic image of X.

Remark 10. From Remark 4 (3), Definitions 25 and 26, it is obvious that
f : (X, τ)→ (Y, η) is cubic continuous if and only if f : (X, τIVF )→ (Y, ηIVF ) is interval-

valued fuzzy continuous and f : (X, τF )→ (Y, ηF ) is fuzzy continuous.

Theorem 15. Let (X, τ), (Yη) be two P-cubic topological spaces and let f : X → Y be a mapping.
Then the following are equivalent:

(1) f is cubic continuous,
(2) f−1(F ) ∈ τc for each F ∈ ηc,
(3) f−1(S) ∈ τ for each member S of a subbase σ for η,
(4) for each x˜̃a ∈ CP(X) and each V ∈ NP,η ( f P(x˜̃a)), f−1(V) ∈ NP,τ (x˜̃a),
(5) for each x˜̃a ∈ CP(X) and each V ∈ NP,η ( f P(x˜̃a)), there is U ∈ NP,τ (x˜̃a) such that f P(x˜̃a) ∈

f P(U ) @ V ,
(6) for each x˜̃a ∈ CP(X) and each V ∈ NQ,η ( f P(x˜̃a)), f−1(V) ∈ NQ,τ (x˜̃a),
(7) for each x˜̃a ∈ CP(X) and each V ∈ NQ,η ( f P(x˜̃a)), there is U ∈ NQ,τ (x˜̃a) such that

f P(x˜̃a)q f P(U ) @ V ,
(8) f P(clP,τ (A) @ clP,η ( f P(A)) for each A ∈ CS(X),
(9) clP,τ ( f−1(B)) @ f−1(clP,η (B)) for each B ∈ CS(Y).

Proof. By using Theorem 13 in [21] and Theorem 1.1 in [29], they can be proved.

Proposition 7. Let (X, τ), (Y, η), (Z, γ) be P-cubic topological spaces and let f : X → Y, g :
Y → Z be mappings.

(1) The identity mapping id : (X, τ)→ (X, τ) is cubic continuous.
(2) If f and g are cubic continuous, then g ◦ f : (X, τ)→ (Z, γ) is cubic continuous.

Proof. The proofs are obvious from Definition 26 and Proposition 6 (17).

Remark 11. Let PCTop be the class of all P-cubic topological spaces and cubic continuous map-
pings. Then, from Proposition 7, we can easily see that PCTop forms a concrete category.

Definition 27. Let τ1, τ2 ∈ PCT(X). Then τ1 is said to be coarser (weaker, smaller) than τ2 or
τ2 is said to be finer (stronger, larger) than τ1, if τ1 ⊂ τ2.

Proposition 8. Let (τj)j∈J ⊂ PCT(X) [resp. RCT(X)]. Then
⋂

j∈J τj ∈ PCT(X) [resp.
RCT(X)].

Proof. The proof is straightforward from Definition 13.

Proposition 9. Let (τj)j∈J ⊂ PCT(X) [resp. RCT(X)]. Then (τj)j∈J forms a meet complete
lattice with respect to set inclusion relation with the smallest element 0̂ [resp. 0̈] and the largest
element 1̂ [resp. 1̈].

Proof. The proof is straightforward from Definition 27 and Proposition 8.

Definition 28. Let (X, τ) and (Y, η) be P-cubic topological spaces and let f : X → Y be a
mapping. Then f is said to be cubic open [resp. cubic closed], if f (U ) ∈ η for each U ∈ τ [resp.
f (F ) ∈ ηc for each F ∈ τc].
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Remark 12. From Remark 4 (3), Definitions 25 and 26, it is obvious that
f : (X, τ) → (Y, η) is cubic open [resp. closed] if and only if f : (X, τIVF ) → (Y, ηIVF ) is

interval-valued open [resp. closed] and f : (X, τF )→ (Y, ηF ) is fuzzy open [resp. closed].

Proposition 10. Let (X, τ), (Y, η) and (Z, γ) be P-cubic topological spaces and let f : X → Y
and g : Y → Z be mappings. If f and g are cubic open [res. closed], so is g ◦ f .

Proof. The proof is straightforward from Definition 28.

The following is an immediate consequence of Definitions 26 (ii) and 28.

Theorem 16. Let (X, τ) and (Y, η) be P-cubic topological spaces and let f : X → Y be a mapping.
Then f is a cubic homeomorphism if and only if f is surjective, cubic continuous and cubic open

Proposition 11. Let (X, τ) be a P-cubic topological spaces, let Y be a set and let f : X → Y be a
mapping. Let f (τ) = {V ∈ CS(Y) : f−1(V) ∈ τ}. Then

(1) f (τ) ∈ PCT(Y),
(2) f : (X, τ)→ (Y, f (τ)) is cubic continuous,
(3) if η ∈ PCT(Y) such that f : (X, τ)→ (Y, η) is cubic continuous, then f (τ) is finer than η.

In this case, f (τ) is called the final P-cubic topology on Y.

Proof. (1) It can be easily proved from Proposition 6 (2), (15) and (16).
(2) The proof is straightforward from the definition of f (τ) and Definition 26.
(3) The proof is straightforward from the definition of f (τ) and Definitions 26 and 27.

Definition 29. Let (X, τ) be a P-cubic topological space, let Y be a set and let f : X → Y be a
surjection. Then f (τ) is called the P-cubic quotient topology on Y induced by f . The pair (Y, f (τ))
is called a P-cubic quotient space of X and f is called a P-cubic quotient mapping.

By Proposition 11, the P-cubic quotient mapping f is not only cubic continuous but
f (τ) is the finest P-cubic topology on Y for which f is cubic continuous. We can easily see
that if (Y, f (τ)) is a P-cubic quotient space with the P-cubic quotient mapping f , then a
cubic set F in Y is P-cubic closed if and only if f (F ) ∈ τc.

When (X, τ) and (Y, η) are P-cubic topological spaces, and f : X → Y is surjection,
the following gives conditions on f make η equal to the P-cubic quotient topology f (τ) on
Y induced by f .

Proposition 12. Let (X, τ) and (Y, η) be P-cubic topological spaces, let f : (X, τ)→ (Y, η) be a
cubic continuous surjection. If f is cubic open or cubic closed, then η = (τ) and thus f is a P-cubic
quotient mapping.

Proof. Suppose f is cubic open. By Proposition 11, f (τ) is the finest P-cubic topology on
Y for which f : (X, τ) → (Y, f (τ)) is cubic continuous. Then η ⊂ f (τ). Let V ∈ f (τ).
Then clearly, f−1(V) ∈ τ. Thus, by the hypothesis, f ( f−1(V)) ∈ η. Since f is surjective, by
Proposition 6 (8), f ( f−1(V)) = V . So V ∈ η, i.e., f (τ) ⊂ η. Hence, f (τ) = η.

Suppose f is cubic close. Then we can prove similarly that f (τ) = η.

Proposition 13. The composition of two P-cubic quotient mappings is a P-cubic quotient mapping.

Proof. The proof is easy from Definition 29.

The following is a basic result for P-cubic quotient spaces.
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Theorem 17. Let (X, τ), (Z, γ) be P-cubic topological spaces, let Y be a set and let f : X → Y be
sujective. Then g : (Y, f (τ))→ (Z, γ) is cubic continuous if and only if g ◦ f : (X, τ)→ (Z, γ)
is cubic continuous.

Proof. The proof is straightforward.

Theorem 18. Let (X, τ), (Y, η) be P-cubic topological spaces and let p : X → Y be a cubic
continuous sujection. Then p is a P-cubic quotient mapping if and only if for each P-cubic topological
space (Z, γ) and each mapping g : Y → Z, the cubic continuity of g ◦ f implies that of g.

Proof. Suppose p is a P-cubic quotient mapping. Then, from Theorem 17, we obtain the
desired result.

Conversely, suppose the necessary condition holds. Let p
′

denote p considered as a
mapping from (X, τ) into (Y, f (τ)) and let id : (Y, η)→ (Y, f (τ)) be the identity mapping.
Then clearly, p

′
is cubic continuous and id ◦ p = p

′
. Thus, by the hypothesis, id is cubic

continuous. Since id−1 ◦ p
′
= p is cubic continuous and p

′
is a P-cubic quotient mapping,

by the hypothesis, id−1 is cubic continuous. So id−1 is a cubic homeomorphism. Hence, p
is a P-cubic quotient mapping.

Theorem 19. Let (X, τ), (Y, η), (Z, γ) be P-cubic topological spaces, let p : X → Y be a P-cubic
quotient mapping and let g : Y → Z be a surjection. Then g ◦ p is a P-cubic quotient mapping if
and only if g is a P-cubic quotient mapping.

Proof. The proof is straightforward from Definition 29 and Theorem 18.

The following is the dual of Proposition 11.

Proposition 14. Let X be a set, let (Y, η) be a P-cubic topological space and let f : X → Y be a
mapping. Let f−1(η) = { f−1(V) ∈ CS(X) : V ∈ η}. Then

(1) f−1(η) ∈ PCT(X),
(2) f : (X, f−1(η))→ (Y, η) is cubic continuous,
(3) if ζ ∈ PCT(X) such that f : (X, ζ) → (Y, η) is cubic continuous, then f−1(η) is coarser

than ζ.

In this case, f−1(η) is called the initial P-cubic topology on X.

Proof. The proofs are similar to Proposition 11.

The following is a generalization of Proposition 14.

Proposition 15. Let X be a set, let ((Yj, ηj))j∈J be a family of P-cubic topological spaces, ( f j :
X → (Yj, ηj))j∈J be a family of mappings and let σ = { f−1

j (V) ∈ CS(X) : V ∈ ηj, j ∈ J}. Then
there is a coarsest P-cubic topology τ on X such that f j : (X, τ)→ (Yj, ηj) is cubic continuous for
each j ∈ J.

In this case, τ is called the initial P-cubic topology on X induced by ( f j)j∈J . In fact, τ is a
P-cubic topology on X having σ as its P-cubic subbase.

Proof. Since ηj is a P-cubic topology on Yj or each j ∈ J, 1̂, 0̈, 1̈ ∈ ηj. Then by Proposition 6
(2), 1̂, 0̈, 1̈ ∈ σ. Thus, by Theorem 10, there is P-cubic topology τ on X such that σ is a
P-cubic subbase for τ. We can easily prove that τ is the coarsest P-cubic topology on X such
that f j : (X, τ)→ (Yj, ηj) is cubic continuous for each j ∈ J.

Now we will discuss the P-cubic product space of an arbitrary family of P-cubic
topological spaces. Let (Xj)j∈J be a family of sets and let k ∈ J. Consider the mapping

πk : Πj∈J Xj → Xk
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defined by πk(
〈

xj
〉
) = xk for each

〈
xj
〉
∈ Πj∈J Xj. Then πk is called the k-th projection

mapping.

By Proposition 15, we have the following.

Corollary 1. Let ((Xj, τj))j∈J be a family of P-cubic topological spaces, let X = Πj∈J Xj, let
(pij : X → (Xj, τj))j∈J be a family of projection mappings and let σ = {pi−1

j (V) ∈ CS(X) : V ∈
τj, j ∈ J}. Then there is a coarsest P-cubic topology τ on X such that pik : (X, τ)→ (Xk, τk) is
cubic continuous for each k ∈ J.

In this case, τ is called the cubic product topology on X of (τj)j∈J and denoted by Πj∈Jτj.
From Remark 4 (3), it is clear that

Πj∈Jτj =
〈
Πj∈J(τj)IVF , Πj∈J(τj)F

〉
,

where Πj∈J(τj)IVF is the interval-valued fuzzy product topology (see [21]) and Πj∈J(τj)F is the
fuzzy product topology (see [30]).

Theorem 20. Let ((Xj, τj))j∈J be a family of P-cubic topological spaces, let τ be the P-cubic product
topology on X = Πj∈J Xj, let (Y, η) be a P-cubic topological space and let f : Y → X be a mapping.
Then f : (Y, η) → (X, τ) is cubic continuous if and only if πj ◦ f : (Y, η) → (Xj, τj) is cubic
continuous for each j ∈ J.

Proof. The proof is clear from Theorems 16 in [21] and 3.1 (iii) in [30].

Remark 13. (1) From Remark 11 and Theorem 20, it is obvious that the category PCTop has an
initial structures.

(2) The projection mappings are not cubic open in general (see Example 2).

Example 2. Let X1 = {a, b} = X2 and let τ1, τ2 be the P-cubic topology on X1 and X2 respectively
given by:

τ1 = {0̂, 1̂, 0̈, 1̈,A1,A2,A3,A4,A5}, τ2 = {0̂, 1̂, 0̈, 1̈,B1,B2,B3,B4,B5},

where A1(a) = 〈[0.4, 0.4], 0.3〉, A1(b) = 〈[0.6, 0.6], 0.7〉,
A2(a) = 〈[0, 0], 0.3〉, A2(b) = 〈[0, 0], 0.7〉,
A3(a) = 〈[04, 0.4], 1〉, A2(b) = 〈[0.6, 0.6], 1〉,
A4(a) = 〈[0.4, 0.4], 0〉, A2(b) = 〈[0.6, 0.6], 0〉,
A5(a) = 〈[1, 1], 0.3〉, A2(b) = 〈[1, 1], 0.7〉,
B1(a) = 〈[0.8, 0.8], 0.6〉, B1(b) = 〈[0.3, 0.3], 0.2〉,
B2(a) = 〈[0, 0], 0.6〉, B2(b) = 〈[0, 0], 0.2〉,
B3(a) = 〈[0.8, 0.8], 1〉, B3(b) = 〈[0.3, 0.3], 1〉,
B4(a) = 〈[0.8, 0.8], 0〉, B4(b) = 〈[0.3, 0.3], 0〉,
B5(a) = 〈[1, 1], 0.6〉, B5(b) = 〈[1, 1], 0.2〉.

Let σ = {π−1
1 (U ) ∈ CS(X1) : U ∈ τ1}∪{π−1

2 (V) ∈ CS(X1) : V ∈ τ2}. Then clearly, σ is
the P-cubic subbase for the P-cubic product topology τ1 × τ2 on X1 × X2. Let U = π−1

1 (A1), V =

π−1
2 (B1). Then it is obvious that U , V ∈ τ1 × τ2 but π1(V) 6∈ τ1 and π2(U ) 6∈ τ2. Thus, π1 and

π2 are not P-cubic open.

We give the sufficient condition for the projection mappings to be P-cubic open.

Proposition 16. Let ((Xj, τj))j∈J be a family of P-cubic topological spaces and let τ = Πj∈Jτj be
the cubic product topology on the product set X = Πj∈J Xj. If τj ∈ PCTL(X) for each j ∈ J, then
the projection mapping πj : (X, τ)→ (Xj, τj) is P-cubic open.

Proof. From Remark 4 (3), Theorems 17 in [21] and 2.2 (2) in [23], the proof is easy.
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Definition 30. Let (X, τ) be a P-cubic topological space and let δ be a family of cubic sets in X.
Then δ is called a P-cubic cover of X, if 1̂ @ tU∈δU . It is called a P-cubic open cover of X, if it is a
P-cubic cover of X and U ∈ τ for each U ∈ δ. A P-cubic subcover of δ is a subfamily of δ which is
also a P-cubic cover.

Definition 31. Let (X, τ) be a P-cubic topological space. Then X is said to be P-cubic compact, if
each P-cubic open cover of X has a finite P-cubic subcover.

The following is an immediate consequence of Remark 4 (3), Theorems 19 in [21] and
3.4 in [30].

Proposition 17. Let (Xj, τj), j = 1, 2, · · · n, be a family of P-cubic compact space and let
τ = Πn

j=1τj be the P-cubic product topology on τ = Πn
j=1Xj. Then (X, τ) is P-cubic compact.

When the numbers of spaces are infinite, the above proposition is not true in general
(see Example 3).

Example 3. Let Xn = [0, 1] (n ∈ N) and for each n ∈ N, let

τn = {0̂, 1̂, 0̈, 1̈,Un,
〈
0̃, Un

〉
,
〈

Ũn, 1
〉

,
〈

Ũn, 0
〉

,
〈

1̃, Un

〉
},

where Un(x) =
〈

Ũn, Un

〉
(x) =

〈
[ n

n+1 , n
n+1 ],

n
n+1
〉

for each x ∈ [0, 1]. Then clearly, (Xn, τn) is a
P-cubic compact space for each n ∈ N. Now let X = Π∞

n=1Xn, τ = Π∞
n=1τn and let x ∈ X. Then

we have

[t∞
n=1π−1

n (Un)](x) =

〈
[

∞∨
n=1

n
n + 1

,
∞∨

n=1

n
n + 1

],
∞∨

n=1

n
n + 1

〉
= 〈[1, 1], 1〉.

Thus, [t∞
n=1π−1

n (Un)] = 1̂. So (π−1
n (Un))∞

n=1 is a P-cubic open cover of X. On the other
hand, let J be a finite subset of N and let x ∈ X. Then clearly, [tn∈Jπ

−1
n (Un)](x) < 〈[1, 1], 1〉.

Thus, (π−1
n (Un))∞

n=1 has no finite P-cubic subcover. So (X, τ) is not P-cubic compact.

7. Conclusions

In this paper, we have presented a detailed theoretical study of operations on cubic sets.
Mainly, this study shows how the concept of two types of the cubic neighborhood is and
proves that the cubic neighborhood system is an extension of the classical neighborhood
system (see Theorems 4.16, 4.17, 4.19 and 4.20). Finally, the theory has been applied to
cubic continuous mapping and has discussed the sufficient condition for the projection
mappings to be cubic open, by proving its various properties. In order to deepen our work,
cubic compact spaces were defined for the first time and an application of cubic compact
spaces was developed. A natural extension of this still valid theory is to develop separation
axioms and connectedness in cubic topological spaces. An important application of this
type of transformation is to analyze cubic sets in category theory, graph theory, decision
problem, etc. to find the best transformation that fits the experimental data as a model.
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