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Abstract: The objective of the current paper is to incorporate the new class and concepts of convexity
and Hermite–Hadamard inequality with the fuzzy Riemann integral operators because almost all
classical single-valued and interval-valued convex functions are special cases of fuzzy-number valued
convex mappings. Therefore, a new class of nonconvex mapping in the fuzzy environment has been
defined; up and down h-pre-invex fuzzy-number valued mappings (U.D h-pre-invex F-N·V·Ms).
With the help of this newly defined class, some new versions of Hermite–Hadamard (HH) type
inequalities have been also presented. Moreover, some related inequalities such as HH Fejér- and
Pachpatte-type inequalities for U·D h-pre-invex F-N·V·Ms are also introduced. Some exceptional
cases have been discussed, which can be seen as applications of the main results. We have provided
some nontrivial examples. Finally, we also discuss some future scopes.
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operators; Hermite–Hadamard Fejér type inequalities; Hermite–Hadamard Pachpatte type inequalities
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1. Introduction

The area of mathematics known as convex analysis is where we explore the character-
istics of convex sets and convex functions. These traditional ideas have numerous uses in
both the pure and applied sciences. Everyone is aware of, for instance, how convexity is
used in mathematical economics, operations research, optimization theory, and the theory
of means, among other fields. The traditional notions of convexity have recently been
expanded upon and developed in many ways using fresh and original concepts. For in-
stance, Dragomir [1] proposed the class of coordinated convex functions and expanded the
idea of classical convex functions on the coordinates. The concept of harmonically convex
functions was first suggested by Iscan [2], who also noted that this class benefits from
several good features shared by convex functions. The class of interval-valued convex func-
tions was introduced by Nikodem [3], and its characteristics were covered. Interval-valued
harmonically convex functions were first described by Zhao et al. in their publication [4].
Readers who are interested in more information are advised to read the book [5]. Mo-
han and Neogy [6] introduced the well-established class of nonconvex functions which is
known as preinvex functions. Moreover, they defined a condition to handle a bi-function
that is used in invex sets.
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The idea of convexity’s relationship to the theory of inequalities is another endearing
feature. Numerous inequalities that are well-known to us are a direct result of using the
convexity condition of functions. The Hermite–Hadamard inequality is among one of the
findings in this area that have received the most research.

The HH inequality [7,8] for convex mapping U : K → R on an interval K = [a, z]

U

(
a + z

2

)
≤ 1

z− a

∫ z

a
U(υ)dυ ≤ U(a) + U(z)

2
(1)

for all a, z ∈ K, where K is a convex set. If the mapping is concave, then inequality (1)
is reversed.

Fejér considered the major generalizations of HH inequality in [9] which is known as
HH–Fejér inequality.

Let U : K = [a, z]→ R be a convex mapping on a convex set K and a, z ∈ K. Then,

U

(
a + z

2

)
≤ 1∫ z

a C(υ)dυ

∫ z

a
U(υ)C(υ)dυ ≤ U(a) + U(z)

2
(2)

If C(υ) = 1, then we obtain (1) from (2). For concave mapping, the above inequality
(2) is reversed. Many inequalities may be found using special symmetric mapping C(υ) for
convex mappings with the help of inequality (2).

With the use of fractional calculus, Sarikaya et al. [10] were able to derive fractional
analogs of the Hermite–Hadamard inequality. See [11] for some more current research on
Hermite–Hadamard’s inequality and its uses.

On the other hand, interval analysis is a crucial component of mathematics and is
employed in computer models as one method for addressing interval uncertainty. Although
Archimedes’ calculation of a circle’s circumference is where this theory first appeared,
significant research on the subject was not published until the 1950s. The first book [12] on
interval analysis was published in 1966 by Moore, the inventor of interval calculus. After
that, other academics studied the theory and uses of interval analysis. Integral inequalities
resulting from interval-valued functions have recently attracted the attention of numerous
authors. The Hermite–Hadamard inequality for set-valued functions, a more extensive
kind of interval-valued mapping, was discovered by Sadowska [13]:

Let U : K = [a, z]→ K+
C be a convex interval-valued mapping such that

U(υ) = [U∗(υ), U∗(υ)] for all ω ∈ [a, z]. Then

U

(
a + z

2

)
⊇ 1

z− a

∫ z

a
U(υ)dυ ⊇ U(a) + U(z)

2
(3)

If U is concave interval-valued mapping, then the above double inclusion relation (3)
is reversed.

Many publications have focused on generalizing the inclusions (1)–(3). For instance,
Budak et al. [14] used Riemann–Liouville fractional integrals of interval-valued func-
tions to demonstrate the Hermite–Hadamard inclusion. Several works [15–17] exam-
ined the generalization of (3) using various general convexities. The analogous Hermite–
Hadamard inclusions for interval-valued functions with two variables were also demon-
strated by numerous writers [18–21]. We recommend the following articles [21–24] for
readers interested.

Khan and his colleagues recently extended the concept of convex interval-valued
mappings (convex I·V·Ms) and the fuzzy interval-valued mappings (convex F-I·V·Ms)
term of fuzzy interval-valued convex mappings by using fuzzy-order relation such that the
convex F-I·V·Ms (apparently new) concept includes (h1, h2)-convex F-I·V·Ms, see [25] and
harmonic convex F-I·V·Ms, see [26]. To illustrate inequalities of the Hermite–Hadamard,
Hermite–Hadamard–Fejér, and Pachpatte types, his team utilized h-preinvex F-I·V·Ms,
see [27], (h1, h2)-preinvex F-I·V·Ms, see [28], and higher-order preinvex F-I·V·Ms, see [29],
Recently Khan et al. [30] introduced new versions of Hermite–Hadamard and Hermite–
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Hadamard–Fejér type inequalities by using the introduced concept of fuzzy Riemann–
Liouville fractional integrals via U·D F-N·V·Ms. For various recent achievements related to
the notion of fuzzy interval-valued analysis of some well-known integral inequalities, we
refer interested readers to study some basic concepts related to fuzzy calculus, see [31–55]
and the references therein.

Motivated and inspired by existing research, we have presented a new extension of
HH inequalities for the newly introduced class of U·D h-pre-invex F-N·V·Ms using fuzzy
inclusion relation. With the aid of this class, we have created new versions of the HH
inequalities that take advantage of the fuzzy Riemann integral operators. We also looked at
the applicability of our findings in exceptional circumstances.

2. Preliminaries

Let XC be the space of all closed and bounded intervals of R and
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Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 

𝜎 ⋅ ₦ = {

 
[𝜎₦∗, 𝜎₦

∗] if 𝜎 > 0,
{0}       if 𝜎 = 0,

[𝜎₦∗, 𝜎₦∗]  if 𝜎 < 0.

 (5) 

Then, the Minkowski difference ₩− ₦, addition ₦ +₩ and ₦ ×₩ for ₦,₩ ∈ 𝒳𝐶 

are defined by 

[₩∗,₩
∗] + [₦∗, ₦

∗]  = [₩∗ + ₦∗, ₩∗ + ₦∗], (6) 

[₩∗,₩
∗] × [₦∗, ₦

∗] = [min{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

∈ XC be
defined by
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It is familiar fact that (XC, dH) is a complete metric space, see [33,37,38].

Definition 1 ([32]). A fuzzy subset L of R is distinguished by a mapping ˜
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, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

to denote the set of all fuzzy subsets of R.

Let ˜

Axioms 2022, 11, x FOR PEER REVIEW 3 of 23 
 

see [29], Recently Khan et al. [30] introduced new versions of Hermite–Hadamard and 

Hermite–Hadamard–Fejér type inequalities by using the introduced concept of fuzzy Rie-

mann–Liouville fractional integrals via U∙D F-N∙V∙Ms. For various recent achievements 

related to the notion of fuzzy interval-valued analysis of some well-known integral ine-

qualities, we refer interested readers to study some basic concepts related to fuzzy calcu-

lus, see [31–55] and the references therein. 

Motivated and inspired by existing research, we have presented a new extension of 

HH inequalities for the newly introduced class of U∙D 𝘩-pre-invex F-N∙V∙Ms using fuzzy 

inclusion relation. With the aid of this class, we have created new versions of the HH ine-

qualities that take advantage of the fuzzy Riemann integral operators. We also looked at 

the applicability of our findings in exceptional circumstances. 

2. Preliminaries 

Let 𝒳𝐶 be the space of all closed and bounded intervals of ℝ and ₦ ∈ 𝒳𝐶 be de-

fined by 

₦ = [₦∗, ₦
∗] = {𝜐 ∈ ℝ| ₦∗ ≤ 𝜐 ≤ ₦

∗}, (₦∗, ₦
∗ ∈ ℝ). (4) 

if ₦∗ = ₦
∗, then ₦ is said to be degenerate. In this article, all intervals will be non-

degenerate intervals. If ₦∗ ≥ 0, then [₦∗, ₦
∗] is called the positive interval. The set of all 

positive intervals is denoted by 𝒳𝐶
+ and defined as 𝒳𝐶

+ = {[₦∗, ₦
∗]: [₦∗, ₦

∗] ∈ 𝒳𝐶  and ₦∗ ≥
0}. 

Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 

𝜎 ⋅ ₦ = {

 
[𝜎₦∗, 𝜎₦

∗] if 𝜎 > 0,
{0}       if 𝜎 = 0,

[𝜎₦∗, 𝜎₦∗]  if 𝜎 < 0.

 (5) 

Then, the Minkowski difference ₩− ₦, addition ₦ +₩ and ₦ ×₩ for ₦,₩ ∈ 𝒳𝐶 

are defined by 

[₩∗,₩
∗] + [₦∗, ₦

∗]  = [₩∗ + ₦∗, ₩∗ + ₦∗], (6) 

[₩∗,₩
∗] × [₦∗, ₦

∗] = [min{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

∈
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𝒛
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𝒛
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integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

. Then, ˜
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inclusion relation. With the aid of this class, we have created new versions of the HH ine-

qualities that take advantage of the fuzzy Riemann integral operators. We also looked at 

the applicability of our findings in exceptional circumstances. 

2. Preliminaries 

Let 𝒳𝐶 be the space of all closed and bounded intervals of ℝ and ₦ ∈ 𝒳𝐶 be de-

fined by 

₦ = [₦∗, ₦
∗] = {𝜐 ∈ ℝ| ₦∗ ≤ 𝜐 ≤ ₦

∗}, (₦∗, ₦
∗ ∈ ℝ). (4) 

if ₦∗ = ₦
∗, then ₦ is said to be degenerate. In this article, all intervals will be non-

degenerate intervals. If ₦∗ ≥ 0, then [₦∗, ₦
∗] is called the positive interval. The set of all 

positive intervals is denoted by 𝒳𝐶
+ and defined as 𝒳𝐶

+ = {[₦∗, ₦
∗]: [₦∗, ₦

∗] ∈ 𝒳𝐶  and ₦∗ ≥
0}. 

Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 

𝜎 ⋅ ₦ = {

 
[𝜎₦∗, 𝜎₦

∗] if 𝜎 > 0,
{0}       if 𝜎 = 0,

[𝜎₦∗, 𝜎₦∗]  if 𝜎 < 0.

 (5) 

Then, the Minkowski difference ₩− ₦, addition ₦ +₩ and ₦ ×₩ for ₦,₩ ∈ 𝒳𝐶 

are defined by 

[₩∗,₩
∗] + [₦∗, ₦

∗]  = [₩∗ + ₦∗, ₩∗ + ₦∗], (6) 

[₩∗,₩
∗] × [₦∗, ₦

∗] = [min{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

is known as a fuzzy number or fuzzy number if the following
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should be normal if there exists υ ∈ R and ˜
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should be upper semi-continuous on R if for given υ ∈ R, there exist ε > 0 there

exist δ > 0 such that ˜
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∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 
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For [₩∗,₩
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∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
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∗] is defined by 

𝑑𝐻([₩∗,₩
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It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 
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(s) < ε for all s ∈ R with |υ− s| < δ;

(3) ˜

Axioms 2022, 11, x FOR PEER REVIEW 3 of 23 
 

see [29], Recently Khan et al. [30] introduced new versions of Hermite–Hadamard and 

Hermite–Hadamard–Fejér type inequalities by using the introduced concept of fuzzy Rie-

mann–Liouville fractional integrals via U∙D F-N∙V∙Ms. For various recent achievements 

related to the notion of fuzzy interval-valued analysis of some well-known integral ine-

qualities, we refer interested readers to study some basic concepts related to fuzzy calcu-

lus, see [31–55] and the references therein. 

Motivated and inspired by existing research, we have presented a new extension of 

HH inequalities for the newly introduced class of U∙D 𝘩-pre-invex F-N∙V∙Ms using fuzzy 

inclusion relation. With the aid of this class, we have created new versions of the HH ine-

qualities that take advantage of the fuzzy Riemann integral operators. We also looked at 

the applicability of our findings in exceptional circumstances. 

2. Preliminaries 

Let 𝒳𝐶 be the space of all closed and bounded intervals of ℝ and ₦ ∈ 𝒳𝐶 be de-

fined by 

₦ = [₦∗, ₦
∗] = {𝜐 ∈ ℝ| ₦∗ ≤ 𝜐 ≤ ₦

∗}, (₦∗, ₦
∗ ∈ ℝ). (4) 

if ₦∗ = ₦
∗, then ₦ is said to be degenerate. In this article, all intervals will be non-

degenerate intervals. If ₦∗ ≥ 0, then [₦∗, ₦
∗] is called the positive interval. The set of all 

positive intervals is denoted by 𝒳𝐶
+ and defined as 𝒳𝐶

+ = {[₦∗, ₦
∗]: [₦∗, ₦

∗] ∈ 𝒳𝐶  and ₦∗ ≥
0}. 

Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 

𝜎 ⋅ ₦ = {

 
[𝜎₦∗, 𝜎₦

∗] if 𝜎 > 0,
{0}       if 𝜎 = 0,

[𝜎₦∗, 𝜎₦∗]  if 𝜎 < 0.

 (5) 

Then, the Minkowski difference ₩− ₦, addition ₦ +₩ and ₦ ×₩ for ₦,₩ ∈ 𝒳𝐶 

are defined by 

[₩∗,₩
∗] + [₦∗, ₦

∗]  = [₩∗ + ₦∗, ₩∗ + ₦∗], (6) 

[₩∗,₩
∗] × [₦∗, ₦

∗] = [min{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩
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∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

(s)
)

, for all

υ, s ∈ R, and σ ∈ [0, 1]

(4) ˜
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for all [₩∗,₩
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∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 
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(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

should be compactly supported that is cl
{

υ ∈ R
∣∣∣∣ ˜
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∗] is defined by 
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∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 
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(υ)

〉
0
}

is compact.

We appoint
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𝒛
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𝒛

𝑎
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𝒛

𝑎
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integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C to denote the set of all fuzzy numbers of R.

Definition 2 ([32,33]). Given ˜

Axioms 2022, 11, x FOR PEER REVIEW 3 of 23 
 

see [29], Recently Khan et al. [30] introduced new versions of Hermite–Hadamard and 

Hermite–Hadamard–Fejér type inequalities by using the introduced concept of fuzzy Rie-

mann–Liouville fractional integrals via U∙D F-N∙V∙Ms. For various recent achievements 

related to the notion of fuzzy interval-valued analysis of some well-known integral ine-

qualities, we refer interested readers to study some basic concepts related to fuzzy calcu-

lus, see [31–55] and the references therein. 

Motivated and inspired by existing research, we have presented a new extension of 

HH inequalities for the newly introduced class of U∙D 𝘩-pre-invex F-N∙V∙Ms using fuzzy 

inclusion relation. With the aid of this class, we have created new versions of the HH ine-

qualities that take advantage of the fuzzy Riemann integral operators. We also looked at 

the applicability of our findings in exceptional circumstances. 

2. Preliminaries 

Let 𝒳𝐶 be the space of all closed and bounded intervals of ℝ and ₦ ∈ 𝒳𝐶 be de-

fined by 

₦ = [₦∗, ₦
∗] = {𝜐 ∈ ℝ| ₦∗ ≤ 𝜐 ≤ ₦

∗}, (₦∗, ₦
∗ ∈ ℝ). (4) 

if ₦∗ = ₦
∗, then ₦ is said to be degenerate. In this article, all intervals will be non-
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are defined by 
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Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

∈
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Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C, the level sets or cut sets are given by
[˜
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and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
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It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 
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the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

]o
=

{
υ ∈ R

∣∣∣∣ ˜

Axioms 2022, 11, x FOR PEER REVIEW 3 of 23 
 

see [29], Recently Khan et al. [30] introduced new versions of Hermite–Hadamard and 

Hermite–Hadamard–Fejér type inequalities by using the introduced concept of fuzzy Rie-

mann–Liouville fractional integrals via U∙D F-N∙V∙Ms. For various recent achievements 

related to the notion of fuzzy interval-valued analysis of some well-known integral ine-

qualities, we refer interested readers to study some basic concepts related to fuzzy calcu-

lus, see [31–55] and the references therein. 

Motivated and inspired by existing research, we have presented a new extension of 

HH inequalities for the newly introduced class of U∙D 𝘩-pre-invex F-N∙V∙Ms using fuzzy 

inclusion relation. With the aid of this class, we have created new versions of the HH ine-

qualities that take advantage of the fuzzy Riemann integral operators. We also looked at 

the applicability of our findings in exceptional circumstances. 

2. Preliminaries 

Let 𝒳𝐶 be the space of all closed and bounded intervals of ℝ and ₦ ∈ 𝒳𝐶 be de-

fined by 

₦ = [₦∗, ₦
∗] = {𝜐 ∈ ℝ| ₦∗ ≤ 𝜐 ≤ ₦

∗}, (₦∗, ₦
∗ ∈ ℝ). (4) 

if ₦∗ = ₦
∗, then ₦ is said to be degenerate. In this article, all intervals will be non-

degenerate intervals. If ₦∗ ≥ 0, then [₦∗, ₦
∗] is called the positive interval. The set of all 

positive intervals is denoted by 𝒳𝐶
+ and defined as 𝒳𝐶

+ = {[₦∗, ₦
∗]: [₦∗, ₦

∗] ∈ 𝒳𝐶  and ₦∗ ≥
0}. 

Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 

𝜎 ⋅ ₦ = {

 
[𝜎₦∗, 𝜎₦

∗] if 𝜎 > 0,
{0}       if 𝜎 = 0,

[𝜎₦∗, 𝜎₦∗]  if 𝜎 < 0.

 (5) 

Then, the Minkowski difference ₩− ₦, addition ₦ +₩ and ₦ ×₩ for ₦,₩ ∈ 𝒳𝐶 

are defined by 

[₩∗,₩
∗] + [₦∗, ₦

∗]  = [₩∗ + ₦∗, ₩∗ + ₦∗], (6) 

[₩∗,₩
∗] × [₦∗, ₦

∗] = [min{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

(υ)

〉
o
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for all o ∈ [0, 1] and by

[˜
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∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 
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𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C. Then relation “ ≤F ” given on
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∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦
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∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 
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It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 
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∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 
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where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C. Then relation “ ⊇F ” given on
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lus, see [31–55] and the references therein. 

Motivated and inspired by existing research, we have presented a new extension of 
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inclusion relation. With the aid of this class, we have created new versions of the HH ine-

qualities that take advantage of the fuzzy Riemann integral operators. We also looked at 
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∗, then ₦ is said to be degenerate. In this article, all intervals will be non-

degenerate intervals. If ₦∗ ≥ 0, then [₦∗, ₦
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+ and defined as 𝒳𝐶
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Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 
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{0}       if 𝜎 = 0,
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∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
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∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 
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∗] coincident to [₩∗,₩
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∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 
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∗], [₦∗, ₦
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∗], 
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∗] is defined by 
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∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 
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∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 
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∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩
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∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 
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For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

when, and only when,
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Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛
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 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C.

Proof. The proof follows directly from the up and down relation ⊇I defined on XC. �

Remember the approaching notions, which are offered in the literature. If ˜
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Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 

𝜎 ⋅ ₦ = {

 
[𝜎₦∗, 𝜎₦

∗] if 𝜎 > 0,
{0}       if 𝜎 = 0,

[𝜎₦∗, 𝜎₦∗]  if 𝜎 < 0.

 (5) 

Then, the Minkowski difference ₩− ₦, addition ₦ +₩ and ₦ ×₩ for ₦,₩ ∈ 𝒳𝐶 

are defined by 

[₩∗,₩
∗] + [₦∗, ₦
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∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
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[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 
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∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 
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for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 
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C
and o ∈ R, then, for every o ∈ [0, 1], the arithmetic operations are defined by[˜
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These operations follow directly from the Equations (5)–(7), respectively.

Theorem 1 ([33]). The space
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, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C dealing with a supremum metric i.e., for ˜
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mann–Liouville fractional integrals via U∙D F-N∙V∙Ms. For various recent achievements 

related to the notion of fuzzy interval-valued analysis of some well-known integral ine-

qualities, we refer interested readers to study some basic concepts related to fuzzy calcu-

lus, see [31–55] and the references therein. 

Motivated and inspired by existing research, we have presented a new extension of 

HH inequalities for the newly introduced class of U∙D 𝘩-pre-invex F-N∙V∙Ms using fuzzy 

inclusion relation. With the aid of this class, we have created new versions of the HH ine-

qualities that take advantage of the fuzzy Riemann integral operators. We also looked at 

the applicability of our findings in exceptional circumstances. 

2. Preliminaries 

Let 𝒳𝐶 be the space of all closed and bounded intervals of ℝ and ₦ ∈ 𝒳𝐶 be de-

fined by 

₦ = [₦∗, ₦
∗] = {𝜐 ∈ ℝ| ₦∗ ≤ 𝜐 ≤ ₦

∗}, (₦∗, ₦
∗ ∈ ℝ). (4) 

if ₦∗ = ₦
∗, then ₦ is said to be degenerate. In this article, all intervals will be non-

degenerate intervals. If ₦∗ ≥ 0, then [₦∗, ₦
∗] is called the positive interval. The set of all 

positive intervals is denoted by 𝒳𝐶
+ and defined as 𝒳𝐶

+ = {[₦∗, ₦
∗]: [₦∗, ₦

∗] ∈ 𝒳𝐶  and ₦∗ ≥
0}. 

Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 

𝜎 ⋅ ₦ = {

 
[𝜎₦∗, 𝜎₦

∗] if 𝜎 > 0,
{0}       if 𝜎 = 0,

[𝜎₦∗, 𝜎₦∗]  if 𝜎 < 0.

 (5) 

Then, the Minkowski difference ₩− ₦, addition ₦ +₩ and ₦ ×₩ for ₦,₩ ∈ 𝒳𝐶 

are defined by 

[₩∗,₩
∗] + [₦∗, ₦

∗]  = [₩∗ + ₦∗, ₩∗ + ₦∗], (6) 

[₩∗,₩
∗] × [₦∗, ₦

∗] = [min{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

, ˜
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∗] = {𝜐 ∈ ℝ| ₦∗ ≤ 𝜐 ≤ ₦
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∗ ∈ ℝ). (4) 

if ₦∗ = ₦
∗, then ₦ is said to be degenerate. In this article, all intervals will be non-

degenerate intervals. If ₦∗ ≥ 0, then [₦∗, ₦
∗] is called the positive interval. The set of all 

positive intervals is denoted by 𝒳𝐶
+ and defined as 𝒳𝐶

+ = {[₦∗, ₦
∗]: [₦∗, ₦

∗] ∈ 𝒳𝐶  and ₦∗ ≥
0}. 

Let 𝜎 ∈ ℝ and 𝜎 ⋅ ₦ be defined by 

𝜎 ⋅ ₦ = {
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∗] if 𝜎 > 0,
{0}       if 𝜎 = 0,

[𝜎₦∗, 𝜎₦∗]  if 𝜎 < 0.

 (5) 

Then, the Minkowski difference ₩− ₦, addition ₦ +₩ and ₦ ×₩ for ₦,₩ ∈ 𝒳𝐶 

are defined by 

[₩∗,₩
∗] + [₦∗, ₦

∗]  = [₩∗ + ₦∗, ₩∗ + ₦∗], (6) 

[₩∗,₩
∗] × [₦∗, ₦

∗] = [min{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗},max{₩∗₦∗,₩
∗₦∗,₩∗₦

∗,₩∗₦∗}] (7) 

[₩∗,₩
∗] − [₦∗, ₦

∗]  = [₩∗ − ₦
∗, ₩∗ − ₦∗], (8) 

Remark 1. (i) For given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , the relation “ ⊇𝐼 ” defined on ℝ𝐼 by 

[₦∗, ₦
∗] ⊇𝐼 [₩∗,₩

∗] if, and only if, ₦∗ ≤ ₩∗, ₩
∗ ≤ ₦∗, (9) 

for all [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 ,  it is a partial interval inclusion relation. The relation 
[₦∗, ₦

∗] ⊇𝐼 [₩∗,₩
∗] coincident to [₦∗, ₦

∗] ⊇ [₩∗,₩
∗] on ℝ𝐼 . It can be easily seen that “⊇𝐼” 

looks like “up and down” on the real line ℝ, so we determine that “ ⊇𝐼 ” is “up and down” (or 

“U∙D” order, in short) [40]. 

(ii) For each given [₩∗,₩
∗], [₦∗, ₦

∗] ∈ ℝ𝐼 , we say that [₩∗,₩
∗] ≤𝐼 [₦∗, ₦

∗] if and only if 

₩∗ ≤ ₦∗,₩
∗ ≤ ₦∗  or ₩∗ ≤ ₦∗,₩

∗ < ₦∗ , it is a partial interval order relation. The relation 
[₩∗,₩

∗] ≤𝐼 [₦∗, ₦
∗] coincident to [₩∗,₩

∗] ≤ [₦∗, ₦
∗] on ℝ𝐼 . It can be easily seen that “ ≤𝐼 ” 

looks like “left and right” on the real line ℝ, so we determine that “ ≤𝐼 ” is “left and right” (or 

“LR” order, in short) [39,40]. 

For [₩∗,₩
∗], [₦∗, ₦

∗] ∈ 𝒳𝐶 , the Hausdorff–Pompeiu distance between intervals [₩∗,₩
∗], 

and [₦∗, ₦
∗] is defined by 

𝑑𝐻([₩∗,₩
∗], [₦∗, ₦

∗]) = max{|₩∗ − ₦∗|, |₩
∗ − ₦∗|}. (10) 

It is familiar fact that (𝒳𝐶 , 𝑑𝐻) is a complete metric space, see [33,37,38]. 

Definition 1 ([32]). A fuzzy subset 𝐿 of ℝ is distinguished by a mapping ₦̃: ℝ → [0,1] called 

the membership mapping of 𝐿. That is, a fuzzy subset 𝐿 of ℝ is a mapping ₦̃: ℝ → [0,1]. So for 

∈
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𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎
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integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  
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]o)
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is a complete metric space, where H denotes the well-known Hausdorff metric on space of intervals.

3. Riemann Integral Operators for the Interval- and Fuzzy-Number Valued Mappings

Now we define and discuss some properties of fractional integral operators of interval-
and fuzzy-number valued mappings.

Theorem 2 ([33,34]). If U : [a, z] ⊂ R→ XC is an interval-valued mapping (I-V·M) satisfying
that U(υ) = [U∗(υ), U∗(υ)], then U is Aumann integrable (IA-integrable) over [a, z] when and
only when U∗(υ) and U∗(υ) both are integrable over [a, z] such that

(IA)
∫ z

a
U(υ)dυ =

∫ z
a

U∗(υ)dυ,
∫ z

a
U∗(υ)dυ

 (17)

Definition 3 ([39]). Let Ũ : I ⊂ R→
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ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 
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for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  
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convex and U∙D concave F-N∙V∙M.  

C is called fuzzy-number valued mapping. Then, for
every o ∈ [0, 1], as well as o-levels define the family of I-V·Ms Uo : I ⊂ R→ XC satisfying that
Uo(υ) = [U∗(υ, o), U∗(υ, o)] for every υ ∈ I. Here, for every o ∈ [0, 1], the endpoint real-valued
mappings U∗(•, o), U∗(•, o) : I→ R are called lower and upper mappings of Uo.

Definition 4 ([39]). Let Ũ : I ⊂ R→
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C be a F-N·V·M. Then Ũ(υ) is said to be continuous at
υ ∈ I, if for every o ∈ [0, 1],Uo(υ) is continuous when and only when, both endpoint mappings
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C be F-N·V·M. The fuzzy Aumann integral ((FA)-
integral) of U over [a, z], denoted by (FA)

∫ z
a Ũ(υ)dυ, is defined level-wise by

[
(FA)

∫ z

a
Ũ(υ)dυ

]
o = (IA)

∫ z

a
Uo(υ)dυ =

{∫ z

a
U(υ, o)dυ : U(υ, o) ∈ S(Uo)

}
, (18)

where S(Uo) = {U(., o)→ R : U(., o) is integrable and U(υ, o) ∈ Uo(υ)}, for every o ∈ [0, 1].
U is (FA)-integrable over [a, z] if (FA)

∫ z
a Ũ(υ)dυ ∈
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for every 𝜐 ∈ 𝕀. Here, for every 𝔬 ∈ [0, 1], the endpoint real-valued 

mappings 𝔘∗(∙, 𝔬), 𝔘
∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 

𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 

Definition 5 ([33]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be F-N∙V∙M. The fuzzy Aumann integral ((𝐹𝐴)-

integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 
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𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 
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Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 
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] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
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 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C.

Theorem 3 ([34]). Let Ũ : [a, z] ⊂ R→
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C be a F-N·V·M as well as o-levels define the family of
I-V·Ms Uo : [a, z] ⊂ R→ XC satisfying that Uo(υ) = [U∗(υ, o), U∗(υ, o)] for every υ ∈ [a, z]
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and for every o ∈ [0, 1]. Then Ũ is (FA)-integrable over [a, z] when, and only when, U∗(υ, o) and
U∗(υ, o) both are integrable over [a, z]. Moreover, if U is (FA)-integrable over [a, z], then

[
(FA)

∫ z

a
Ũ(υ)dυ

]
o =

[∫ z

a
U∗(υ, o)dυ,

∫ z

a
U∗(υ, o)dυ

]
= (IA)

∫ z

a
Uo(υ)dυ (19)

for every o ∈ [0, 1].

Breckner discussed the emerging idea of interval-valued convexity in [35].
An interval valued mapping U : I = [a, z]→ XC is called convex inteval valued map-

ping if
U(συ + (1− σ)s) ⊇ σU(υ) + (1− σ)U(s), (20)

for all υ, s ∈ [a, z], σ ∈ [0, 1], where XC is the collection of all real valued intervals. If (20)
is reversed, then U is called concave.

Definition 6 ([31]). The F-N·V·M Ũ : [a, z]→
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for all υ, s ∈ [a, z], σ ∈ [0, 1], where Ũ(υ) ≥F 0̃ for all υ ∈ [a, z]. If (21) is reversed then, Ũ is
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Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 
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 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C is called U·D convex F-N·V·M on [a, z] if

Ũ(συ + (1− σ)s) ⊇F σ� Ũ(υ)⊕ (1− σ)� Ũ(s), (22)

for all υ, s ∈ [a, z], σ ∈ [0, 1], where Ũ(υ) ≥F 0̃ for all υ ∈ [a, z]. If (22) is reversed then, Ũ is
called U·D concave F-N·V·M on [a, z]. Ũ is U·D affine F-N·V·M if and only if it is both U·D
convex and U·D concave F-N·V·M.

Definition 8 ([44]). Let K be an invex set and h : [0, 1]→ R such that h(υ) > 0. Then F-N·V·M
Ũ : K →
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C is said to be U·D h-pre-invex on K with respect to

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

if

Ũ(υ + (1− σ)
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ)) ⊇F σ� Ũ(υ)⊕ (1− σ)� Ũ(y), (23)

for all υ, y ∈ K, σ ∈ [0, 1], where Ũ(υ) ≥F 0̃,
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if inequality (23) is reversed.

Theorem 4 ([44]). Let Ũ : [a, z]→
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𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 

𝔬 ∈ [0, 1] , as well as 𝔬 -levels define the family of I-V∙Ms 𝔘𝔬: 𝕀 ⊂ ℝ → 𝒳𝐶  satisfying that 

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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mappings 𝔘∗(∙, 𝔬), 𝔘
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𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 

Definition 5 ([33]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be F-N∙V∙M. The fuzzy Aumann integral ((𝐹𝐴)-

integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 
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: K× K → R which is known as:

Condition C. See [6]. Let K be an invex set with respect to
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U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)) = (1− σ)
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a).
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Clearly, for σ = 0, we have
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a) = 0 if, and only if, z = a, for all a, z ∈ K. For the
applications of Condition C, see [6,27–29,41,44,45].

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy
Integral Inequalities

In this section, we discuss our key findings. We begin by introducing the category of
U·D h-pre-invex mappings with fuzzy number values.

Definition 9. Let K be an invex set and h : [0, 1]→ R such that h(υ) > 0. Then F-N·V·M
Ũ : K →

Axioms 2022, 11, x FOR PEER REVIEW 5 of 23 
 

(𝐼𝐴)∫ 𝔘(𝜐)𝑑𝜐
𝒛

𝑎

= [∫ 𝔘∗(𝜐)𝑑𝜐

 
𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 

𝔬 ∈ [0, 1] , as well as 𝔬 -levels define the family of I-V∙Ms 𝔘𝔬: 𝕀 ⊂ ℝ → 𝒳𝐶  satisfying that 

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for every 𝜐 ∈ 𝕀. Here, for every 𝔬 ∈ [0, 1], the endpoint real-valued 

mappings 𝔘∗(∙, 𝔬), 𝔘
∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 

𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 

Definition 5 ([33]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be F-N∙V∙M. The fuzzy Aumann integral ((𝐹𝐴)-

integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C is said to be U·D h-pre-invex on K with respect to
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

if

Ũ(υ + (1− σ)
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applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ)) ⊇F h(σ)� Ũ(υ)⊕ h(1− σ)� Ũ(y), (25)

for all υ, y ∈ K, σ ∈ [0, 1], where Ũ(υ) ≥F 0̃,
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: K× K → R. The mapping Ũ is said to be U·D
h-pre-incave on K with respect to
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if inequality (25) is reversed.

Remark 2. The U·D h-pre-invex F-N·V·Ms have some very nice properties similar to pre-invex
F-N·V·M,

(1) if Ũ is U·D h-pre-invex F-N·V·M, then YŨ is also U·D h-pre-invex for Y ≥ 0.

(2) if Ũ and J̃ both are U·D h-pre-invex F-N·V·Ms, then max
(
Ũ(υ), J̃ (υ)

)
is also U·D h-pre-

invex F-N·V·M.

Now we discuss some new special cases of U·D h-pre-invex F-N·V·Ms:
If h(σ) = σs, then U·D h-pre-invex F-N·V·M becomes U·D s-pre-invex F-N·V·M, that

is

Ũ(υ + (1− σ)
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resulting new one:
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Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ)) ⊇F Ũ(υ)⊕ Ũ(y), ∀ υ, y ∈ K, σ ∈ [0, 1]. (29)

If
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(y, υ) = y− υ, then Ũ is called P-F-N·V·M.

Theorem 5. Let K be an invex set and h : [0, 1] ⊆ K → R+ , and let Ũ : K →
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𝒛

𝑎
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𝒛

𝑎

] (17) 
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𝒛

𝑎
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𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C be a F-N·V·M
with Ũ(υ) ≥F 0̃, whose o-levels define the family of I·V·Ms Uo : K ⊂ R→ KC

+ ⊂ KC is
given by

Uo(υ) = [U∗(υ, o), U∗(υ, o)], ∀ υ ∈ K. (30)

for all υ ∈ K and for all o ∈ [0, 1]. Then, Ũ is U·D h-pre-invex F-N·V·M on K, if, and only if, for
all o ∈ [0, 1], U∗(υ, o), and U∗(υ, o) are h-pre-invex and h-pre-incave functions, respectively.
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Proof. Assume that for each o ∈ [0, 1], U∗(υ, o) and U∗(υ, o) are h-pre-invex and h-pre-
incave functions on K, respectively. Then from (25), we have

U∗(υ + (1− σ)
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(y, υ), o) ≤ h(σ)U∗(υ, o) + h(1− σ)U∗(y, o), ∀ υ, y ∈ K, σ ∈ [0, 1],

and

U∗(υ + (1− σ)
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ), o) ≥ h(σ)U∗(υ, o) + h(1− σ)U∗(y, o), ∀ υ, y ∈ K, σ ∈ [0, 1].

Then by (30), (13), and (15), we obtain

Uo(υ + (1− σ)
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(y, υ), o), U∗(υ + (1− σ)
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(y, υ), o)]

⊇I [h(σ)U∗(υ, o), h(σ)U∗(υ, o)] + [h(1− σ)U∗(y, o), h(1− σ)U∗(y, o)],

that is

Ũ(υ + (1− σ)
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
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(y, υ)) ⊇F h(σ)� Ũ(υ)⊕ h(1− σ)� Ũ(y),∀ υ, y ∈ K, σ ∈ [0, 1].

Hence, Ũ is U·D h-pre-invex F-N·V·M on K.
Conversely, let Ũ be an U·D h-pre-invex F-N·V·M on K. Then, for all υ, y ∈ K and

σ ∈ [0, 1], we have Ũ(υ + (1− σ)

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 
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(y, υ)) ⊇F h(σ)� Ũ(υ)⊕ h(1− σ)� Ũ(y). Therefore,
from (13), we have

Uo(υ + (1− σ)
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(y, υ), o), U∗(υ + (1− σ)
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(y, υ), o)].

Again, from (30), (13), and (15), we obtain

h(σ)Uo(υ) + h(1− σ)Uo(υ)
= [h(σ)U∗(υ, o), h(σ)U∗(υ, o)] + [h(1− σ)U∗(y, o), h(1− σ)U∗(y, o)],

for all υ, y ∈ K and σ ∈ [0, 1]. Then by U·D h-pre-invexity of Ũ, we have for all υ, y ∈ K
and σ ∈ [0, 1] such that

U∗(υ + (1− σ)
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(y, υ), o) ≤ h(σ)U∗(υ, o) + h(1− σ)U∗(y, o),

and
U∗(υ + (1− σ)
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(y, υ), o) ≥ h(σ)U∗(υ, o) + h(1− σ)U∗(y, o),

for each o ∈ [0, 1]. Hence, the result follows. �

Example 1. We consider h(σ) = σ, for σ ∈ [2, 3] and the F-N·V·M Ũ : R+ →
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𝑎

= [∫ 𝔘∗(𝜐)𝑑𝜐

 
𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 
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∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 
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integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
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𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 
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𝒛

𝑎
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and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C defined by,

Ũ(υ)($) =


$−2+υ

1
2

1−υ
1
2

$ ∈
[
2− υ

1
2 , 3

]
4+υ

1
2−$

1+υ
1
2

$ ∈
(

3, 4 + υ
1
2

]
0 otherwise,

then, for each o ∈ [0, 1], we have Uo(υ) =
[
(1− o)

(
2− υ

1
2

)
+ 3o, (1− o)

(
4 + υ

1
2

)
+ 3o

]
.

Since U∗(υ, o), U∗(υ, o) are h-pre-invex functions
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ) = y− υ for each o ∈ [0, 1]. Hence
Ũ(υ) is U·D h-pre-invex F-N·V·M.

Now we have obtained some new definitions from the literature which will be helpful
to investigate some classical and new results as special cases of the main results.
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Definition 10. Let Ũ : [a, z]→
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(𝐼𝐴)∫ 𝔘(𝜐)𝑑𝜐
𝒛

𝑎

= [∫ 𝔘∗(𝜐)𝑑𝜐

 
𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 

𝔬 ∈ [0, 1] , as well as 𝔬 -levels define the family of I-V∙Ms 𝔘𝔬: 𝕀 ⊂ ℝ → 𝒳𝐶  satisfying that 

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for every 𝜐 ∈ 𝕀. Here, for every 𝔬 ∈ [0, 1], the endpoint real-valued 

mappings 𝔘∗(∙, 𝔬), 𝔘
∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 

𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 

Definition 5 ([33]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be F-N∙V∙M. The fuzzy Aumann integral ((𝐹𝐴)-

integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C be a F-N·V·M, whose o-levels define the family of I-V·Ms
Uo : [a, z]→ X+

C ⊂ XC are given by

Uo(υ) = [U∗(υ, o), U∗(υ, o)], (31)

for all υ ∈ [a, z] and for all o ∈ [0, 1]. Then,Ũ is lower U·D h-pre-invex (h-pre-incave) F-N·V·M
on [a, z], if, and only if, for all o ∈ [0, 1],

U∗(υ + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ), o) ≤ (≥)h(σ)U∗(υ, o) + h(1− σ)U∗(y, o), (32)

and
U∗(υ + (1− σ)
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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𝑎
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𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
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Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 
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convex and U∙D concave F-N∙V∙M.  

C be a F-N·V·M, whose o-levels define the family of I-V·Ms
Uo : [a, z]→ X+

C ⊂ XC are given by

Uo(υ) = [U∗(υ, o), U∗(υ, o)], (34)

for all υ ∈ [a, z] and for all o ∈ [0, 1]. Then, Ũ is upper U·D h-pre-invex (h-pre-incave) F-N·V·M
on [a, z], if, and only if, for all o ∈ [0, 1],

U∗(υ + (1− σ)
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 
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4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 
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(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ), o) ≤ (≥)h(σ)U∗(υ, o) + h(1− σ)U∗(y, o). (36)
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behave alike when Ũ is lower U·D h-pre-invex F-N·V·M.
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(y, υ) = y− υ, then we acquire classical and new results from Definitions
7–9, Remarks 1 and 2, and Theorem 5, see [16,25,27,30,41,42,44,45].

The up and down h-pre-invex fuzzy-number valued mappings version of a Hermite–
Hadamard type inequality can be represented as follows.

Theorem 6 . Let Ũ : [a, a +
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𝑎
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𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 
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𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  
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𝒛

𝑎
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𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎
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𝑧

𝑎
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𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 
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convex and U∙D concave F-N∙V∙M.  

C be an U·D h-pre-invex F-N·V·M with h : [0, 1]→ R+

and h
(

1
2

)
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2 𝘩 (
1
2)
⊙ 𝔘̃(

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

⊇𝔽 [𝔘̃(𝑎) ⊕ 𝔘̃(𝑧)] ⊙∫ 𝘩(𝜎) 𝑑𝜎
1

0

. (34) 

If 𝔘̃ is U∙D 𝘩-pre-incave F-N∙V∙M, then (37) is reversed such that 

1

2 𝘩 (
1
2)
⊙ 𝔘̃(

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊆𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

⊆𝔽 [𝔘̃(𝑎) ⊕ 𝔘̃(𝑧)] ⊙∫ 𝘩(𝜎) 𝑑𝜎
1

0

. (35) 

Proof. Let 𝔘̃: [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] → ₤𝐶  be an U∙D 𝘩-pre-invex F-N∙V∙M. Then, by hypothesis, 

we have 

1

𝘩 (
1
2)
⊙ 𝔘̃ (

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽 𝔘̃(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎)) ⊕ 𝔘̃(𝑎 + 𝜎ɷ(𝑧, 𝑎)). 

Therefore, for every 𝔬 ∈ [0, 1], we have 

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≤ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬) + 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬),

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≥ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬) + 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬).

  

Then 

1

𝘩 (
1
2)
∫ 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) 𝑑𝜎

1

0

≤ ∫ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

+∫ 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

,

1

𝘩 (
1
2)
∫ 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) 𝑑𝜎

1

0

≥ ∫ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

+∫ 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

.

  

It follows that 

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≤

2

ɷ(𝑧, 𝑎)
 ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

,

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≥

2

ɷ(𝑧, 𝑎)
 ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

.

  

That is 

1

𝘩 (
1
2)
[𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) , 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬)] ⊇𝐼

2

ɷ(𝑧, 𝑎)
[∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑎+ɷ(𝑧,𝑎)

𝑎

].  

Thus, 

1

2 𝘩 (
1
2)
⊙ 𝔘̃ (

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

. (36) 

In a similar way as above, we have 

0, whose o-levels define the family of I·V·Ms Uo : [a, a +
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+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)] ⊂ R→ KC
+ are

given by Uo(υ) = [U∗(υ, o), U∗(υ, o)] for all υ ∈ [a, a +
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(z, a)] and for all o ∈ [0, 1]. If
Ũ ∈ FR([a, a+
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𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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+ ⊂ 𝒳𝐶 are given by  
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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mapping. 
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tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 
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= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C be an U·D h-pre-invex F-N·V·M. Then, by hypothesis,
we have
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
2

)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)).
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1
h( 1

2 )
U∗

(
2a+

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
2 , o
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≤ U∗(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o),
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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[0, 1], 
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Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
Ũ(υ)dυ ⊇F

[
Ũ(a)⊕ Ũ(z)

]
�
∫ 1

0
h(σ)dσ. (40)

Combining (39) and (40), we have
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(
2a +

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
Ũ(υ)dυ ⊇F

[
Ũ(a)⊕ Ũ(z)

]
�
∫ 1

0
h(σ)dσ,

which complete the proof. �
Note that, inequality (14) is known as fuzzy HH inequality for U·D h-pre-invex F-

N·V·M.

Remark 4. If h(σ) = σs, then Theorem 7 reduces to the result for U·D U·D s-pre-invex F-N·V·M:
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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]
. (41)

If h(σ) = σ, then Theorem 6 reduces to the result for U·D pre-invex F-N·V·M, see [44]:
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
2

)
⊇F

1

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
Ũ(υ)dυ ⊇F Ũ(a)⊕ Ũ(z). (43)

If Ũ is lower U·D h-pre-invex F-N·V·M, then we can get the following coming inequality,
see [28]:
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
Ũ(υ)dυ ≤F

[
Ũ(a)⊕ Ũ(z)

]
�
∫ 1

0
h(σ)dσ (44)

If h(σ) = σs, then Theorem 6 reduces to the result for lower U·D s-pre-invex F-N·V·M,
see [28]:
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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If h(σ) = σ, then Theorem 6 reduces to the result for lower U·D pre-invex F-N·V·M, see [28]:
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(z, a)

a
U(υ)dυ ≤ [U(a) + U(z)]

∫ 1

0
h(σ)dσ.

(48)
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Example 2. We consider h(σ) = σ, for σ ∈ [0, 1], and the F-N·V·M
Ũ : [a, a +
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and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C defined by,

Ũ(υ)($) =


$−2+υ

1
2

1−υ
1
2

$ ∈
[
2− υ

1
2 , 3

]
2+υ

1
2−$

υ
1
2−1

$ ∈
(

3, 2 + υ
1
2

]
0 otherwise,

(49)
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Then, for each o ∈ [0, 1], we have Uo(υ) =
[
(1− o)

(
2− υ

1
2

)
+ 3o, (1 + o)

(
2 + υ

1
2

)
+ 3o

]
.

Since left and right end point mappings U∗(υ, o) = (1− o)
(

2− υ
1
2

)
+ 3o, and U∗(υ, o) =

(1 + o)
(

2 + υ
1
2

)
+ 3o, are pre-invex and pre-incave mappings with
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ) = y− υ for each

o ∈ [0, 1], respectively, then Ũ(υ) is U·D pre-invex F-N·V·M with
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ) = y− υ. We clearly
see that Ũ ∈ L([a, z],
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Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 
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C) and

1

2h
(

1
2

) U∗

(
2a +
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
2

, o
)
≤ 1

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

∫ a+

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
U∗(υ, o)dυ ≤ [U∗(a, o) + U∗(z, o)]

∫ 1

0
h(σ)dσ.

1

2h
(

1
2

) U∗

(
2a +

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
U∗(υ, o)dυ =

1
2

∫ 2

0
(4− 2o)υ2dυ =

179
50

(1− o) + 3o,

[U∗(a, o) + U∗(z, o)]
∫ 1

0
h(σ)dσ = (1− o)

(
4 +
√

2 +
√

3
2

)
+ 3o.

that is

[
(1− o) 4−

√
10

2 + 3o, (1− o) 4+
√

10
2 + 3o

]
⊇ I

[
843

2000 (1− o) + 3o, 179
50 (1− o) + 3o

]
⊇ I

[
(1− o)

(
4−
√

2−
√

3
2

)
+ 3o, (1− o)

(
4+
√

2+
√

3
2

)
+ 3o

]
for all o ∈ [0, 1].
Hence,

1

2h
(

1
2

) � Ũ

(
2a +
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
2

)
⊇F

1
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
� (FR)
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
Ũ(υ)dυ ⊇F

[
Ũ(a)⊕ Ũ(z)

]
�
∫ 1

0
h(σ)dσ,

and the Theorem 6 is verified.
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The product of two up and down h-pre-invex fuzzy-number valued mapping versions
of a Hermite–Hadamard type inequality can be represented as follows.

Theorem 7. Let Ũ, J̃ : [a, a+
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for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 
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𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)]→
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(𝐼𝐴)∫ 𝔘(𝜐)𝑑𝜐
𝒛

𝑎

= [∫ 𝔘∗(𝜐)𝑑𝜐

 
𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 

𝔬 ∈ [0, 1] , as well as 𝔬 -levels define the family of I-V∙Ms 𝔘𝔬: 𝕀 ⊂ ℝ → 𝒳𝐶  satisfying that 

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for every 𝜐 ∈ 𝕀. Here, for every 𝔬 ∈ [0, 1], the endpoint real-valued 

mappings 𝔘∗(∙, 𝔬), 𝔘
∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 

𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 

Definition 5 ([33]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be F-N∙V∙M. The fuzzy Aumann integral ((𝐹𝐴)-

integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C be two U·D h1 and h2-pre-invex F-N·V·Ms with
h1, h2 : [0, 1]→ R+ and h1

(
1
2

)
h2

(
1
2

)
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Theorem 6. Let 𝔘̃: [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] → ₤𝐶 be an U∙D 𝘩-pre-invex F-N∙V∙M with 𝘩: [0, 1] → ℝ+ 

and 𝘩 (
1

2
) ≢ 0, whose 𝔬-levels define the family of I∙V∙Ms 𝔘𝔬: [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] ⊂ ℝ → 𝒦𝐶

+ are 

given by 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for all 𝜐 ∈ [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] and for all 𝔬 ∈ [0, 1]. If 𝔘̃ ∈

ℱℛ([𝑎,𝑎+ɷ(𝑧,𝑎)],𝔬), then 

1

2 𝘩 (
1
2)
⊙ 𝔘̃(

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

⊇𝔽 [𝔘̃(𝑎) ⊕ 𝔘̃(𝑧)] ⊙∫ 𝘩(𝜎) 𝑑𝜎
1

0

. (34) 

If 𝔘̃ is U∙D 𝘩-pre-incave F-N∙V∙M, then (37) is reversed such that 

1

2 𝘩 (
1
2)
⊙ 𝔘̃(

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊆𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

⊆𝔽 [𝔘̃(𝑎) ⊕ 𝔘̃(𝑧)] ⊙∫ 𝘩(𝜎) 𝑑𝜎
1

0

. (35) 

Proof. Let 𝔘̃: [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] → ₤𝐶  be an U∙D 𝘩-pre-invex F-N∙V∙M. Then, by hypothesis, 

we have 

1

𝘩 (
1
2)
⊙ 𝔘̃ (

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽 𝔘̃(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎)) ⊕ 𝔘̃(𝑎 + 𝜎ɷ(𝑧, 𝑎)). 

Therefore, for every 𝔬 ∈ [0, 1], we have 

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≤ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬) + 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬),

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≥ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬) + 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬).

  

Then 

1

𝘩 (
1
2)
∫ 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) 𝑑𝜎

1

0

≤ ∫ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

+∫ 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

,

1

𝘩 (
1
2)
∫ 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) 𝑑𝜎

1

0

≥ ∫ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

+∫ 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

.

  

It follows that 

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≤

2

ɷ(𝑧, 𝑎)
 ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

,

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≥

2

ɷ(𝑧, 𝑎)
 ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

.

  

That is 

1

𝘩 (
1
2)
[𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) , 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬)] ⊇𝐼

2

ɷ(𝑧, 𝑎)
[∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑎+ɷ(𝑧,𝑎)

𝑎

].  

Thus, 

1

2 𝘩 (
1
2)
⊙ 𝔘̃ (

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

. (36) 

In a similar way as above, we have 

0, whose o-levels define the family of I·V·Ms

Uo, Jo : [a, a+
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)] ⊂ R→KC
+ are given by Uo(υ) = [U∗(υ,o), U∗(υ,o)] and

Jo(υ) = [J∗(υ,o), J ∗(υ,o)] for all υ ∈ [a, a+
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)] and for all o ∈ [0, 1]. If Ũ⊗ J̃ ∈
FR([a, a+
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
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The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 
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4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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pre-invex F-N∙V∙M. 
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(z, a)], o), then

1
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
a Ũ(υ)⊗ J̃ (υ)dυ

⊇F M̃(a, z)�
∫ 1

0 h1(σ)h2(σ)dσ⊕ Ñ (a, z)�
∫ 1

0 h1(σ)h2(1− σ)dσ,
(50)

where M̃(a, z) = Ũ(a)⊗ J̃ (a)⊕ Ũ(z)⊗ J̃ (z), Ñ (a, z) = Ũ(a)⊗ J̃ (z)⊕ Ũ(z)⊗ J̃ (a) with
Mo(a, z) = [M∗((a, z), o), M∗((a, z), o)] and No(a, z) = [N∗((a, z), o), N ∗((a, z), o)].

Example 3. We consider h1(σ) = σ = h2(σ), for σ ∈ [0, 1], and the F-N·V·Ms
Ũ, J̃ : [a, a +
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)] = [0,
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 
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F-N∙V∙M, 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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that is 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(2, 0)]→
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(𝐼𝐴)∫ 𝔘(𝜐)𝑑𝜐
𝒛

𝑎

= [∫ 𝔘∗(𝜐)𝑑𝜐

 
𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 

𝔬 ∈ [0, 1] , as well as 𝔬 -levels define the family of I-V∙Ms 𝔘𝔬: 𝕀 ⊂ ℝ → 𝒳𝐶  satisfying that 

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for every 𝜐 ∈ 𝕀. Here, for every 𝔬 ∈ [0, 1], the endpoint real-valued 

mappings 𝔘∗(∙, 𝔬), 𝔘
∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 

𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 

Definition 5 ([33]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be F-N∙V∙M. The fuzzy Aumann integral ((𝐹𝐴)-

integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C defined by,

Ũ(υ)($) =


$
υ $ ∈ [0, υ]

2υ−$
υ $ ∈ (υ, 2υ]
0 otherwise,

(51)

J̃ (υ)($) =


$−υ
2−υ $ ∈ [υ, 2]

8−eυ−$
8−eυ−2 $ ∈ (2, 8− eυ]

0 otherwise.
(52)

Then, for each o ∈ [0, 1], we have Uo(υ) = [oυ, (2− o)υ] and Jo(υ)
= [(1− o)υ + 2o, (1− o)(8− eυ) + 2o]. Since U∗(υ, o) = oυ and U∗(υ, o) = 2 − o)υ both
are h1-pre-invex functions, and J∗(υ, o) = (1− o)υ + 2o, and J ∗(υ, o) = (1− o)(8− eυ) + 2o
both are also h2-pre-invex functions with respect to same
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 
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∫ 2
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o(1− o)υ2 + 2o2υ

)
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3 o(2 + o),
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
a U∗(υ, o)×J ∗(υ, o)dυ = 1

2

∫ 2
0 ((1− o)(2− o)υ(8− eυ) + 2o(2− o)υ)dυ ≈ (2−o)

2

(
1903
250 −

903
250o

)
,

M∗((a, z), o)
∫ 1

0 h1(σ)h2(σ)dσ = 4o
3 ,

M∗((a, z), o)
∫ 1

0 h1(σ)h2(σ)dσ =
2(2−o)[(1−o)(8−e2)+2o]

3 ,

N∗((a, z), o)
∫ 1

0 h1(σ)h2(1− σ)dσ = 2o2

3
N ∗((a, z), o)

∫ 1
0 h1(σ)h2(1− σ)dσ = (2−o)(7−5o)

3 ,

for each o ∈ [0, 1], that means

[
2
3
o(1 + 2o),

(2− o)

2

(
1903
250
− 903

250
o

)]
⊇I

1
3

[
2o(2 + o), (2− o)

[
2(1− o)

(
8− e2

)
− o+ 7

]]
Hence, Theorem 7 is verified.

Theorem 8. Let Ũ, J̃ : [a, a +
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)]→
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(𝐼𝐴)∫ 𝔘(𝜐)𝑑𝜐
𝒛

𝑎

= [∫ 𝔘∗(𝜐)𝑑𝜐

 
𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 

𝔬 ∈ [0, 1] , as well as 𝔬 -levels define the family of I-V∙Ms 𝔘𝔬: 𝕀 ⊂ ℝ → 𝒳𝐶  satisfying that 

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for every 𝜐 ∈ 𝕀. Here, for every 𝔬 ∈ [0, 1], the endpoint real-valued 

mappings 𝔘∗(∙, 𝔬), 𝔘
∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 

𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 

Definition 5 ([33]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be F-N∙V∙M. The fuzzy Aumann integral ((𝐹𝐴)-

integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C be two U·D h1- and h2-pre-invex F-N·V·Ms
with h1, h2 : [0, 1]→ R+ and h1

(
1
2

)
h2

(
1
2

)
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Theorem 6. Let 𝔘̃: [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] → ₤𝐶 be an U∙D 𝘩-pre-invex F-N∙V∙M with 𝘩: [0, 1] → ℝ+ 

and 𝘩 (
1

2
) ≢ 0, whose 𝔬-levels define the family of I∙V∙Ms 𝔘𝔬: [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] ⊂ ℝ → 𝒦𝐶

+ are 

given by 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for all 𝜐 ∈ [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] and for all 𝔬 ∈ [0, 1]. If 𝔘̃ ∈

ℱℛ([𝑎,𝑎+ɷ(𝑧,𝑎)],𝔬), then 

1

2 𝘩 (
1
2)
⊙ 𝔘̃(

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

⊇𝔽 [𝔘̃(𝑎) ⊕ 𝔘̃(𝑧)] ⊙∫ 𝘩(𝜎) 𝑑𝜎
1

0

. (34) 

If 𝔘̃ is U∙D 𝘩-pre-incave F-N∙V∙M, then (37) is reversed such that 

1

2 𝘩 (
1
2)
⊙ 𝔘̃(

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊆𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

⊆𝔽 [𝔘̃(𝑎) ⊕ 𝔘̃(𝑧)] ⊙∫ 𝘩(𝜎) 𝑑𝜎
1

0

. (35) 

Proof. Let 𝔘̃: [𝑎, 𝑎 + ɷ(𝑧, 𝑎)] → ₤𝐶  be an U∙D 𝘩-pre-invex F-N∙V∙M. Then, by hypothesis, 

we have 

1

𝘩 (
1
2)
⊙ 𝔘̃ (

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽 𝔘̃(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎)) ⊕ 𝔘̃(𝑎 + 𝜎ɷ(𝑧, 𝑎)). 

Therefore, for every 𝔬 ∈ [0, 1], we have 

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≤ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬) + 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬),

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≥ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬) + 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬).

  

Then 

1

𝘩 (
1
2)
∫ 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) 𝑑𝜎

1

0

≤ ∫ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

+∫ 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

,

1

𝘩 (
1
2)
∫ 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) 𝑑𝜎

1

0

≥ ∫ 𝔘∗(𝑎 + (1 − 𝜎)ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

+∫ 𝔘∗(𝑎 + 𝜎ɷ(𝑧, 𝑎), 𝔬)𝑑𝜎
1

0

.

  

It follows that 

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≤

2

ɷ(𝑧, 𝑎)
 ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

,

1

𝘩 (
1
2)
𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) ≥

2

ɷ(𝑧, 𝑎)
 ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

.

  

That is 

1

𝘩 (
1
2)
[𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬) , 𝔘∗ (

2𝑎 + ɷ(𝑧, 𝑎)

2
, 𝔬)] ⊇𝐼

2

ɷ(𝑧, 𝑎)
[∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑎+ɷ(𝑧,𝑎)

𝑎

].  

Thus, 

1

2 𝘩 (
1
2)
⊙ 𝔘̃ (

2𝑎 + ɷ(𝑧, 𝑎)

2
) ⊇𝔽

1

ɷ(𝑧, 𝑎)
⊙ (𝐹𝑅)∫ 𝔘̃(𝜐)𝑑𝜐

𝑎+ɷ(𝑧,𝑎)

𝑎

. (36) 

In a similar way as above, we have 

0, respectively, whose o-levels define the family of

I·V·Ms Uo, Jo : [a, a +
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(z, a)] ⊂ R→ KC
+ are given by Uo(υ) = [U∗(υ, o), U∗(υ, o)] and
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Jo(υ) = [J∗(υ, o), J ∗(υ, o)] for all υ ∈ [a, a +
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(z, a)] and for all o ∈ [0, 1]. If Ũ, J̃ and
Ũ⊗ J̃ ∈ FR([a, a+
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(z, a)], o) and condition C hold for
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
a Ũ(υ)⊗ J̃ (υ)dυ

⊕M̃(a, z)�
∫ 1

0 h1(σ)h2(1− σ)dσ⊕ Ñ (a, z)�
∫ 1

0 h1(σ)h2(σ)dσ,
(53)

where M̃(a, z) = Ũ(a)⊗ J̃ (a)⊕ Ũ(z)⊗ J̃ (z), Ñ (a, z) = Ũ(a)⊗ J̃ (z)⊕ Ũ(z)⊗ J̃ (a), and
Mo(a, z) = [M∗((a, z), o), M∗((a, z), o)] and No(a, z) = [M∗((a, z), o), N ∗((a, z), o)]

Proof. Using condition C, we can write

a +
1
2
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a) = a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a) +
1
2
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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(z, a)).

By hypothesis, for each o ∈ [0, 1], we have

U∗

(
2a+

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
2 , o

)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
2 , o

)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a) + 1
2
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), a + σ

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)), o
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a) + 1
2
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a) + 1
2
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 
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Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 
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Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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U∙D 𝘩-pre-invex mappings with fuzzy number values. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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mapping. 
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tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  
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ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o)×J ∗(a + σ

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o)

]

+h1

(
1
2

)
h2

(
1
2

)
(h1(σ)U

∗(a, o) + h1(1− σ)U∗(z, o))
×(h2(1− σ)J ∗(a, o) + h2(σ)J ∗(z, o))
+(h1(1− σ)U∗(a, o) + h1(σ)U

∗(z, o))
×(h2(σ)J ∗(a, o) + h2(1− σ)J ∗(z, o))

,



Axioms 2023, 12, 1 15 of 22

= h1

(
1
2

)
h2

(
1
2

)[U∗(a + (1− σ)

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z,a)
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)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z,a)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z,a)
a U∗(v, o)×J∗(v, o)dv

+M∗((a, z), o)
∫ 1

0 h1(σ)h2(1− σ)dσ +N∗((a, z), o)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z,a)
2 , o

)
≥ 1
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z,a)

∫ a+
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z,a)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 
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ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
Ũ(υ)⊗ J̃ (υ)dυ

⊕ M̃(a, z)�
∫ 1

0
h1(σ)h2(1− σ)dσ⊕ Ñ (a, z)�

∫ 1

0
h1(σ)h2(σ)dσ,

this completes the result. �

Example 4. We consider h1(σ) = σ, h2(σ) = σ, for σ ∈ [0, 1], and the F-N·V·Ms
Ũ, J̃ : [a, a +
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 
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]

 
𝔬
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𝒛

𝑎
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𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  
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called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  
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convex and U∙D concave F-N∙V∙M.  

C defined by, for each o ∈ [0, 1], we have
Uo(υ) = [oυ, (2− o)υ] and Jo(υ) = [(1− o)υ + 2o, (1− o)(8− eυ) + 2o], as in Example 3,
and Ũ(υ), J̃ (υ) both are U·D h1- and h2-pre-invex F-N·V·Ms with respect to
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(z, a) = z − a, respectively. Since U∗(υ, o) = oυ,U∗(υ, o) = (2− o)υ and J∗(υ, o)
= (1− o)υ + 2o, J ∗(υ, o) = (1− o)(8− eυ) + 2o then, we have

1
2h1( 1

2 )h2( 1
2 )
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N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 
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In this section, we discuss our key findings. We begin by introducing the category of 
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If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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that is 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
2 , o

)
= 2

[
16− 20o+ 6o2 +

(
2− 3o+ o2)e],



Axioms 2023, 12, 1 16 of 22

1

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-
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𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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(z, a)
a U∗(υ, o)×J ∗(υ, o)dυ = 1

2

∫ 2
0 ((1− o)(2− o)υ(8− eυ) + 2o(2− o)υ)dυ ≈ (2−o)

2

(
1903
250 −

903
250o

)
,

M∗((a, z), o)
∫ 1

0 h1(σ)h2(1− σ)dσ = 2o
3 ,

M∗((a, z), o)
∫ 1

0 h1(σ)h2(1− σ)dσ =
(2−o)[(1−o)(8−e2)+2o]

3 ,

N∗((a, z), o)
∫ 1

0 h1(σ)h2(σ)dσ = 4o2

3 ,
N ∗((a, z), o)

∫ 1
0 h1(σ)h2(σ)dσ = 2(2−o)(7−5o)

3 ,

for each o ∈ [0, 1],that means

2
[
o(1 + o),

[
16− 20o+ 6o2 +

(
2− 3o+ o2)e]] ⊇I

[
2
3o(2 + o), (2−o)2

(
1903
250 −

903
250o

)]
+ 1

3
[
2o(1 + 2o), (2− o)

[
(1− o)

(
8− e2)− 8o+ 14

]]
hence, Theorem 8 is demonstrated.

The HH Fejér inequalities for U·D h-pre-invex FNVMs are now provided. The second
HH Fejér inequality is first found for both U·D h-pre-invex FNVM.

Theorem 9. Let Ũ : [a, a +
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for every 𝜐 ∈ 𝕀. Here, for every 𝔬 ∈ [0, 1], the endpoint real-valued 

mappings 𝔘∗(∙, 𝔬), 𝔘
∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 

𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 
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integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C be an U·D h-pre-invex F-N·V·M with
a < a +
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a) and h : [0, 1]→ R+ , whose o-levels define the family of I·V·Ms
Uo : [a, a +
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)] ⊂ R→ KC
+ are given by Uo(υ) = [U∗(υ, o), U∗(υ, o)] for all

υ ∈ [a, a +
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 
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ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 
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Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))
≤ (h(σ)U∗(a, o) + h(1− σ)U∗(z, o))C(a + (1− σ)

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))
U∗(a + (1− σ)

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), v)C(a + (1− σ)

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))
≥ (h(σ)U∗(a, o) + h(1− σ)U∗(z, o))C(a + (1− σ)

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)) ≤ (h(1− σ)U∗(a, o) + h(σ)U∗(z, o))C(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o)C(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)) ≥ (h(1− σ)U∗(a, o) + h(σ)U∗(z, o))C(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)).
(56)
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After adding (55) and (56), and integrating over [0, 1], we get∫ 1
0 U∗(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 
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If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))}
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 
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ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 
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Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
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ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 
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F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))dσ + 2U∗(z, o)
∫ 1

0 h(σ)C(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))dσ,
= 2U∗(a, o)

∫ 1
0 h(σ)C(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))dσ + 2U∗(z, o)
∫ 1

0 h(σ)C(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))dσ.

Since C is symmetric, then

= 2[U∗(a, o) + U∗(z, o)]
∫ 1

0 h(σ)C(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 
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ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

∫ a+σ
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
a U∗(v, o)C(v)dv,

(58)

From (54) and (55), we have

1
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

∫ a+
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N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
a U∗(υ, o)C(υ)dυ ≤ [U∗(a, o) + U∗(z, o)]

∫ 1
0 h(σ)C(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-
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ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 
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Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))dσ,
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a U∗(υ, o)C(υ)dυ ≥ [U∗(a, o) + U∗(z, o)]
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))dσ.

this completes the proof. �

Next, we construct the first HH Fejér inequality for the U·D h-pre-invex F-N·V·M,
which generalizes the first HH Fejér inequality for the U·D h-pre-invex function, see [4].
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)]→
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𝒛

𝑎

, ∫ 𝔘∗(𝜐)𝑑𝜐
𝒛

𝑎

] (17) 

Definition 3 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶  is called fuzzy-number valued mapping. Then, for every 

𝔬 ∈ [0, 1] , as well as 𝔬 -levels define the family of I-V∙Ms 𝔘𝔬: 𝕀 ⊂ ℝ → 𝒳𝐶  satisfying that 

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)] for every 𝜐 ∈ 𝕀. Here, for every 𝔬 ∈ [0, 1], the endpoint real-valued 

mappings 𝔘∗(∙, 𝔬), 𝔘
∗(∙, 𝔬): 𝕀 → ℝ are called lower and upper mappings of 𝔘𝔬. 

Definition 4 ([39]). Let 𝔘̃: 𝕀 ⊂ ℝ → ₤𝐶 be a F-N∙V∙M. Then 𝔘̃(𝜐) is said to be continuous at 

𝜐 ∈ 𝕀, if for every 𝔬 ∈ [0, 1], 𝔘𝔬(𝜐) is continuous when and only when, both endpoint mappings 

𝔘∗(𝜐, 𝔬), and 𝔘∗(𝜐, 𝔬) are continuous at 𝜐 ∈ 𝕀. 

Definition 5 ([33]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be F-N∙V∙M. The fuzzy Aumann integral ((𝐹𝐴)-

integral) of 𝔘 over [𝑎, 𝒛], denoted by (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
, is defined level-wise by 

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝑧

𝑎

= {∫ 𝔘(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

: 𝔘(𝜐, 𝔬) ∈ 𝑆(𝔘𝔬)}, (18) 

where 𝑆(𝔘𝔬) = {𝔘(. , 𝔬) → ℝ:𝔘(. , 𝔬) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝔘(𝜐, 𝔬) ∈ 𝔘𝔬(𝜐)}, for every 𝔬 ∈ [0, 1]. 

𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ≤𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (21) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 

called U∙D concave F-N∙V∙M on [𝑎, 𝒛]. 𝔘̃ is U∙D affine F-N∙V∙M if and only if it is both U∙D 

convex and U∙D concave F-N∙V∙M.  

C be an U·D h-pre-invex F-N·V·M with a < a +
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a) and h : [0, 1]→ R+ , whose o-levels define the family of I·V·Ms
Uo : [a, a +
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 
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applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 
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+ are given by Uo(υ) = [U∗(υ, o), U∗(υ, o)] for all

υ ∈ [a, a +
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C : [a, a +
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(z, a)]→ R, C(υ) ≥ 0, symmetric with respect to a + 1
2
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(z, a)
a C(υ)dυ

� (FR)
∫ a+

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)

a
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U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)).

Since Ũ is an U·D h-pre-invex, then for o ∈ [0, 1], we have

U∗
(

a + 1
2
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o
)
= U∗

(
a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o)),
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)), o
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o) + U∗(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o)),

(60)

By multiplying (57) by C(a + (1− σ)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)) = C(a + σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)) and integrate it by σ
over [0, 1], we obtain

U∗
(

a + 1
2 σ
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o)C(a + σ

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 
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Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 
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pre-invex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a), o)C(a + σ

Axioms 2022, 11, x FOR PEER REVIEW 6 of 23 
 

Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
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𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 
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ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 
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Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 
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pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a))dσ,
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𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z, a)
a U∗(v, o)C(v)dv,

(62)

From (58) and (59), we have

U∗
(

a + 1
2
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 
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pre-invex F-N∙V∙M. 
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that is 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z,a)
a C(υ)dυ
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∗(𝜐, 𝔬)],  (24) 
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[0, 1], 
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ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 
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4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(z,a)
a U∗(v, o)C(υ)dυ
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applications of Condition C, see [6,27–29,41,44,45]. 
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In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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mapping. 
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applications of Condition C, see [6,27–29,41,44,45]. 
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(z, a)
a C(υ)dυ
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(z, a)

a
Ũ(υ)� C(υ)dυ,

Then we complete the proof. �

Remark 5. If h(σ) = σ then inequalities in Theorems 9 and 10 reduces for U·D pre-invex
F-N·V·Ms, see [44].

If h(σ) = σ and
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(y, υ) = y− υ, then inequalities in Theorems 9 and 10 reduce for U·D
convex F-N·V·Ms, see [44].

If Ũ is lower U·D h-pre-invex F-N·V·M, then inequalities in Theorems 9 and 10 reduce for
h-pre-invex F-N·V·Ms, see [28].

If h(σ) = σ and Ũ is lower U·D h-pre-invex F-N·V·M, then inequalities in Theorems 9 and
10 reduce for pre-invex F-N·V·Ms, see [28].

If U∗(υ, o) = U∗(υ, o) with o = 1, then Theorems 9 and 10 reduce to classical first and
second HH Fejér inequality for h-pre-invex function, see [41].

If U∗(υ, o) = U∗(υ, o) with o = 1 and
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Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 
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𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ) = y− υ, then Theorems 9 and 10 reduce to
classical first and second HH Fejér inequality for h-convex function, see [9].

Example 5. We consider h(σ) = σ, for σ ∈ [0, 1] and the F-N·V·M Ũ : [0, ∂(2, 0)]→
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] (17) 
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𝑎
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𝔘 is (𝐹𝐴)-integrable over [𝑎, 𝑧] if (𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎
∈ ₤𝐶 .  

Theorem 3 ([34]). Let 𝔘̃: [𝑎, 𝑧] ⊂ ℝ → ₤𝐶 be a F-N∙V∙M as well as 𝔬-levels define the family of 

I-V∙Ms 𝔘𝔬: [𝑎, 𝑧] ⊂ ℝ → 𝒳𝐶  satisfying that 𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)]  for every 𝜐 ∈ [𝑎, 𝒛] 

and for every 𝔬 ∈ [0, 1]. Then 𝔘̃ is (𝐹𝐴)-integrable over [𝑎, 𝑧] when, and only when, 𝔘∗(𝜐, 𝔬) 

and 𝔘∗(𝜐, 𝔬)  both are integrable over [𝑎, 𝒛] . Moreover, if 𝔘  is (𝐹𝐴)-integrable over [𝑎, 𝒛], 

then  

[(𝐹𝐴)∫ 𝔘̃(𝜐)𝑑𝜐
𝒛

𝑎

]

 
𝔬

= [∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝒛

𝑎

, ∫ 𝔘∗(𝜐, 𝔬)𝑑𝜐
𝑧

𝑎

] = (𝐼𝐴)∫ 𝔘𝔬(𝜐)𝑑𝜐
𝒛

𝑎

 (19) 

for every 𝔬 ∈ [0, 1]. 

Breckner discussed the emerging idea of interval-valued convexity in [35]. 

An interval valued mapping 𝔘: 𝕀 = [𝑎, 𝑧] → 𝒳𝐶 is called convex inteval valued map-

ping if  

𝔘(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇ 𝜎𝔘(𝜐) + (1 − 𝜎)𝔘(𝘴), (20) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝒳𝐶 is the collection of all real valued intervals. If (20) 

is reversed, then 𝔘 is called concave. 

Definition 6 ([31]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called convex F-N∙V∙M on [𝑎, 𝑧] if  
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for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (21) is reversed then, 𝔘̃ is 

called concave F-N∙V∙M on [𝑎, 𝑧]. 𝔘̃ is affine if and only if it is both convex and concave F-

N∙V∙M. 

Definition 7 ([40]). The F-N∙V∙M 𝔘̃: [𝑎, 𝑧] → ₤𝐶 is called U∙D convex F-N∙V∙M on [𝑎, 𝑧] if  

𝔘̃(𝜎𝜐 + (1 − 𝜎)𝘴) ⊇𝔽 𝜎 ⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝘴), (22) 

for all 𝜐, 𝘴 ∈ [𝑎, 𝑧], 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃ for all 𝜐 ∈ [𝑎, 𝑧]. If (22) is reversed then, 𝔘̃ is 
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C
defined by,

Ũ(υ)($) =



$−2+υ
1
2

3
2−2−υ

1
2

$ ∈
[
2− υ

1
2 , 3

2

]
2+υ

1
2−$

2+υ
1
2− 3

2

$ ∈
(

3
2 , 2 + υ

1
2

]
0 otherwise,

(63)

Then, for eacho ∈ [0, 1],we haveUo(υ) =
[
(1− o)

(
2− υ

1
2

)
+ 3

2o, (1 + o)
(

2 + υ
1
2

)
+ 3

2o
]
.

SinceU∗(υ, o)andU∗(υ, o)areh-pre-invex functions
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mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 
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(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 

(y, υ) = y− υfor eacho ∈ [0, 1], thenŨ(υ)ish-
pre-invex F-N·V·M. If

C(υ) =
{ √

υ, σ ∈ [0, 1],√
2− υ, σ ∈ (1, 2],

(64)

then, we have
1
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(2,0)

∫
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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From (62) and (63), we have[
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for eacho ∈ [0, 1].Hence, Theorem 9 is verified.

For Theorem 10, we have
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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)
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-
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𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-

tion ɷ:𝐾 × 𝐾 → ℝ which is known as:  

Condition C. See [6]. Let 𝐾 be an invex set with respect to ɷ. For any 𝑎, 𝑧 ∈ 𝐾 and 𝜎 ∈
[0, 1], 

ɷ(𝑧, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = (1 − 𝜎)ɷ(𝑧, 𝑎), 

ɷ(𝑎, 𝑎 + 𝜎ɷ(𝑧, 𝑎)) = −𝜎ɷ(𝑧, 𝑎). 

Clearly, for 𝜎 = 0, we have ɷ(𝑧, 𝑎) = 0 if, and only if, 𝑧 = 𝑎, for all 𝑎, 𝑧 ∈ 𝐾. For the 

applications of Condition C, see [6,27–29,41,44,45]. 

4. Up and Down Fuzzy-Number Valued Mappings and Related Fuzzy Integral Ine-

qualities 

In this section, we discuss our key findings. We begin by introducing the category of 

U∙D 𝘩-pre-invex mappings with fuzzy number values. 

Definition 3. Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-N∙V∙M 

𝔘̃: 𝐾 → ₤𝐶 is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝘩(𝜎)⊙ 𝔘̃(𝜐) ⊕ 𝘩(1 − 𝜎)⊙ 𝔘̃(𝑦),  (25) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (25) is reversed. 

Remark 2. The U∙D 𝘩-pre-invex F-N∙V∙Ms have some very nice properties similar to pre-invex 

F-N∙V∙M, 

(1) if 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M, then 𝛶𝔘̃ is also U∙D 𝘩-pre-invex for 𝛶 ≥ 0. 

(2) if 𝔘̃ and 𝒥̃ both are U∙D 𝘩-pre-invex F-N∙V∙Ms, then 𝑚𝑎𝑥(𝔘̃(𝜐), 𝒥̃(𝜐)) is also U∙D 𝘩-

pre-invex F-N∙V∙M. 

Now we discuss some new special cases of U∙D 𝘩-pre-invex F-N∙V∙Ms: 

If 𝘩(𝜎) = 𝜎𝑠, then U∙D 𝘩-pre-invex F-N∙V∙M becomes U∙D 𝑠-pre-invex F-N∙V∙M, 

that is 

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎
𝑠⊙ 𝔘̃(𝜐) ⊕ (1 − 𝜎)𝑠⊙ 𝔘̃(𝑦), ∀ 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1]. (26) 

If ɷ(𝑦, 𝜐) = 𝑦 − 𝜐, then 𝔘̃ is called U∙D 𝑠-convex F-N∙V∙M. 
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Definition 3 ([44]). Let 𝐾  be an invex set and 𝘩: [0, 1] → ℝ such that 𝘩(𝜐) > 0. Then F-

N∙V∙M 𝔘̃: 𝐾 → ₤𝐶  is said to be U∙D 𝘩-pre-invex on 𝐾 with respect to ɷ if  

𝔘̃(𝜐 + (1 − 𝜎)ɷ(𝑦, 𝜐)) ⊇𝔽 𝜎⊙𝔘̃(𝜐) ⊕ (1 − 𝜎)⊙ 𝔘̃(𝑦),  (23) 

for all 𝜐, 𝑦 ∈ 𝐾, 𝜎 ∈ [0, 1], where 𝔘̃(𝜐) ≥𝔽 0̃, ɷ:𝐾 × 𝐾 → ℝ. The mapping 𝔘̃ is said to be U∙D 

𝘩-pre-incave on 𝐾 with respect to ɷ if inequality (23) is reversed. 

Theorem 4 ([44]). Let 𝔘̃: [𝑎, 𝑧] → ₤𝐶 be an F-N∙V∙M, whose 𝔬-levels define the family of I-V∙Ms 

𝔘𝔬: [𝑎, 𝑧] → 𝒳𝐶
+ ⊂ 𝒳𝐶 are given by  

𝔘𝔬(𝜐) = [𝔘∗(𝜐, 𝔬), 𝔘
∗(𝜐, 𝔬)],  (24) 

for all 𝜐 ∈ [𝑎, 𝑧] and for all 𝔬 ∈ [0, 1]. Then, 𝔘̃ is U∙D 𝘩-pre-invex F-N∙V∙M on [𝑎, 𝑧], if and 

only if, for all 𝔬 ∈ [0, 1], 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-invex mapping and 𝔘∗(𝜐, 𝔬) is a 𝘩-pre-incave 

mapping. 

The following assumption is required to prove the next result regarding the bi-func-
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Hence, Theorem 10 is verified.

5. Conclusions

The Hermite and Hadamard’s Fejér-type containments have been examined in the
most recent study in relation to fuzzy analysis. We define the new class of nonconvex
mappings which are known as U·D h-pre-invex fuzzy-number valued mappings, and this
is illustrated by an example, in order to examine our results. We first established some
generalized Hermite–Hadamard–Fejér-type fuzzy inclusions in one dimension involving
U·D h-pre-invex fuzzy-number valued mappings, after obtaining fuzzy integral inclusions
in association with U·D h-pre-invex fuzzy-number valued mappings, and their numerical
verifications. Convexity and fuzzy-number analysis theory have several uses in both
optimization and error analysis. We hope that the style of this paper will pique readers’
curiosity and encourage more research in the related field.
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