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Abstract: The mean is a subject of extensive study among scholars, and the pursuit of optimal
power mean bounds is a highly active field. This article begins with a concise overview of recent
advancements in this area, focusing specifically on Seiffert-like means. We establish sharp power
mean bounds for two Seiffert-like means, including the introduction and establishment of the best
asymmetric mean bounds for symmetric means. Additionally, we explore the practical applications of
these findings by extending several intriguing chains of inequalities that involve more than ten means.
This comprehensive analysis provides a deeper understanding of the relationships and properties of
these means.
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1. Introduction

In the realm of mathematical inequalities, the concept of mean, in its various mani-
festations, holds a distinguished place. Mean, whether it be arithmetic, geometric, or one
of its many counterparts, has been a steadfast companion to mathematicians throughout
history. Its roots extend back to the earliest mathematical writings, where thinkers grappled
with the notions of balance and fairness. From ancient civilizations to the luminaries of
the Enlightenment, the concept of mean has played a pivotal role in shaping the discourse
of mathematics.

As we embark on the journey of sharing our findings and insights, we do so with
a profound reverence for the rich mathematical heritage and literature that have guided
us to this juncture. Our objective is to weave a new thread into the intricate tapestry of
inequalities, one that pays homage to the historical significance of mean while pushing the
boundaries of mathematical knowledge.

The symmetrical beauty inherent in mathematical inequalities resonates with the
aesthetics of a finely crafted masterpiece. It is as though mean serves as a mathematical
brushstroke, imbuing the canvas of equations and proofs with an artistic touch.

In our pursuit, we are akin to intrepid explorers navigating uncharted territory, and we
celebrate mean as our guiding compass through the labyrinth of mathematical inequalities.
We acknowledge its role not only as a scientific cornerstone but also as an artistic element
that enriches our mathematical journey.

Throughout the paper, we consider the condition that a, b > 0 with a 6= b. For r ∈ R,
the power mean of order r of the positive real numbers a and b is defined by

Ar ≡ Ar(a, b) =
(

ar + br

2

)1/r
if r 6= 0 and A0 ≡ A0(a, b) =

√
ab, (1)
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which has the following properties:
(i) The function r 7→ Ar(a, b) is continuous and increasing on R (see [1]), and is

log-concave on (0, ∞) and log-convex on (−∞, 0) (see [2]).
(ii) The function r 7→ 21/r Ar(a, b) is strictly decreasing and log-convex on (0, ∞)

(Lemma 6 [3]).
More generally, the power mean of order r of a and b with weight w ∈ (0, 1) is

defined by

Ar(a, b; w) = (war + (1− w)br)1/r if r 6= 0 and A0(a, b; w) = awb1−w,

which satisfies that r 7→ Ar(a, b; w) is increasing on R for fixed w ∈ (0, 1).
As special cases, we have A = A(a, b) = A1(a, b), G = G(a, b) = A0(a, b),

H = H(a, b) = A−1(a, b), which are the arithmetic mean, geometric mean and harmonic
mean, respectively.

Various symmetric and homogeneous bivariate means exist, including the Heronian
mean He(a, b), the logarithmic mean L(a, b) and the identric (exponential) mean I(a, b),
which are defined by

He(a, b) =
a + b +

√
ab

3
, L(a, b) =

a− b
ln a− ln b

, I(a, b) = e−1
(

aa

bb

)1/(a−b)
,

respectively. The three means have sharp lower and upper bounds in terms of power
means, namely,

Aln 2/ ln 3(a, b) < He(a, b) < A2/3(a, b), (2)

A0(a, b) < L(a, b) < A1/3(a, b), (3)

A2/3(a, b) < I(a, b) < Aln 2(a, b), (4)

where all orders of these power means in the above three double inequalities are the
best possible. The inequalities (2), (3) and (4) are derived from references [4], [5], and [6,7]
respectively.

There are also three bivariate means of the same form, which are the first Seiffert mean
P(a, b) [8], the second Seiffert mean T(a, b) [9] and Neuman–Sándor mean NS(a, b) [10],
which are defined by

P(a, b) =
a− b

2 arcsin a−b
a+b

, T(a, b) =
a− b

2 arctan a−b
a+b

, NS(a, b) =
a− b

2 arsinh a−b
a+b

, (5)

respectively. The three means also have the best power mean bounds, which are

Aln 2/ ln π(a, b) < P(a, b) < A2/3(a, b), (6)

Aln 2/(ln π−ln 2)(a, b) < T(a, b) < A5/3(a, b), (7)

Aln 2/[ln(ln(3+2
√

2))](a, b) < NS(a, b) < A4/3(a, b). (8)

The inequalities (6), (7), and (8) are derived from references [11–13], [14,15], and [3,15,16]
respectively.

Moreover, Yang [17] introduced two new means defined by

U(a, b) =
a− b√

2 arctan a−b√
2ab

and V(a, b) =
a− b√

2 arsinh a−b√
2ab

,

which also have the sharp lower and upper power mean bounds:

Aln 4/(2 ln π−ln 2)(a, b) < U(a, b) < A4/3(a, b), (9)

A0(a, b) < V(a, b) < A2/3(a, b). (10)
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The inequalities (9) and (10) are derived from references [18] and [19], respectively.
Other bivariate means and the best bounds for them can be seen in the following articles:
(i) Gauss arithmetic–geometric mean [20];
(ii) Toader mean [21] and the best power mean bounds were established in [22],

Corollary (1) [23], Theorem 22 [24];
(iii) Toader–Qi mean, see Theorem 3.4 [25];
(iv) Sándor mean, see [26,27];
(v) Sándor–Yang mean, see [17,28].
In particular, it is worth mentioning that, inspired by the first and second Seiffert

means, Witkowski [29] introduced the Seiffert-like mean defined by

M f (a, b) =
|a− b|

2 f
(
|a−b|
a+b

) , (11)

where f is defined on (0, 1) satisfying

t
1 + t

< f (t) <
t

1− t
,

and is called the Seiffert functions. Clearly, the Seiffert functions have two important
properties:

lim
t→0

f (0) = 0 and lim
t→0

f (t)
t

= 1. (12)

Letting f = arcsin, arctan, arsinh, artanh in (11) produces the first and second Seiffert
means, Nueman–Sándor mean, and logarithmic mean. Taking f = sinh, tan in (11) gives

Msinh(a, b) =
a− b

2 sinh
(

a−b
a+b

) , (13)

Mtan(a, b) =
a− b

2 tan
(

a−b
a+b

) , (14)

which are called the hyperbolic sine mean and tangent mean of a and b, respectively.
Recently, the two new means, namely Msinh(a, b) and Mtan(a, b), caught the attention
of some scholars, and several bounds for the two new means have been established.
Witkowski [29] presented a chain of comparison inequalities among the Seiffert-like means
L, P, Mtan, Msinh, and A:

L <

{
P

Mtan

}
< Msinh < A,

where the means in the curly brackets are not comparable. In 2020, Nowicka and
Witkowski [30] provided the optimal weighted power mean bounds Ap(A, G; w) (p = ±1,
±2) for the two new means Msinh and Mtan. In another paper [31], the authors es-
tablished the best weighted power mean bounds Ap(A, H; w) (p = ±1, ±2) for Msinh
and Mtan, which were generalized by Zhu [32], Zhu and Malešević [33] as follows: the
double inequalities(

2
3

Aq +
1
3

Hq
)1/q

< Mtan <

(
2
3

Ap +
1
3

Hp
)1/p

,(
5
6

As +
1
6

Hs
)1/s

< Msinh <

(
5
6

Ar +
1
6

Hr
)1/r

,

hold for p ≥ (ln(3/2))/ ln(tan 1), q ≤ 4/5 and r ≥ 32/25, s ≤ (ln(6/5))/ ln(sinh 1).
Other types of bounds for the two new means Msinh and Mtan can be seen in [34–36].
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From the published literature, however, there seems to be a gap in the research on
power mean bounds for the two new means. The aim of this paper is to find the best power
mean bounds for them. Our main results read as follows:

Theorem 1. The double inequality

Ap(a, b) < Msinh(a, b) < Aq(a, b) (15)

holds if and only if p ≤ 2/3 and q ≥ p1 = (ln 2)/(ln 2 + ln sinh 1) = 0.811 . . .

Theorem 2. Let p, q > 0 and αp = 1− (2 sinh 1)−p. If b > a > 0, then the double inequality

Ap
(
a, b; αp

)
< Msinh(a, b) < Aq

(
a, b; αq

)
(16)

holds if and only if p ≥ 1 and 0 < q ≤ p1 = (ln 2)/(ln 2 + ln sinh 1) = 0.811 . . . Refer to
Figures 1 and 2. Moreover, p 7→ Ap

(
a, b; αp

)
is decreasing on (0, ∞).

Figure 1. The graph of Ap
(
a, b; αp

)
and Msinh(a, b) when b = 1 and a ∈ (0, 1). From this, it can be

observed that the double inequality (16) holds. The symmetric mean Msinh(a, 1) is controlled by the
asymmetric means Ap(a, 1; αp), with A1 and Ap1 being its sharp lower and upper bounds.

Figure 2. The graph of Ap
(
a, b; αp

)
− Msinh(a, b) when b = 1 and a ∈ (0, 1). A1(a, 1; α1) and

Ap1 (a, 1; αp1 ) represent the sharp lower and upper bounds of Msinh. Once exceeded, they are in-
evitably breached, as illustrated by the example A0.9(a, 1; α0.9) taken here.
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Theorem 3. The double inequality

Ap(a, b) < Mtan(a, b) < Aq(a, b) (17)

holds if and only if p ≤ 1/3 and q ≥ p0 = (ln 2)/(ln 2 + ln tan 1) = 0.610 . . .

Theorem 4. Let p, q > 0 and βp = 1− (2 tan 1)−p. If b > a > 0, then the double inequality

Ap
(
a, b; βp

)
< Mtan(a, b) < Aq

(
a, b; βq

)
(18)

holds if and only if p ≥ 1 and 0 < q ≤ p0 = (ln 2)/(ln 2 + ln tan 1) = 0.610 . . . Refer to
Figures 3 and 4. Moreover, p 7→ Ap

(
a, b; βp

)
is decreasing on (0, ∞).

Figure 3. The graph of Ap
(
a, b; βp

)
and Mtan(a, b) when b = 1 and a ∈ (0, 1). From this, it can be

observed that the double inequality (18) holds. The symmetric mean Mtan(a, 1) is controlled by the
asymmetric means Ap(a, 1; βp), with A1 and Ap0 being its sharp lower and upper bounds.

Figure 4. The graph of Ap
(
a, b; βp

)
− Mtan(a, b) when b = 1 and a ∈ (0, 1). A1(a, 1; β1) and

Ap0 (a, 1; βp0 ) represent the sharp lower and upper bounds of Mtan. Once exceeded, they are inevitably
breached, as illustrated by the example A0.7(a, 1; β0.7) taken here.

The organization of the remaining sections of this paper is structured as follows. In
Section 2, four tools and three monotonicity results are listed, which are needed to prove
our main results. Proofs of Theorems 1–4 are presented in Section 3. In the fourth section,
several chains of inequalities for means including eight old means and two new Seiffert-like
means are established.
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2. Preliminaries
2.1. Tools

Several tools are required for establishing our main results. The first tool is the so-
called L’Hospital monotonic rule (LMR).

Proposition 1 (Theorem 2 [37]). Let −∞ < a < b < ∞, and let f , g : [a, b]→ R be continuous
functions that are differentiable on (a, b), with f (a) = g(a) = 0 or f (b) = g(b) = 0. Assume
that g

′
(x) 6= 0 for each x in (a, b). If f

′
/g
′

is increasing (decreasing) on (a, b) then so is f /g.

To introduce the second tool, we introduce an important auxiliary function H f ,g, which
appeared in [38] and was called Yang’s H–function in [39]. For −∞ ≤ a < b ≤ ∞, let f and
g be differentiable on (a, b) and g

′ 6= 0 on (a, b). Then the function H f ,g is defined by

H f ,g =
f
′

g′
g− f . (19)

If f and g are twice differentiable on (a, b), then(
f
g

)′
=

g
′

g2

(
f
′

g′
g− f

)
=

g
′

g2 H f ,g, (20)

H
′
f ,g =

(
f
′

g′

)′
g. (21)

The following proposition was proved in [38] and is called the L’Hospital piece
monotonic rule (LPMR).

Proposition 2. Let −∞ ≤ a < b ≤ ∞. Let f and g be differentiable functions on (a, b) and let
H f ,g be defined by (19). Suppose that (i) g

′ 6= 0 on (a, b); (ii) f (b−) = g(b−) = 0; (iii) there
is a c ∈ (a, b) such that f

′
/g
′

is increasing (respectively, decreasing) on (a, c) and decreasing
(respectively, increasing) on (c, b). Then, we have the following:

(i) When g
′
> 0 and H f ,g(a+) ≤ 0 (respectively,≥ 0), or g

′
< 0 and H f ,g(a+) ≥ 0

(respectively,≤ 0), f /g is decreasing (respectively, increasing) on (a, b);
(ii) When g

′
> 0 and H f ,g(a+) > 0 (respectively,< 0), or g

′
< 0 and H f ,g(a+) < 0

(respectively,> 0), there is a unique number xb ∈ (a, b) such that f /g is increasing (respectively,
decreasing) on (a, xb) and decreasing (respectively, increasing) on (xb, b).

A significant role in addressing the monotonicity of power series ratios is played by
the third tool, which involves the monotonicity rule for the ratio of two power series as
discussed in [40].

Proposition 3. Let A(t) = ∑∞
n=0 antn and B(t) = ∑∞

n=0 bntn be two real power series converging
on (−r, r) (r > 0) with bn > 0 for all n. If the sequence {an/bn}n≥0 is increasing (decreasing),
then so is the ratio A(t)/B(t) on (0, r).

The fourth tool, established in Theorem 2.1 [41] by Yang, Chu, and Wang, pro-
vides a fresh monotonicity rule for power series ratios when the sequence {an/bn}n≥0
is initially increasing (respectively, decreasing), then decreasing (respectively, increas-
ing). The following proposition appeared in [42] , which is a slightly modified version of
Theorem 2.1 [41].

Proposition 4. Let f (t) = ∑∞
k=0 aktk and g(t) = ∑∞

k=0 bktk be two real power series converging
on (−r, r) and bk > 0 for all k. Suppose that for certain m ∈ N, the sequences {ak/bk}0≤k≤m
and {ak/bk}k≥m are both non-constant, and they are increasing (respectively, decreasing) and



Axioms 2023, 12, 910 7 of 29

decreasing (respectively, increasing), respectively. Then the function f /g is strictly increasing (re-
spectively, decreasing) on (0, r) if and only if H f ,g(r−) ≥ 0 (respectively,≤ 0). If H f ,g(r−) < 0
(respectively,> 0), then there exists t0 ∈ (0, r) such that the function f /g is strictly increasing
(respectively, decreasing) on (0, t0) and strictly decreasing (respectively, increasing) on (t0, r).

Propositions 3 and 4 are very efficient to study for certain special functions, see for
example [43–52].

2.2. Three Monotonicity Results

The following two monotonicity results are crucial to prove Theorems 5 and 6.

Lemma 1. The function

φsinh(t) =
t
(
1− t2)[2t cosh2 t− (2 cosh t + t sinh t) sinh t

]
[sinh t− t(1− t) cosh t][sinh t− t(t + 1) cosh t]

(22)

is decreasing from (0, 1) onto (0, 1/3).

Lemma 2. The function

φtan(t) =
2t
(
1− t2)(sin t− t cos t) cos t

(t2 − t + sin t cos t)(t2 + t− sin t cos t)
(23)

is decreasing from (0, 1) onto (0, 2/3).

We first prove Lemma 1.

Proof of Lemma 1. Let

g1(t) = −t
(

1− t2
)[

2t cosh2 t− (2 cosh t + t sinh t) sinh t
]
,

g2(t) = −[sinh t− t(1− t) cosh t][sinh t− t(t + 1) cosh t].

Then φsinh(t) = g1(t)/g2(t). Using the product-to-sum formula and expanding in
power series yield

2g1(t) =
(

t2 − 1
)(

t2 cosh 2t− 2t sinh 2t + 3t2
)

=
(

t2 − 1
)[ ∞

∑
n=1

22n−2

(2n− 2)!
t2n −

∞

∑
n=1

22n

(2n− 1)!
t2n + 3t2

]

=
(

t2 − 1
) ∞

∑
n=2

(2n− 5)22n−2

(2n− 1)!
t2n

=
∞

∑
n=3

(2n− 7)22n−4

(2n− 3)!
t2n −

∞

∑
n=2

(2n− 5)22n−2

(2n− 1)!
t2n

=
∞

∑
n=3

(2n− 2)(2n− 1)(2n− 7)22n−4

[(2n− 3)!](2n− 2)(2n− 1)
t2n −

∞

∑
n=3

(2n− 5)22n−2

(2n− 1)!
t2n − −22

3!
t4

=
∞

∑
n=3

(n− 1)(2n− 1)(2n− 7)22n−3 − 2(2n− 5)22n−3

(2n− 1)!
t2n +

2
3

t4

=
∞

∑
n=2

ant2n,

where

a2 =
2
3

and an =
(2n− 3)

(
2n2 − 7n− 1

)
22n−3

(2n− 1)!
for n ≥ 3;
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2g2(t) = t4 cosh 2t− t2 cosh 2t− cosh 2t + 2t sinh 2t + t4 − t2 + 1

=
∞

∑
n=2

22n−4

(2n− 4)!
t2n −

∞

∑
n=1

22n−2

(2n− 2)!
t2n

−
∞

∑
n=0

22n

(2n)!
t2n +

∞

∑
n=1

22n

(2n− 1)!
t2n + t4 − t2 + 1

= 2t4 +
∞

∑
n=3

(2n− 1)
(
2n3 − 5n2 + n + 4

)
22n−2

(2n)!
t2n

=
∞

∑
n=2

bnt2n,

where

b2 = 2 and bn =
(2n− 1)

(
2n3 − 5n2 + n + 4

)
22n−2

(2n)!
for n ≥ 3.

Obviously, bn > 0 for n ≥ 2. To use Proposition 4, we have to observe the monotonicity
of the sequence {an/bn}n≥2. A direct verification gives

a2

b2
=

1
3

and
an

bn
=

n(2n− 3)
(
2n2 − 7n− 1

)
(2n− 1)(2n3 − 5n2 + n + 4)

for n ≥ 3,

and then,

d2 =
a3

b3
− a2

b2
= − 9

20
− 1

3
= −47

60
< 0,

dn =
an+1

bn+1
− an

bn
= 8

4n6 − n4 − 20n3 + 6n2 + 6n− 3
(2n− 1)(2n + 1)(2n3 + n2 − 3n + 2)(2n3 − 5n2 + n + 4)

> 0

for n ≥ 3. This shows that the sequence {an/bn}n≥2 is decreasing for n = 2, 3 and
increasing for n ≥ 3. If we show that Hg1,g2(1) < 0, then by Proposition 4, we deduce that
φsinh = g1/g2 is decreasing on (0, 1). A direct computation yields

g1(1) = 0 and g2(1) = (2 cosh 1− sinh 1) sinh 1 > 0.

Differentiation leads to

g
′
1(t) =

(
3t2 − 1

)[
2t cosh2 t− (2 cosh t + t sinh t) sinh t

]
−t
(

1− t2
)
(2t cosh t− 3 sinh t)(sinh t),

g
′
2(t) = −

[
2t cosh t +

(
t2 − t

)
sinh t

]
[sinh t− t(t + 1) cosh t]

+[sinh t− t(1− t) cosh t][2t cosh t + t(t + 1)(sinh t)],

which yields

g
′
1(1) = cosh 2− 2 sinh 2 + 3 = −0.491 . . . < 0,

g
′
2(1) = 3 cosh 2 + 1 > 0.

We then obtain

Hg1,g2(1) =
g
′
1(1)

g′2(1)
g2(1)− g1(1) < 0.

An easy check gives limt→0 φsinh(0) = 1/3 and φsinh(1) = 0, thereby completing
the proof.

For proving Lemma 2, we need the following lemmas.
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Lemma 3. For |t| < π, we have

1
sin t

=
1
t
+

∞

∑
n=1

22n − 2
(2n)!

|B2n|t2n−1, (24)

cos t
sin t

=
1
t
−

∞

∑
n=1

22n

(2n)!
|B2n|t2n−1 (25)

1
sin2 t

=
1
t2 +

∞

∑
n=1

(2n− 1)22n

(2n)!
|B2n|t2n−2, (26)

cos t
sin2 t

=
1
t2 −

∞

∑
n=1

(2n− 1)
(
22n − 2

)
(2n)!

|B2n|t2n−2. (27)

Proof. The power series representations (24) and (25) were listed in Equations (4.3.68) and
(4.3.70) [53]. The third and fourth power series representations follow from

1
sin2 t

= −
(

cos t
sin t

)′
and

cos t
sin2 t

= −
(

1
sin t

)′
,

which completes the proof.

The Bernoulli numbers Bn are defined by the exponential generating function

x
ex − 1

− 1 +
x
2
=

∞

∑
n=2

Bn

n!
xn |x| < 2π.

The function x/(ex − 1)− 1 + x/2 is even on R, B2n+1 = 0 for n ∈ N. An analytic
expression exists for even orders, B2n = (−1)n−1 2(2n)!

(2π)2n ∑∞
s=1 s−2n = (−1)n−1 2(2n)!

(2π)2n ζ(2n)
for n ≥ 1, where ζ(·) is the Riemann zeta function. The following lemma was proved
in [54] (see also [55]).

Lemma 4. For k ∈ N, Bernoulli numbers B2k satisfy

22k+2 − 1
22k − 1

π2

(2k + 1)(2k + 2)
<
|B2k|
|B2k+2|

<
22k+1 − 1
22k−1 − 1

π2

(2k + 1)(2k + 2)
. (28)

Now, we are able to prove Lemma 2.

Proof of Lemma 2. Let

ξ(2t) = 8t(sin t− t cos t) cos t,

η(2t) = 4
(

t2 − t + sin t cos t
)(

t2 + t− sin t cos t
)

.

Then

φtan(t) =
(

1− t2
) ξ(2t)

η(2t)
.

Since sin t− t cos t > 0 and cos t > 0 for t ∈ (0, π/2), we have

ξ(s) = 4s
(

sin
s
2
− s

2
cos

s
2

)
cos

s
2
= 2s sin s− s2 cos s− s2 > 0

for s ∈ (0, π). Similarly, we have

η(s) =
(

1
2

s2 − s + sin s
)(

1
2

s2 + s− sin s
)
=

1
4

s4 − s2 + 2s sin s− sin2 s > 0
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for s ∈ (0, π) due to η1(s) =
(
s2/2− s + sin s

)
> 0 and η2(s) =

(
s2/2 + s− sin s

)
> 0 for

s ∈ (0, π). In fact, since

η
′′
1 (s) = 1− sin s > 0, η

′′
2 (s) = 1 + sin s > 0

for s ∈ (0, ∞), and ηj(0) = η
′
j(0) = 0 for j = 1, 2, we immediately get that η1(s), η2(s) > 0

for s ∈ (0, ∞). Thus, if we prove that s 7→ η(s)/ξ(s) is increasing on (0, π), then the
function s 7→ ξ(s)/η(s) is positive and decreasing on (0, π), and then, so is t 7→ φtan(t)
on (0, 1).

Now, expanding in power series leads to

η(s)
sin2 s

=
s4/4− s2 + 2s sin s− sin2 s

sin2 s
=

1
4

s4

sin2 s
− s2

sin2 s
+ 2

s
sin s

− 1

=
1
4

s2 +
∞

∑
n=1

(2n− 1)22n−2

(2n)!
|B2n|s2n+2 −

(
1 +

∞

∑
n=1

(2n− 1)22n

(2n)!
|B2n|s2n

)

+2

(
1 +

∞

∑
n=1

22n − 2
(2n)!

|B2n|s2n

)
− 1 =

∞

∑
n=1

ans2n,

where a1 = 1/4 and for n ≥ 2,

an =
(2n)(2n− 1)(2n− 3)22n−4|B2n−2| −

(
(2n− 3)22n + 4

)
|B2n|

(2n)!
;

ξ(s)
sin2 s

=
−s2 − s2 cos s + 2s sin s

sin2 s
= − s2

sin2 s
− s2 cos s

sin2 s
+ 2

s
sin s

= −
(

1 +
∞

∑
n=1

(2n− 1)22n

(2n)!
|B2n|s2n

)

−
(

1−
∞

∑
n=1

(2n− 1)
(
22n − 2

)
(2n)!

|B2n|s2n

)
+ 2 +

∞

∑
n=1

2
(
22n − 2

)
(2n)!

|B2n|s2n

=
∞

∑
n=1

22n+1 − 4n− 2
(2n)!

|B2n|s2n :=
∞

∑
n=1

bns2n,

where

bn =
22n+1 − 4n− 2

(2n)!
|B2n|.

It is easy to check that bn > 0 for n ≥ 1, a1/b1 = 3/2 and for n ≥ 2

an

bn
=

(2n)(2n− 1)(2n− 3)22n−4|B2n−2| −
(
(2n− 3)22n + 4

)
|B2n|

(22n+1 − 4n− 2)|B2n|

=
(2n)(2n− 1)(2n− 3)22n−4

22n+1 − 4n− 2
|B2n−2|
|B2n|

− (2n− 3)22n + 4
22n+1 − 4n− 2

.

Then, a2/b2 = 20/11, a3/b3 = 154/57, and then,

d1 =
a2

b2
− a1

b1
=

7
22

> 0 and d2 =
a3

b3
− a2

b2
=

554
627

> 0.

We next show that dn = an+1/bn+1 − an/bn > 0 for n ≥ 3. Using Lemma 4 yields

an

bn
<

(2n)(2n− 1)(2n− 3)22n−4

22n+1 − 4n− 2
22n−1 − 1
22n−3 − 1

π2

2n(2n− 1)
− (2n− 3)22n + 4

22n+1 − 4n− 2
,
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an+1

bn+1
=

(2n + 2)(2n + 1)(2n− 1)22n−2

22n+3 − 4n− 6
|B2n|
|B2n+2|

− (2n− 1)22n+2 + 4
22n+3 − 4n− 6

>
(2n + 2)(2n + 1)(2n− 1)22n−2

22n+3 − 4n− 6
22n+2 − 1

22n − 1
π2

(2n + 1)(2n + 2)

− (2n− 1)22n+2 + 4
22n+3 − 4n− 6

.

Then,

dn : =
an+1

bn+1
− an

bn
>

(2n− 1)22n−2

22n+3 − 4n− 6
22n+2 − 1

22n − 1
π2 − (2n− 1)22n+2 + 4

22n+3 − 4n− 6

− (2n− 3)22n−4

22n+1 − 4n− 2
22n−1 − 1
22n−3 − 1

π2 +
(2n− 3)22n + 4
22n+1 − 4n− 2

=
4
(
π2 − 4

)
28n − c3(n)26n + c2(n)24n + c1(n)22n − 128

4(22n − 1)(22n − 8)(22n − 2n− 1)(22n+2 − 2n− 3)

where

c3(n) = 6
(

π2 − 4
)

n2 + 21π2n +
(

4π2 − 178
)

,

c2(n) = 12
(

5π2 − 18
)

n2 − 450 + 5π2,

c1(n) = 12
(

16− π2
)

n2 + 416− 5π2.

An easy verification yields that ci(n) > 0 for i = 1, 2, 3 and n ≥ 3, and

c1(n)22n − 128 ≥ c1(2)24 − 128 = 16
(

1176− 53π2
)
> 0

for n ≥ 2; also, using an obvious inequality

22n = (1 + 3)n > 1 + 3n +
32n(n− 1)

2
=

1
2

(
9n2 − 3n + 2

)
,

we obtain that

4
(

π2 − 4
)

22n − c3(n) > 4
(

π2 − 4
)1

2

(
9n2 − 3n + 2

)
−
[
6
(

π2 − 4
)

n2 + 21π2n +
(

4π2 − 178
)]

= 4
(

π2 − 4
)

n2 −
(

9π2 − 8
)

n + 54 > 0 for n ≥ 3,

which leads to 4
(
π2 − 4

)
28n − c3(n)26n > 0 for n ≥ 3. It then follows that dn > 0 for n ≥ 3.

Consequently, the sequence {an/bn}n≥1 is increasing, and by Lemma 3, so is the function
s 7→ η(s)/ξ(s) on (0, π). An easy computation yields

lim
t→0

φtan(t) =
2
3

and φtan(1) = 0,

which completes the proof.

Finally, we prove the decreasing property of p 7→ Ap(y, x; 1− cp), which is needed to
prove Theorems 2 and 4.

Lemma 5. Let x > y > 0 and c ∈ (0, 1). The function

p 7→ Ap(y, x; 1− cp) = ((1− cp)yp + cpxp)1/p
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is decreasing on (0, ∞) with

lim
p→0

Ap(y, x; 1− cp) = x and lim
p→∞

Ap(y, x; 1− cp) = max{cx, y}.

Proof. Let t = x/y. Then

Ap(y, x; 1− cp) = yc
(
tp + c−p − 1

)1/p, t ∈ (1, ∞).

Differentiation yields

∂ ln Ap

∂t
=

tp−1

tp + c−p − 1
,

∂

∂p

(
∂ ln Ap

∂t

)
=

c−ptp−1(1− cp)

(tp + c−p − 1)2

(
ln t− ln c

cp − 1

)
.

Since c ∈ (0, 1) and t ∈ (1, ∞), we see that there is a t0 > 1 such that
∂2 ln Ap/(∂p∂t) < 0 for t ∈ (1, t0) and ∂2 ln Ap/(∂p∂t) > 0 for t ∈ (t0, ∞),
where t0 = exp((ln c)/(cp − 1)). This implies that the function t 7→

(
∂ ln Ap

)
/∂p is

decreasing on (1, t0) and increasing on (t0, ∞). Note that

∂ ln Ap

∂p
=

1
p

tp ln t− c−p ln c
tp + c−p − 1

− 1
p2 ln

(
tp + c−p − 1

)
.

An easy computation yields

lim
t→1+

∂ ln Ap

∂p
= 0 and lim

t→∞

∂ ln Ap

∂p
= 0.

It then follows that

∂ ln Ap

∂p
< max

{
lim

t→1+

∂ ln Ap

∂p
, lim

t→∞

∂ ln Ap

∂p

}
= 0,

which proves the decreasing property of p 7→ Ap(y, x; 1− cp) on (0, ∞). The required limit
values can be derived by the L’Hospital rule. This completes the proof.

3. Proofs of Main Results

Due to the symmetry and homogeneous of the means M f (a, b) and Ap(a, b), we
assume that b > a > 0 and let x = a/b ∈ (0, 1). Then, the desired inequalities are
equivalent to

Ap(x, 1) < M f (x, 1) < Aq(x, 1) (29)

for x ∈ (0, 1), where f = tan, sinh. We prove Theorems 1–4 by considering the monotonicity
pattern of the ratio U f (x)/V(x) on (0, 1), where

U f (x) = Mp
f (x, 1)− 1 and V(x) = xp − 1.

Figures 5 and 6 present the graphs of f = sinh and f = tan of U f (x)/V(x), respec-
tively. We observe the following patterns in the monotonicity of the ratio U f (x)/V(x)
on (0, 1): (i) increase for certain values of p; (ii) decrease for certain values of p; and
(iii) increase first and then decrease gradually for certain values of p.
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Figure 5. Usinh/V for different values of the parameter p.

Figure 6. Utan/V for different values of the parameter p.

Now, we give a strict proof. Differentiation yields

U ′f
V ′

=
pMp−1

f M
′
f

pxp−1 =
Mp−1

f

xp−1 M
′
f , (30)
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U ′f
V ′

′ = (p− 1)
(M f

x

)p−2 xM
′
f −M f

x2 M
′
f +

(M f

x

)p−1

M
′′
f

=
Mp−2

f

xp

[
(p− 1)

(
xM

′
f −M f

)
M
′
f + xM f M

′′
f

]
.

Assume that
(

xM
′
f −M f

)
M
′
f 6= 0 for x ∈ (0, 1). Then

U ′f
V ′

′ = Mp−2
f

xp

(
xM

′
f −M f

)
M
′
f

p− 1 +
xM f M

′′
f(

xM′
f −M f

)
M′

f

. (31)

In order to determine the sign of
(
U ′f /V ′

)′
on (0, 1), we have to find the supremum and

infimum of

Φ f (x) =
xM f M

′′
f(

xM′
f −M f

)
M′

f

(32)

on (0, 1).

Lemma 6. Let f be an odd function on (−1, 1) and third-order differentiable on [0, 1].
If t(1± t) f

′
(t)− f (t) 6= 0 on (0, 1), then Φ f (x) defined by (32) can be expressed as

Φ f (x) =
t
(
1− t2)[2 f (t) f

′
(t) + t f (t) f

′′
(t)− 2t f

′
(t)2

]
[
t(t− 1) f ′(t) + f (t)

][
t(t + 1) f ′(t)− f (t)

] = φ f (t) (33)

for t ∈ (0, 1) with

Φ f
(
0+
)
= φ f

(
1−
)
= 0 and Φ f

(
1−
)
= φ f

(
0+
)
=

1
3

f
′′′
(0).

Proof. Let t = (1− x)/(1 + x). Then x = (1− t)/(1 + t) and

M f (x, 1) =
1− x

2 f ((1− x)/(1 + x))
=

t
(1 + t) f (t)

for t ∈ (0, 1). Differentiation yields

M
′
f ≡ M

′
f (x, 1) =

d
dt

(
t

(1 + t) f

)/
dx
dt

=
(1 + t) f − t

(
f + (t + 1) f

′
)

(1 + t)2 f 2

(
− (t + 1)2

2

)
=

1
2

t(t + 1) f
′ − f

f 2 , (34)

M
′′
f ≡ M

′′
f (x, 1) =

d
dt

(
1
2

t(t + 1) f
′ − f

f 2

)/
dx
dt

=
1
2

(
(2t + 1) f

′
+ t(t + 1) f

′′ − f
′
)

f 2 − 2 f f
′
(

t(t + 1) f
′ − f

)
f 4

(
− (t + 1)2

2

)

=
1
4
(t + 1)3

2t
(

f
′
)2
− f

(
2 f
′
+ t f

′′
)

f 3 .
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Then

xM
′
f −M f =

1− t
1 + t

1
2

t(t + 1) f
′ − f

f 2 − t
(1 + t) f

=
1
2

(
t− t2) f

′ − f
f 2 . (35)

Since f (t) − t(1± t) f
′
(t) 6= 0 on (0, 1), we see that

(
xM

′
f −M f

)
M
′
f 6= 0 for x ∈ (0, 1).

Then

Φ f (x) =
xM f M

′′
f(

xM′
f −M f

)
M′

f

=
1− t
1 + t

t
(1 + t) f

1
4
(t + 1)3

2t
(

f
′
)2
− f

(
2 f
′
+ t f

′′
)

f 3

/
[

1
2

(
t− t2) f

′ − f
f 2

1
2

t(t + 1) f
′ − f

f 2

]

=

t
(
1− t2)[(2 f

′
+ t f

′′
)

f − 2t
(

f
′
)2
]

[
t(t− 1) f ′ + f

][
t(t + 1) f ′ − f

] .

As shown in (12), f (0) = 0, f
′
(0) = limt→0 f (t)/t = 1. Moreover, since f is an odd

function on (−1, 1), we easily see that f
′′
(0) = 0. Using the L’Hospital rule gives that, as

t→ 0,

t(t− 1) f
′
(t) + f (t)

t2 → 2t f
′
(t) + t(t− 1) f

′′
(t)

2t
→ f

′
(0)− 1

2
f
′′
(0) = 1, (36)

t(1 + t) f
′
(t)− f (t)

t2 → 2t f
′
(t) + t(1 + t) f

′′
(t)

2t
→ f

′
(0) +

1
2

f
′′
(0) = 1,

f (t)
(

2 f
′
(t) + t f

′′
(t)
)
− 2t f

′
(t)2

t3 →
t f (t) f

′′′
(t)− 3 f

′′
(t)
(

t f
′
(t)− f (t)

)
3t2

=
1
3

f (t)
t

f
′′′
(t)− f

′′
(t)

t f
′
(t)− f (t)

t2 → 1
3

f
′′′
(0)− f

′′
(0)

f
′′
(0)
2

=
1
3

f
′′′
(0),

which implies that

Φ f
(
1−
)
= φ f

(
0+
)
=

1
3

f
′′′
(0).

Due to the differentiability of f on [0, 1], f (t), f
′
(t) and f

′′
(t) are bounded on [0, 1],

and therefore, Φ f (0+) = φ f (1−) = 0, which completes the proof.

Remark 1. Under the conditions as Lemma 6, it follows from the limit relations limt→0 f (t)/t = 1
and (36) that

lim
x→1

M
′
f (x, 1) = lim

t→0

1
2

t(t + 1) f
′ − f

f 2 =
1
2

lim
t→0

t2

f 2 lim
t→0

t(t + 1) f
′ − f

t2 =
1
2

,

which implies that

lim
x→1−

U f (x)
V(x)

= lim
x→1

U ′f (x)

V ′(x)
=

1
2

. (37)

On the other hand, it is readily seen that

lim
x→0+

U f (x)
V(x)

= lim
x→0+

Mp
f (x, 1)− 1

xp − 1
= 1− 1

2p f p(1)
if p > 0. (38)



Axioms 2023, 12, 910 16 of 29

3.1. Proofs of Theorems 1 and 2

We first observe the monotonic pattern of Usinh(x)/V(x) on (0, 1), which is displayed
in the following theorem.

Theorem 5. The following statements are valid.
(i) If 0 < p ≤ 2/3, the ratio Usinh/V is increasing on (0, 1), and therefore, the double

inequality

αp <
Mp

sinh(x, 1)− 1
xp − 1

<
1
2

holds, where αp = 1− 1/(2 sinh 1)p, or equivalently,(
xp + 1

2

)1/p
< Msinh(x, 1) <

(
αpxp + 1− αp

)1/p (39)

for x ∈ (0, 1).
(ii) If p ≥ 1, the ratio Usinh/V is decreasing on (0, 1), and therefore, the double inequality

1
2
<

Mp
sinh(x, 1)− 1

xp − 1
< αp

holds, or equivalently,

(
αpxp + 1− αp

)1/p
< Msinh(x, 1) <

(
xp + 1

2

)1/p
(40)

for x ∈ (0, 1).
(iii) If 2/3 < p < 1, there is an x0 such that the ratio Usinh/V is increasing on (0, x0) and

decreasing on (x0, 1), and therefore, the inequality

min
{

1
2

, αp

}
≤

Mp
sinh(x, 1)− 1

xp − 1

holds for x ∈ (0, 1). In particular, when min
{

1/2, αp
}
= 1/2, that is, ln 2

ln 2+ln sinh 1 ≤ p < 1, the
inequality

Msinh(x, 1) <
(

xp + 1
2

)1/p
(41)

holds for x ∈ (0, 1); when min
{

1/2, αp
}
= αp, that is, 2/3 < p ≤ ln 2

ln 2+ln sinh 1 , the inequality

Msinh(x, 1) <
(
αpxp + 1− αp

)1/p (42)

holds for x ∈ (0, 1).

Proof. Let f (t) = sinh t. Then f
′
(t) = cosh t and f

′′
(t) = sinh t. By (33)–(35), we see that

M
′
sinh(x, 1) =

1
2

t(t + 1) cosh t− sinh t
sinh2 t

, (43)

xM
′
sinh(x, 1)−Msinh(x, 1) =

1
2

(
t− t2) cosh t− sinh t

sinh2 t
,

and Φsinh(x) = φsinh(t), where φsinh(t) is defined by (22). Clearly, M
′
sinh(x, 1) > 0 for

x ∈ (0, 1). Since[(
t− t2

)
cosh t− sinh t

]′
= −t(2 cosh t− sinh t + t sinh t) < 0
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for t > 0, we have that
(
t− t2) cosh t− sinh t < 0 for t > 0, which implies that

xM
′
sinh(x, 1)−Msinh(x, 1) < 0 for x ∈ (0, 1). Then, by (31), we have that

sgn

[
U ′sinh(x)
V ′(x)

]′
= − sgn(p− 1 + Φsinh(x)) := − sgn µ(x). (44)

Lemma 1 tells us that φsinh(t) is decreasing in t from (0, 1) onto (0, 1/3) which, by
Lemma 6 and x = (1− t)/(1 + t), implies that the function Φsinh(x) (= φsinh(t)) is increas-
ing in x from (0, 1) onto (0, 1/3).

(i) If 0 < p ≤ 2/3, then p− 1 + Φsinh(x) ≤ 0 for x ∈ (0, 1), and so
(
U ′sinh/V ′

)′
≥ 0 for

x ∈ (0, 1). It follows from Proposition 1 that Usinh/V is increasing on (0, 1). This together
with (37) and (38) yields

1− 1
2p sinhp 1

= lim
x→0+

Usinh(x)
V(x)

<
Usinh(x)
V(x)

< lim
x→1−

Usinh(x)
V(x)

=
1
2

for x ∈ (0, 1), which implies (39).

(ii) If p ≥ 1, then p − 1 + Φsinh(x) ≥ 0 for x ∈ (0, 1), and so
(
U ′sinh/V ′

)′
≤ 0 for

x ∈ (0, 1). It follows from Proposition 1 that Usinh/V is decreasing on (0, 1), and therefore,
the inequalities

1
2
<
Usinh(x)
V(x)

< 1− 1
2p sinhp 1

hold for x ∈ (0, 1), which implies (40).
(iii) In the case of p ∈ (2/3, 1), since µ(x) = p− 1 + Φsinh(x) is increasing on (0, 1)

with µ(0+) = p− 1 < 0 and µ(1−) = p− 2/3 > 0, there is an x0 ∈ (0, 1) such that µ(x) < 0

for x ∈ (0, x0) and µ(x) > 0 for x ∈ (x0, 1). This, by (44), implies that
(
U ′sinh/V ′

)′
> 0

for x ∈ (0, x0) and
(
U ′sinh/V ′

)′
< 0 for x ∈ (x0, 1). To use Proposition 2, we also need the

signs of V ′ and HUsinh,V (0+). By (43), it is derived that

M
′
sinh
(
0+, 1

)
=

1
2

lim
t→1−

t(t + 1) cosh t− sinh t
sinh2 t

=
2 cosh 1− sinh 1

2 sinh2 1
= 0.691 . . . ,

which together with Msinh(0+, 1) = 1/(2 sinh 1) gives

HUsinh,V (x) =
U ′sinh(x)
V ′(x)

V(x)−Usinh(x)

=
Mp−1

sinh(x, 1)M
′
sinh(x, 1)

xp−1 (xp − 1)−
[

Mp
sinh(x, 1)− 1

]
→ 1− 1

(2 sinh 1)p as x → 0+.

Since p ∈ (2/3, 1), we see that HUsinh,V (0+) > 0. Clearly, V ′(x) = pxp−1 > 0. It then
follows from Proposition 2 that there is an x0 ∈ (0, 1) such that Usinh/V is increasing on
(0, x0) and decreasing on (x0, 1), and therefore, we have

min
{

1
2

, 1− 1
(2 sinh 1)p

}
≤ Usinh(x)
V(x)

=
Mp

sinh(x, 1)− 1
xp − 1

for x ∈ (0, 1). In particular, when 1− (2 sinh 1)−p ≥ 1/2, that is, (ln 2)/(ln 2 + ln sinh 1) ≤
p < 1, the inequality (41) holds for x ∈ (0, 1); when 1 − (2 sinh 1)−p ≤ 1/2, that is,
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2/3 < p ≤ (ln 2)/(ln 2 + ln sinh 1), the inequality (42) holds for x ∈ (0, 1). The proof is
thus proved.

We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1. Assume that b > a > 0 and let x = a/b. Then, the double inequal-
ity (15) is equivalent to(

xp + 1
2

)1/p
< Msinh(x, 1) <

(
xq + 1

2

)1/q
(45)

for x ∈ (0, 1). The sufficiency follows from the inequalities (39)–(41) in Theorem 5.
We prove the necessity by the reduction to absurdity. First, we prove that the necessary

condition for which the second inequality of (45) holds for x ∈ (0, 1) is q ≥ p1.
Assume that q ≤ 2/3 such that the second inequality of (45) holds for x ∈ (0, 1). By

Theorem 5 (i), we have the first inequality of (39) for p = q, which is clearly a contradiction.
Assume that q ∈ (2/3, p1) such that the second inequality of (45) holds for x ∈ (0, 1).

By Theorem 5 (iii), there is an x0 such that the ratio Usinh/V is increasing on (0, x0) and
decreasing on (x0, 1). Then

1
2
= lim

x→1−

Usinh(x)
V(x)

<
Usinh(x)
V(x)

for x ∈ (x0, 1),

that is,
Msinh(x, 1) < Aq(x, 1) for x ∈ (x0, 1).

On the other hand, q < p1 implies that αq < 1/2, that is,

αq = lim
x→0+

Usinh(x)
V(x)

< lim
x→1−

Usinh(x)
V(x)

= 1/2.

Then there is an x1 ∈ (0, x0) such that Usinh(x1)/V(x1) = 1/2. Then

Usinh(x)
V(x)

<
Usinh(x1)

V(x1)
=

1
2

for x ∈ (0, x1),

which implies that
Aq(x, 1) < Msinh(x, 1) for x ∈ (0, x1).

These also yield a contradiction. This proves the necessary condition such that the second
inequality of (45) holds for x ∈ (0, 1).

In the same way, we can prove that the necessary condition for which the first inequal-
ity of (45) to hold for x ∈ (0, 1) is p ≤ 2/3, and the proof is complete.

Proof of Theorem 2. Let x = a/b. Then the double inequality (16) is equivalent to(
αpxp + 1− αp

)1/p
< Msinh(x, 1) <

(
αqxq + 1− αq

)1/q (46)

for x ∈ (0, 1). The sufficiency follows from the inequalities (40)–(42) in Theorem 5.
The necessity can be proved by the reduction to absurdity. We first prove that the

necessary condition such that the second inequality of (46) holds for x ∈ (0, 1) is 0 < q ≤ p1.
Assume that q ≥ 1 such that the second inequality of (46) holds for x ∈ (0, 1). Then

by Theorem 5 (ii), the first inequality of (40) holds for x ∈ (0, 1) and p = q, which yields a
contradiction.



Axioms 2023, 12, 910 19 of 29

Assume that q ∈ (p1, 1) such that the second inequality of (46) holds for x ∈ (0, 1).
By Theorem 5 (iii), there is an x0 such that the ratio Usinh/V is increasing on (0, x0) and
decreasing on (x0, 1). Then

αq = lim
x→0+

Usinh(x)
V(x)

<
Usinh(x)
V(x)

for x ∈ (0, x0),

that is,
Msinh(x, 1) < Aq

(
x, 1; αq

)
for x ∈ (0, x0).

On the other hand, q > p1 implies that αq > 1/2, that is,

αq = lim
x→0+

Usinh(x)
V(x)

> lim
x→1−

Usinh(x)
V(x)

= 1/2.

Then there is an x1 ∈ (x0, 1) such that Usinh(x1)/V(x1) = αq, and therefore,

Usinh(x)
V(x)

<
Usinh(x1)

V(x1)
= αq for x ∈ (x1, 1),

which implies that
Msinh(x, 1) > Aq

(
x, 1; αq

)
for x ∈ (x1, 1).

These yield a contradiction. This proves the necessary condition such that the second
inequality of (46) holds for x ∈ (0, 1).

In a similar way, we can prove that the necessary condition for which the first inequality
of (46) to hold for x ∈ (0, 1) is p ≥ 1.

Taking (y, x) = (a, b) and c = 1/(2 sinh 1) in Lemma 5, the decreasing property of
p 7→ Ap

(
a, b; αp

)
on (0, ∞) follows. This completes the proof.

3.2. Proofs of Theorems 3 and 4

We begin with observing the monotonic pattern of Utan(x)/V(x) on (0, 1), which is
contained in the following theorem.

Theorem 6. The following statements are valid.
(i) If 0 < p ≤ 1/3, the ratio Utan/V is increasing on (0, 1), and therefore, the double inequality

βp <
Mp

tan(x, 1)− 1
xp − 1

<
1
2

holds, where βp = 1− 1/(2p tanp 1), or equivalently,(
xp + 1

2

)1/p
< Mtan(x, 1) <

(
βpxp + 1− βp

)1/p (47)

for x ∈ (0, 1).
(ii) If p ≥ 1, the ratio Utan/V is decreasing on (0, 1), and therefore, the double inequality

1
2
<

Mp
tan(x, 1)− 1

xp − 1
< βp

holds, or equivalently,

(
βpxp + 1− βp

)1/p
< Mtan(x, 1) <

(
xp + 1

2

)1/p
(48)

for x ∈ (0, 1).



Axioms 2023, 12, 910 20 of 29

(iii) If 1/3 < p < 1, there is an x0 such that the ratio Utan/V is increasing on (0, x0) and
decreasing on (x0, 1), and therefore, the inequality

min
{

1
2

, βp

}
≤ Mp

tan(x, 1)− 1
xp − 1

holds for x ∈ (0, 1). In particular, when min
{

1/2, βp
}
= 1/2, that is, (ln 2)/(ln 2 + ln tan 1) ≤

p < 1, the inequality

Mtan(x, 1) <
(

xp + 1
2

)1/p
(49)

holds for x ∈ (0, 1); when min
{

1/2, βp
}
= βp, that is, 1/3 < p ≤ (ln 2)/(ln 2 + ln tan 1), the

inequality
Mtan(x, 1) <

(
βpxp + 1− βp

)1/p (50)

holds for x ∈ (0, 1).

Proof. Let f (t) = tan t. Then f
′
(t) = 1/ cos2 t and f

′′
(t) = (2 sin t)/ cos3 t. By (33)–(35),

we see that

M
′
tan(x, 1) =

1
2

t2 + t− sin t cos t
sin2 t

> 0, (51)

xM
′
tan(x, 1)−Mtan(x, 1) = −1

2
t2 − t + cos t sin t

sin2 t
< 0,

and Φtan(x) = φtan(t), where φtan(t) is defined by (23). As shown in the proof of Lemma 2,
η1(s) =

(
s2/2− s + sin s

)
> 0 and η2(s) =

(
s2/2 + s− sin s

)
> 0 for s ∈ (0, π), which

indicate that
M
′
tan(x, 1) > 0 and xM

′
tan(x, 1)−Mtan(x, 1) < 0

for x ∈ (0, 1). Then, by (31), we have that

sgn

[
U ′tan(x)
V ′(x)

]′
= − sgn(p− 1 + Φtan(x)) := − sgn ν(x). (52)

Lemma 2 tells us that φtan(t) is decreasing in t from (0, 1) onto (0, 2/3) which, by
Lemma 6 and x = (1− t)/(1 + t), implies that the function Φtan(x) (= φtan(t)) is increasing
in x from (0, 1) onto (0, 2/3).

(i) If 0 < p ≤ 1/3, then p− 1 + Φtan(x) ≤ 0 for x ∈ (0, 1), and so
(
U ′tan/V ′

)′
≥ 0 for

x ∈ (0, 1). It follows from Proposition 1 that Utan/V is increasing on (0, 1). This together
with (37) and (38) yields

1− 1
2p tanp 1

= lim
x→0+

Utan(x)
V(x)

<
Utan(x)
V(x)

< lim
x→1−

Utan(x)
V(x)

=
1
2

for x ∈ (0, 1), which implies (47).

(ii) If p ≥ 1, then p − 1 + Φtan(x) ≥ 0 for x ∈ (0, 1), and so
(
U ′tan/V ′

)′
≤ 0 for

x ∈ (0, 1). It follows from Proposition 1 that Utan/V is decreasing on (0, 1), and therefore,
the inequalities

1
2
<
Utan(x)
V(x)

< 1− 1
2p tanp 1

hold for x ∈ (0, 1), which implies (48).
(iii) In the case of p ∈ (1/3, 1), since ν(x) = p− 1 + Φtan(x) is increasing on (0, 1)

with ν(0+) = p− 1 < 0 and ν(1−) = p− 1/3 > 0, there is an x0 ∈ (0, 1) such that ν(x) < 0
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for x ∈ (0, x0) and ν(x) > 0 for x ∈ (x0, 1). This, by (52), implies that
(
U ′tan/V ′

)′
> 0 for

x ∈ (0, x0) and
(
U ′tan/V ′

)′
< 0 for x ∈ (x0, 1). To use Proposition 2, we also need the signs

of V ′ and HUtan,V (0+). By (51), it is derived that

M
′
tan
(
0+, 1

)
=

1
2

lim
t→1−

t2 + t− sin t cos t
sin2 t

=
4− sin 2
4 sin2 1

= 1.0910 . . . ,

which together with Mtan(0+, 1) = 1/(2 tan 1) gives

HUtan,V (x) =
U ′tan(x)
V ′(x)

V(x)−Utan(x)

=
Mp−1

tan (x, 1)M
′
tan(x, 1)

xp−1 (xp − 1)−
[

Mp
tan(x, 1)− 1

]
→ 1− 1

(2 tan 1)p as x → 0+.

Since p ∈ (1/3, 1), we see that HUtan,V (0+) > 0. Clearly, V ′(x) = pxp−1 > 0. It then follows
from Proposition 2 that there is an x0 ∈ (0, 1) such that Utan/V is increasing on (0, x0) and
decreasing on (x0, 1), and therefore, we have

min
{

1
2

, 1− 1
(2 tan 1)p

}
≤ Utan(x)
V(x)

=
Mp

tan(x, 1)− 1
xp − 1

for x ∈ (0, 1). In particular, when 1− (2 tan 1)−p ≥ 1/2, that is, (ln 2)/(ln 2 + ln tan 1) ≤
p < 1, the inequality (49) holds for x ∈ (0, 1). The proof is thus proved.

We are now in a position to prove Theorems 3 and 4.

Proof of Theorem 3. Assume that b > a > 0 and let x = a/b. It suffices to prove that the
double inequality (17) for (a, b) = (x, 1), that is,(

xp + 1
2

)1/p
< Mtan(x, 1) <

(
xq + 1

2

)1/q
, (53)

holds for x ∈ (0, 1) if and only if p ≤ 1/3 and q ≥ p0 = (ln 2)/(ln 2 + ln tan 1). The
sufficiency follows from the inequalities (47)–(49) in Theorem 6.

The necessity can be proved by the reduction to absurdity. Clearly, to prove the
necessity for which the second inequality of (53) holds for x ∈ (0, 1), it suffices to prove
q /∈ (1/3, p0). Assume that q ∈ (1/3, p0) such that the second inequality of (53) holds for
x ∈ (0, 1). By Theorem 6 (iii), there is an x0 such that the ratio Utan/V is increasing on
(0, x0) and decreasing on (x0, 1). Then

1
2
= lim

x→1−

Utan(x)
V(x)

<
Utan(x)
V(x)

for x ∈ (x0, 1),

that is,
Mtan(x, 1) < Aq(x, 1) for x ∈ (x0, 1).

On the other hand, q < p0 implies that βq < 1/2, that is,

βq = lim
x→0+

Utan(x)
V(x)

< lim
x→1−

Utan(x)
V(x)

= 1/2.

limUtan
(
0+
)
/V
(
0+
)
< Utan

(
1−
)
/V
(
1−
)
.
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Then there is an x1 ∈ (0, x0) such that Utan(x1)/V(x1) = 1/2, and therefore,

Utan(x)
V(x)

<
Utan(x1)

V(x1)
=

1
2

for x ∈ (0, x1),

which implies that
Mtan(x, 1) > Aq(x, 1) for x ∈ (0, x1).

These yield a contradiction.
In a similar way, we can prove that the necessary condition for which the first inequality

of (53) holds for x ∈ (0, 1) is p ≤ 1/3.
This completes the proof.

Using the same method as the proof of Theorem 2, we can easily prove Theorem 4, the
details of which are omitted.

4. Chains of Inequalities for Means

From Theorems 1 and 3 as well inequalities (2), (3), (4), (6), (9) and (10), we find that
the means He(a, b), L2(a, b), I(a, b), P(a, b), Msinh(a, b), (Mtan)2(a, b) have the same power
mean A2/3(a, b), where

Mp(a, b) = M(ap, bp)1/p if p 6= 0 and M0(a, b) = lim
p→0

Mp(a, b)

is the so-called “p-order M mean” or “power-type mean” (see [56]). Then a question
arises naturally: what is the relationship among these means? It was established in
Remark 4 [56] that

L2(a, b) < P(a, b) < NS1/2(a, b) < He(a, b) < A2/3(a, b) < I(a, b), (54)

and in Theorems 3.1 and 3.2 [57] that

c0L4(a, b) ≤ U(a, b) and U(a, b) < P2(a, b), (55)

where c0 = 0.9991 . . . The inequalities (55) are equivalent to

c2
0L2(a, b) ≤ U1/2(a, b) and U1/2(a, b) < P(a, b). (56)

Taking into account (54) and Propositions 5–7, we obtain a nice chain of inequalities
for means.

Theorem 7. The inequalities

V(a, b) < L2(a, b) < P(a, b) < NS1/2(a, b) < He(a, b)

< A2/3(a, b) < I(a, b) < Msinh(a, b) < (Mtan)2(a, b)
(57)

hold.

Combining (56) and (57), the following corollary is immediate.

Corollary 1. The inequalities

c2
0V(a, b) < c2

0L2(a, b) < U1/2(a, b) < P(a, b) < NS1/2(a, b) < He(a, b)

< A2/3(a, b) < I(a, b) < Msinh(a, b) < (Mtan)2(a, b)
(58)

hold, where c0 = 0.9991 . . . is the best constants.
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Remark 2. It was conjectured in Conjecture 1 [56] that NS(a, b) < Tp(a, b) holds if and only if
p ≥ 4/5. Then by Equation (4.3) [56], T2/5(a, b) can be interpolated between NS1/2(a, b) and
He(a, b) in (57) and (58).

The main results of the literature [13–15] are summarized in the inequalities (6)–(8).
In conjunction with the new results (17) and (57) of this paper, the following corollary can
be derived.

Corollary 2. The inequalities

L(a, b) < Ap(a, b) < P(a, b) < NS1/2(a, b)

< He(a, b) < A2/3(a, b) < I(a, b) < Msinh(a, b)

< (Mtan)2(a, b) < Aq(a, b) < T(a, b) < Ar(a, b).

(59)

hold, where 1/3 ≤ p ≤ (ln 2)/ ln π, (2 ln 2)/(ln 2 + ln tan 1) ≤ q ≤ (ln 2)/(ln π − ln 2) and
r ≥ 5/3.

Proof. By (57), it suffices to prove the first two inequalities and the last three inequalities.
The first two ones follow from the second one of (3) and the first one of (6) with the
increasing property of p 7→ Ap(a, b) on R. Replacing (a, b) by

(
a2, b2) and taking the square

root in the second one of (17) gives

(Mtan)2(a, b) < Aq(a, b),

where q ≥ 2p0 = (2 ln 2)/(ln 2 + ln tan 1) = 1.220 . . . This, in combination with (7) and
the increasing property of p 7→ Ap(a, b) on R proves the last three inequalities, thereby
completing the proof.

Next, we prove Propositions 5–7.

Proposition 5. The double inequality

I(a, b) < Msinh(a, b) <
e

2 sinh 1
I(a, b)

holds.

Proof. Assume that b > a > 0 and let x = a/b. Then, it suffices to prove that

0 < h1(x) < ln
e

2 sinh 1

for x ∈ (0, 1), where

h1(x) = ln(1− x)− ln 2− ln sinh
(

1− x
1 + x

)
−
(
−x ln x
1− x

− 1
)

.

Differentiation yields

(1− x)2h
′
1(x) = 2

(1− x)2

(x + 1)2 coth
(

1− x
1 + x

)
+ ln x = h2

(
1− x
1 + x

)
,

where
h2(t) = 2t2 coth t + ln

1− t
1 + t

, t ∈ (0, 1).
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Differentiation again yields

h
′
2(t) = 4t

cosh t
sinh t

− 2
t2

sinh2 t
+

2
t2 − 1

= − h3(t)
(1− t2) sinh2 t

,

where
h3(t) = 2t3 sinh 2t− 2t sinh 2t + cosh 2t + 2t2 − 2t4 − 1.

Expanding in power series leads to

h3(t) = 2
∞

∑
n=2

22n−3

(2n− 3)!
t2n − 2

∞

∑
n=1

22n−1

(2n− 1)!
t2n +

∞

∑
n=0

22n

(2n)!
t2n + 2t2 − 2t4 − 1

=
∞

∑
n=3

(2n− 1)
(
n2 − n− 1

)
(2n)!

(2t)2n > 0

for t > 0. This implies that h
′
2(t) < 0 for t ∈ (0, 1), which yields that h2(t) < limt→0 h2(t) = 0

for t ∈ (0, 1). It in turn implies that h
′
1(x) < 0 for x ∈ (0, 1), and therefore,

0 = lim
x→1−

h1(x) < h1(x) < lim
x→0+

h1(x) = 1− ln(sinh 1)− ln 2,

which completes the proof.

Proposition 6. The inequality √
Mtan(a2, b2) > Msinh(a, b)

holds.

Proof. Assume that b > a > 0 and let x = (b− a)/(b + a). Then

a
b
=

1− x
1 + x

and
b2 − a2

a2 + b2 =
2x

x2 + 1
.

The required inequality is equivalent to

0 <
b2 − a2

2 tan b2−a2

b2+a2

−
(

b− a
2 sinh b−a

b+a

)2

=
b2 − a2

2

(
cot

2x
x2 + 1

− x
2 sinh2 x

)

=
b2 − a2

2
x

2 sinh2 x
cot

2x
x2 + 1

(
2 sinh2 x

x
− tan

2x
x2 + 1

)
.

If we prove that

h4(x) = arctan

(
2 sinh2 x

x

)
− 2x

x2 + 1
> 0

for x ∈ (0, 1), then the required inequality follows. Since

2 sinh2 x
x

=
1
x
(cosh 2x− 1) =

∞

∑
n=1

22n

(2n)!
x2n−1 > 2x +

2
3

x3,

it suffices to prove that

h5(x) = arctan
(

2x +
2
3

x3
)
− 2x

x2 + 1
> 0
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for x ∈ (0, 1). Differentiation yields

h
′
5(x) = 2

x4(4x4 + 29x2 + 39
)

(x2 + 1)2
(4x6 + 24x4 + 36x2 + 9)

> 0,

which implies that h5(x) > limx→0 h5(x) = 0 for x ∈ (0, 1), thereby completing the proof.

Proposition 7. The inequality
V(a, b) < L2(a, b)

holds.

Proof. Assume that b > a > 0 and let x = a/b. Then the required inequality is equivalent to 1− x√
2 arsinh 1−x√

2x

2

<
1− x2

−2 ln x
,

which is, in turn, equivalent to

h6(x) =
(

arsinh
1− x√

2x

)2
+

(1− x)2

1− x2 ln x > 0

for x ∈ (0, 1). Differentiation yields

x
√

x2 + 1
x + 1

h
′
6(x) = − arsinh

1− x√
2x
− 2x ln x + x2 − 1

(x + 1)3

√
x2 + 1 = h7(x),

h
′
7(x) =

x + 1

2x
√

x2 + 1
−

(x + 1)
(
5x2 − 2x + 5

)
− 2(x− 1)

(
x2 − x + 1

)
ln x

√
x2 + 1(x + 1)4

=
−4x(1− x)

(
x2 − x + 1

)
2x(x + 1)4√x2 + 1

h8(x),

where

h8(x) = ln x−
(
1− x2)(x2 − 4x + 1

)
4x(x2 − x + 1)

.

Differentiation again yields

h
′
8(x) =

1
4
(1− x)2(x + 1)4

x2(x2 − x + 1)2 > 0

for x ∈ (0, 1). Then h8(x) < h8(1) = 0 for x ∈ (0, 1), which indicates that h
′
7(x) > 0

for x ∈ (0, 1), and hence, h7(x) < h7(1) = 0 for x ∈ (0, 1). This leads to h
′
6(x) < 0 for

x ∈ (0, 1), which gives h6(x) > h6(1) = 0 for x ∈ (0, 1), and the proof is complete.

5. Concluding Remarks

In this paper, we established the best power mean bounds for the Seiffert-like means
Msinh(a, b) and Mtan(a, b) by using monotone rules for the ratios of two functions (power
series). These results enrich the mean value theory, and our ideas and techniques used in
this paper can be applied to study other means and certain special functions.

Finally, we present several remarks.

Remark 3. In general, a mean bound for a symmetric mean is also symmetric, for example, the
bounds given in (15) and (17) are symmetric means. It is interesting, however, that the bounds given
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in (16) and (18) are asymmetric means. It is valuable and challenging to find the best asymmetric
mean bounds for a symmetric mean.

Remark 4. As a byproduct, we can give the maximum relative errors estimating Msinh by A2/3.
In fact, by Theorem 5 (i), we see that the function

x 7→ 1
2
−

Mp
sinh(x, 1)− 1

xp − 1
=

Mp
sinh(x, 1)− (xp + 1)/2

1− xp

is positive and decreasing on (0, 1) for 0 < p ≤ 2/3 as is the function x 7→ 2(1− xp)/(xp + 1).
Then the function

x 7→
Mp

sinh(x, 1)− (xp + 1)/2
1− xp

2(1− xp)

(xp + 1)
=

(
Msinh(x, 1)

Ap(x, 1)

)p
− 1

is decreasing on (0, 1), and so is Msinh(x, 1)/Ap(x, 1) on (0, 1) for 0 < p ≤ 2/3. It then
follows that

1 = lim
x→1

Msinh(x, 1)
Ap(x, 1)

<
Msinh(x, 1)

Ap(x, 1)
< lim

x→0

Msinh(x, 1)
Ap(x, 1)

=
21/p−1

sinh 1
,

which, by setting x = a/b and p = 2/3, gives

A2/3(a, b) < Msinh(a, b) <
√

2
sinh 1

A2/3(a, b),

or equivalently,

0 <
Msinh(a, b)− A2/3(a, b)

Msinh(a, b)
< 1− sinh 1√

2
= 0.169 . . .

Remark 5. Similarly, using Theorem 6 (i), we can prove that

A1/3(a, b) < Mtan(a, b) <
4

tan 1
A1/3(a, b),

or equivalently,

0 <
Mtan(a, b)− A1/3(a, b)

Mtan(a, b)
< 1− tan 1

4
= 0.610 . . . .

Remark 6. Based on the eight inequalities listed in Introduction and the new ones (15) and (17),
we observe that the ten means He, L, I, P, T, NS, U, V, Msinh, and Mtan have the sharp power
mean bounds Ap (sharp at a/b → 1), where p is a rational fraction in the lowest terms with the
denominator of 3. Is there a pattern?
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