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Abstract: In this paper, we generalize the study of finite sequences of orthogonal polynomials from
one to two variables. In doing so, twenty three new classes of bivariate finite orthogonal polynomials
are presented, obtained from the product of a finite and an infinite family of univariate orthogonal
polynomials. For these new classes of bivariate finite orthogonal polynomials, we present a bivariate
weight function, the domain of orthogonality, the orthogonality relation, the recurrence relations,
the second-order partial differential equations, the generating functions, as well as the parameter
derivatives. The limit relations among these families are also presented in Labelle’s flavor.
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1. Introduction

Let us consider a second-order linear differential equation of the form:(
ax2 + bx + c

)
y′′n + (dx + e)y′n = n(d + (n− 1)a)yn, (1)

where a, b, c, d, and e are all real parameters and n is a nonnegative integer. The problem
of finding all linear second-order differential equations of the Sturm–Liouville type with
polynomial coefficients having orthogonal polynomial solutions goes back to Bochner [1]
in 1929. Under some assumptions about the parameters a, b, c, d, and e, for each n, the
differential equation can have orthogonal polynomial solutions [2,3]. If we also impose that
the weight function for the orthogonality is positive, then we obtain the three very classical
orthogonal polynomial sequences of Jacobi, orthogonal with respect to the beta weight
function, Laguerre, orthogonal with respect to the gamma weight function, and Hermite,
orthogonal with respect to the normal weight function. These three families are infinite
sequences in the sense that, for each nonnegative integer n, there exists one element of
the family that is a polynomial of degree n. Recently, Masjed-Jamei [4] studied three
other finite classes of hypergeometric orthogonal polynomials, which are special solutions
to (1). These three families, denoted by M(λ,γ)

n (x), N(λ)
n (x), and I(λ)n (x), are finitely or-

thogonal with respect to the F sampling distribution, inverse Gamma distribution, and T
sampling distribution.

Very classical families of univariate orthogonal polynomials have been enlarged to
classical univariate orthogonal polynomials [2,3]. Following [5] (p. 189), we recall the
following definition of univariate classical orthogonal polynomials [6]: “An orthogonal
polynomial sequence is classical if it is a special case or limiting case of the 4φ3 polynomials
given by the q-Racah or the Askey-Wilson polynomials”. We refer to [2] for the required
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notations, as well as the definitions of q-Racah and Askey–Wilson polynomials. The limit
transitions among all univariate families known as the “Askey scheme”—or Tableau
d’Askey—was nicely designed by J. Labelle [7], and it appears, e.g., in [2].

In [8], Güldoğan et al. introduced some new finite classes of two-variable orthogonal
polynomials derived from two finite orthogonal polynomials in one variable by means
of Koornwinder’s method [9], giving some properties of these families. In [10], Fourier
transforms of the finite sets defined in [8] were studied, and some new orthogonal functions
were obtained via Parseval’s identity, presenting some limit relationships between finite
and infinite sequences of orthogonal polynomials in two variables.

In this paper, we constructed some new classes of two-variable finite orthogonal
polynomials obtained from the product of a finite and an infinite family of univariate
orthogonal polynomials. Furthermore, some transitions are given, and some new families
are defined by taking the limit of the bivariate orthogonal polynomials. For the 23 new
families introduced, recurrence relations, generating functions, and second-order partial
differential equations are presented. Since we obtained a large number of finite families
of bivariate orthogonal polynomials, we shall just give the details of the proofs for the
first family in Section 3.1. The other results can be obtained mutatis mutandis, and they
deserve also to be presented in Sections 3.2–3.23. The results were checked with the help of
Mathematica [11].

The main aims of this study were to increase and extend the number of families
of finite orthogonal polynomials and to provide tools that can serve as inspiration for
future studies.

The work is organized as follows. In Section 2, we recall the basic properties of
univariate orthogonal polynomials, both infinite and finite situations. In Section 3, we
introduce 23 new families of finite bivariate orthogonal polynomials. For each family,
we present the polynomials as the product of a finite and an infinite family of univariate
orthogonal polynomials described in Section 2. The orthogonality weight function, as well
as the domain and orthogonality relation are explicitly given. Next, recurrence relations,
second-order partial differential equations, and generating functions are derived. Further-
more, parameter derivatives are also investigated. Finally, the limit relations in Labelle’s
flavor [7] are given. As already mentioned, the sketch of the proofs will just be given for
the first family.

2. Infinite and Finite Univariate Families of Orthogonal Polynomials

Let us recall the general properties of the infinite sequences of the Jacobi, Laguerre,
and Hermite polynomials and the sets of finite orthogonal polynomials M(λ,γ)

n (x), N(λ)
n (x),

and I(λ)n (x).

2.1. The Jacobi Polynomials

The Jacobi polynomial P(λ,γ)
n (x) is defined by the explicit series [2] (p. 216):

P(λ,γ)
n (x) = 2−n

n

∑
k=0

Γ(n + λ + 1)Γ(n + γ + 1)
Γ(k + 1)Γ(n− k + 1)Γ(n + λ− k + 1)Γ(γ + k + 1)

× (x + 1)k(x− 1)n−k, (2)

where Γ(z) denotes the Gamma function. These polynomials are orthogonal on the in-
terval [−1, 1] with respect to the (beta) weight function w(x) = (1− x)λ(1 + x)γ. Jacobi
polynomials satisfy the orthogonality relation:

1∫
−1

(1− x)λ(1 + x)γP(λ,γ)
n (x)P(λ,γ)

m (x)dx =
2λ+γ+1Γ(λ + n + 1)Γ(γ + n + 1)δm,n

n!(λ + γ + 2n + 1)Γ(λ + γ + n + 1)
,
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where min{<(λ),<(γ)} > −1, m, n ∈ N0 := N∪{0}, and δm,n is the Kronecker delta [12].
The set of polynomials has the generating functions (see, e.g., [13] (p. 82, Equations (1) and (3)),
as well as [14] for the use of generating functions in discrete mathematics):

∞

∑
n=0

P(λ,γ)
n (x)tn =

2λ+γ

R(1− t + R)λ(1 + t + R)γ
, (3)

where R =
(
1− 2xt + t2)1/2 and

∞

∑
n=0

P(λ−βn,γ−θn)
n (x)tn =

(1 + ξ)λ+1(1 + η)γ+1

1 + βξ + θη − (1− β− θ)ξη
, (4)

where

ξ =
1
2
(x + 1)t(1 + ξ)1−β(1 + η)1−θ , η =

1
2
(x− 1)t(1 + ξ)1−β(1 + η)1−θ .

Jacobi polynomials P(λ,γ)
n (x) satisfy the following four recurrence relations [15,16]:

2n(n + λ + γ)(2n + λ + γ− 2)P(λ,γ)
n (x)

=
(
(2n + λ + γ− 2)3x + (2n + λ + γ− 1)

(
λ2 − γ2

))
P(λ,γ)

n−1 (x)

− 2(n + λ− 1)(n + γ− 1)(2n + λ + γ)P(λ,γ)
n−2 (x), (5)

(2n + λ + γ + 1)P(λ,γ)
n (x) = (n + λ + γ + 1)P(λ,γ+1)

n (x) + (n + λ)P(λ,γ+1)
n−1 (x), (6)

(x− 1)P(λ+1,γ+1)
n−1 (x) = 2

(
P(λ,γ+1)

n (x)− P(λ,γ)
n (x)

)
, (7)

n + λ + γ + 1
2

(
x2 − 1

)
P(λ+1,γ+1)

n−1 (x) = (2γ + n + nx)P(λ,γ)
n (x)− 2(γ + n)P(λ,γ−1)

n (x), (8)

where (µ)n stands for the Pochhammer symbol defined by (µ)n = µ(µ + 1) · · · (µ + n− 1)
for n = 1, 2, . . . and (µ)0 = 1.

Furthermore, we have the following limit relations between the Jacobi and Laguerre
polynomials introduced in the next section (see, e.g., [2] (Equation (9.8.16)) or [16,17]):

lim
λ→∞

P(λ,γ)
n

(
2x
λ
− 1
)
= (−1)nL(γ)

n (x)

and

lim
γ→∞

P(λ,γ)
n

(
1− 2x

γ

)
= L(λ)

n (x). (9)

Furthermore, for λ, γ > −1, we can compute the parameter derivatives of Jacobi
polynomials with respect to λ or γ, giving rise to (see [18] (p. 9, Equation (4.7)) or [19])

∂P(λ,γ)
n (x)

∂λ
=

n−1

∑
k=0

1
n + k + λ + γ + 1

P(λ,γ)
n (x)

+
(γ + 1)n

(λ + γ + 1)n

n−1

∑
k=0

(2k + λ + γ + 1)(λ + γ + 1)k
(n− k)(n + k + λ + γ + 1)(γ + 1)k

P(λ,γ)
k (x)
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and

∂P(λ,γ)
n (x)

∂γ
=

n−1

∑
k=0

1
n + k + λ + γ + 1

P(λ,γ)
n (x)

+
(λ + 1)n

(λ + γ + 1)n

n−1

∑
k=0

(−1)n+k(2k + λ + γ + 1)(λ + γ + 1)k
(n− k)(n + k + λ + γ + 1)(λ + 1)k

P(λ,γ)
k (x). (10)

2.2. The Generalized Laguerre Polynomials

The generalized Laguerre polynomials L(λ)
n (x) can be introduced by the series repre-

sentation [2] (p. 241):

L(λ)
n (x) =

n

∑
k=0

(−1)k Γ(n + λ + 1)
Γ(n− k + 1)Γ(λ + k + 1)

xk

k!
(11)

and the corresponding orthogonality relation with respect to the gamma weight function is
explicitly given as [12]

∞∫
0

xλe−xL(λ)
n (x)L(λ)

m (x)dx =
Γ(λ + n + 1)

n!
δm,n,

where <(λ) > −1, m, n ∈ N0. These polynomials have the generating functions (see,
e.g., [12] (p. 202, Equation (4)), [13] (p. 84, Equation (16)) or [20]):

∞

∑
n=0

L(λ)
n (x)tn =

1

(1− t)λ+1 exp
(
−tx
1− t

)
, (12)

and
∞

∑
n=0

L(λ+βn)
n (x)tn =

(1 + v)λ+1e−vx

1− βv
;

{
v = t(1 + v)β+1,
v(0) = 0.

(13)

Furthermore, for λ > −1, we have the following derivative with respect to the unique
parameter λ (see [19] or [21] (p. 80)):

∂L(λ)
n (x)
∂λ

=
n−1

∑
k=0

1
n− k

L(λ)
k (x).

2.3. The Hermite Polynomials

The Hermite polynomials Hn(x) defined by [12] (p. 187, Equation (2)):

Hn(x) =
[n/2]

∑
k=0

(−1)kn!(2x)n−2k

k!(n− 2k)!
, (14)

have the orthogonality relation in the form [13] (p. 73, Equation (13)):

∞∫
−∞

e−x2
Hn(x)Hm(x)dx = 2nn!

√
πδm,n.

The set of the polynomials is generated by [2] (Equation (9.15.10))

∞

∑
n=0

Hn(x)
tn

n!
= e2xt−t2

. (15)
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2.4. First Class of Finite Classical Orthogonal Polynomials M(λ,γ)
n (x)

The polynomials M(λ,γ)
n (x), which are defined by the Rodrigues formula:

M(λ,γ)
n (x) = (−1)n (1 + x)λ+γ

xγ

dn
(

xn+γ(1 + x)n−λ−γ
)

dxn , n = 0, 1, . . . , (16)

are polynomial solutions of the equation:

x(x + 1)y′′n(x) + ((2− λ)x + γ + 1)y′n(x)− n(n + 1− λ)yn(x) = 0.

The finite set
{

M(λ,γ)
n (x)

}N

n=0
is orthogonal with respect to the weight function

W1(x, λ, γ) = xγ(1 + x)−(λ+γ) on [0, ∞) if and only if λ > 2N + 1, γ > −1. That is,

∞∫
0

xγ

(1 + x)λ+γ
M(λ,γ)

n (x)M(λ,γ)
m (x)dx =

Γ(n + 1)Γ(λ− n)Γ(γ + n + 1)
(λ− 2n− 1)Γ(λ + γ− n)

δn,m

for m, n = 0, 1, 2, . . . , N <
λ− 1

2
, γ > −1, N = max{m, n}. The polynomials M(λ,γ)

n (x)
satisfy the following recurrence relations:

(λ− n− 1)(λ− 2n)M(λ,γ)
n+1 (x) = [(λ− 2n− 2)3x

+(λ− 2n− 1)(2n(n + 1)− λ(γ + 2n + 1))]M(λ,γ)
n (x)

− n(λ− 2n− 2)(λ + γ− n)(γ + n)M(λ,γ)
n−1 (x),

M(λ,γ)
n+1 (x) = ((λ− 2)x− (γ + 1))M(λ−2,γ+1)

n (x)− n(λ− n− 3)x(x + 1)M(λ−4,γ+2)
n−1 (x),

as well as
d

dx

(
M(λ,γ)

n (x)
)
= n(λ− n− 1)M(λ−2,γ+1)

n−1 (x).

for n = 1, 2, . . . .
Furthermore, the set of the polynomials has a generating function of the form:

∞

∑
n=0

M(λ,γ)
n (x)

tn

n!
=

2−λ

(
1− t +

√
(1 + t)2 + 4xt

)λ+γ

√
(1 + t)2 + 4xt

(
1 + t +

√
(1 + t)2 + 4xt

)γ .

Formally, the polynomials M(λ,γ)
n (x) are related to the Jacobi polynomials defined

in Equation (2) by

M(λ,γ)
n (x) = (−1)nn!P(γ,−λ−γ)

n (2x + 1)⇔ P(λ,γ)
n (x) =

(−1)n

n!
M(−λ−γ,λ)

n

(
x− 1

2

)
. (17)

Furthermore [22],
lim

λ→∞
M(λ,γ)

n

( x
λ

)
= (−1)nn!L(γ)

n (x).

2.5. Second Class of Finite Classical Orthogonal Polynomials N(λ)
n (x)

The polynomials N(λ)
n (x) are also defined through a Rodrigues formula:

N(λ)
n (x) = (−1)nxλe1/x

dn
(

x−λ+2ne−1/x
)

dxn , n = 0, 1, . . . (18)
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and they satisfy the second-order differential equation:

x2y′′n(x) + ((2− λ)x + 1)y′n(x)− n(n + 1− λ)yn(x) = 0.

The finite set
{

N(λ)
n (x)

}N

n=0
is orthogonal with respect to the weight function

W2(x, λ) = x−λe−1/x on [0, ∞) if and only if λ > 2N + 1, and

∞∫
0

x−λe−1/x N(λ)
n (x)N(λ)

m (x)dx =
Γ(n + 1)Γ(λ− n)

(λ− 2n− 1)
δn,m,

is satisfied for m, n = 0, 1, 2, . . . , N < λ−1
2 , N = max{m, n}. The polynomials N(λ)

n (x)
satisfy the following recurrence relations:

((λ− 2n− 2)3x− λ(λ− 2n− 1))N(λ)
n (x)− n(λ− 2n− 2)N(λ)

n−1(x)

= (λ− n− 1)(λ− 2n)N(λ)
n+1(x),

(λx− 1)N(λ)
n (x)− n(λ− n− 1)x2N(λ−2)

n−1 (x) = N(λ+2)
n+1 (x), (19)

and
d

dx

(
N(λ)

n (x)
)
= n(λ− n− 1)N(λ−2)

n−1 (x) (20)

for n = 1, 2, . . . . Moreover, the set of the polynomials is generated by:

∞

∑
n=0

N(λ+2n)
n (x)

tn

n!
= (1− tx)−λ exp

(
−t

1− tx

)
.

The relationship:

N(λ)
n (x) = n!xnL(λ−2n−1)

n

(
1
x

)
⇔ L(λ)

n (x) =
xn

n!
N(λ+2n+1)

n

(
1
x

)
(21)

between the polynomials N(λ)
n (x) and the Laguerre polynomials L(λ)

n (x) holds true.

2.6. Third Class of Finite Classical Orthogonal Polynomials I(λ)n (x)

The polynomials I(λ)n (x) are defined as follows:

I(λ)n (x) =
(−2)n(λ− n)n
(2λ− 2n− 1)n

(
1 + x2

)λ−1/2 dn
((

1 + x2)n−(λ−1/2)
)

dxn , n = 0, 1, . . . . (22)

These polynomials are solutions to the equation:(
1 + x2

)
y′′n(x) + (3− 2λ)xy′n(x)− n(n + 2− 2λ)yn(x) = 0,

and are orthogonal with respect to the weight function W3(x, λ) =
(
1 + x2)−(λ−1/2) in the

interval (−∞, ∞) if and only if λ > N + 1. The orthogonality relation corresponding to
these polynomials is given by
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∞∫
−∞

(
1 + x2

)−(λ−1/2)
I(λ)n (x)I(λ)m (x)dx

=
22n−1√πΓ(n + 1)Γ2(λ)Γ(2λ− 2n)

(λ− n− 1)Γ(λ− n)Γ(λ− n + 1/2)Γ(2λ− n− 1)
δn,m

for m, n = 0, 1, 2, . . . , N < λ− 1, N = max{m, n}.
For n ≥ 1, the following recurrence relations hold:

I(λ)n+1(x) = 2(λ− n− 1)xI(λ)n (x)− n(2λ− n− 1)I(λ)n−1(x),

4nλ(λ− 1)
(

1 + x2
)

I(λ−1)
n−1 (x)− 2λ(2λ− 1)xI(λ)n (x) = (n + 1− 2λ)I(λ+1)

n+1 (x)

as well as
d

dx

(
I(λ)n (x)

)
= 2n(λ− 1)I(λ−1)

n−1 (x).

Furthermore, the set of polynomials has a generating function of the form:

∞

∑
n=0

I(λ)n (x)
tn

n!
=
(

1 + 2tx− t2
)λ−1

,

and the relation:

I(λ)n (x) = n!inC(1−λ)
n (ix)⇔ C(λ)

n (x) =
1

n!in I(1−λ)
n (−ix) (23)

holds true between the polynomials I(λ)n (x) and the ultraspherical polynomials C(λ)
n (x)

defined in terms of Jacobi polynomials by [2] (p. 222):

C(λ)
n (x) =

(2λ)n

(λ + 1
2 )n

P(λ− 1
2 ,λ− 1

2 )
n (x).

Furthermore, we have the relation [13] (p. 125, Equation (6)):

C(λ)
n (x) = (−2)n

(√
x2 − 1

)n
P(−λ−n,−λ−n)

n

(
x√

x2 − 1

)
(24)

between the ultraspherical polynomials C(λ)
n (x) and the Jacobi polynomials. In [22], the fol-

lowing limit relation:

lim
λ→∞

(
λ−

n
2 I(λ)n

(
x√
λ

))
= Hn(x)

is given.

Now, we recall Koornwinder’s method to derive orthogonal polynomials in two
variables from two orthogonal polynomials in one variable [9,23].

Theorem 1 ([9]). Assume that v(x) and w(y) are positive weight functions on the interval
(c1, d1) and (c2, d2), respectively. Let τ(x) be a positive function on (c1, d1) and satisfy one of the
following assumptions:

Case 1: τ(x) is a polynomial of degree ≤ 1.
Case 2: τ2(x) is a polynomial of degree ≤ 2; (c2, d2) is a symmetric interval; w(y) is an

even function.
For each integer s ≥ 0, let κm(x; s), (m = 0, 1, . . . ) denote a sequence of orthogonal polyno-

mials in one variable with respect to the weight function τ2s+1(x)v(x). Let ηm(y) be a sequence
of orthogonal polynomials with respect to w(y). Then, polynomials φn,k in two variables can be
defined by
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φm,s(x, y) = κm−s(x; s)τs(x)ηs

(
y

τ(x)

)
, 0 ≤ s ≤ m.

These polynomials are orthogonal with respect to the weight function:

ρ(x, y) = v(x)w(y/τ(x)),

over the domain Ω = {(x, y) : c1 < x < d1, c2τ(x) < y < d2τ(x)}.

In the present paper, we define 23 sets of finite orthogonal polynomials in two variables
in terms of the finite univariate orthogonal polynomials M(λ,γ)

n (x), N(λ)
n (x), I(λ)n (x) and

very classical orthogonal polynomials P(λ,γ)
n (x), L(λ)

n (x) and Hn(x) by using Koornwinder’s
method. We present a number of properties for each family such as the orthogonality
relation, the recurrence relations, the partial differential equation, the generating function,
as well as the parameter derivatives of these polynomials.

3. The Finite Sets of the Bivariate Orthogonal Polynomials Obtained by the Product of
a Finite and an Infinite Univariate Orthogonal Polynomials

By means of the polynomials given by (2), (11), (14), (16), (18), and (22), we define the
following 23 sets of bivariate finite orthogonal polynomials in the next subsections.

3.1. The Set of Polynomials 1E(λ,γ)
n,k (x, y)

Definition 1. Let us define

1E(λ,γ)
n,k (x, y) = P(λ+2k+1,γ)

n−k (x)(1− x)k N(λ)
k

(
y

1− x

)
, k = 0, 1, . . . , n. (25)

The set
{

1E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w1(x, y) = (1− x)2λ(1 + x)γy−λ exp
(
−1− x

y

)
over the domain Ω1 = {(x, y) : −1 < x < 1, 0 < y < ∞} for λ > 2N + 1 and γ > −1.
Indeed, the following relation holds:

1∫
−1

∞∫
0

(1− x)2λ(1 + x)γy−λ exp(−(1− x)/y) 1E(λ,γ)
n,k (x, y) 1E(λ,γ)

r,s (x, y)dxdy

=
22k+λ+γ+2k!Γ(n + k + λ + 2)Γ(n− k + γ + 1)Γ(λ− k)

(λ− 2k− 1) (n− k)!(2n + λ + γ + 2)Γ(n + k + λ + γ + 2)
δn,rδk,s,

for n, r,= 0, 1, . . . , N <
λ− 1

2
, γ > −1, N = max{n, r}.

Theorem 2. The polynomials 1E(λ,γ)
n,k (x, y) satisfy the recurrence relations:

(2n + λ + γ + 2) 1E(λ,γ)
n,k (x, y) = (n + k + λ + γ + 2) 1E(λ,γ+1)

n,k (x, y)

+ (n + k + λ + 1) 1E(λ,γ+1)
n−1,k (x, y) , n ≥ 1, (26)

(n + k + λ + γ + 2)(1 + x) 1E(λ,γ+1)
n,k (x, y)

= ((2n + λ + γ + 2)(1 + x) + 2γ) 1E(λ,γ)
n,k (x, y)− 2(n− k + γ) 1E(λ,γ−1)

n,k (x, y) (27)
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and the three-term recurrence relation of the form:

An,kẼn+1,k(x, y) = (Bn,kx + Cn,k)Ẽn,k(x, y)− Dn,kẼn−1,k(x, y) , n ≥ 1 (28)

where Ẽn,k(x, y) = 1E(λ,γ)
n,k (x, y) and the coefficients are

An,k = 2(n− k + 1)(n + k + λ + γ + 2)(2n + λ + γ + 1),

Bn,k = (2n + λ + γ + 1)3,

Cn,k = (2n + λ + γ + 2)(λ + 2k + 1− γ)(λ + 2k + 1 + γ),

Dn,k = 2(n + k + λ + 1)(n− k + γ)(2n + λ + γ + 3).

Proof. To obtain (26)–(28), we substitute n → n− k, λ → λ + 2k + 1, γ → γ and, then,

multiply the equality by (1− x)k N(λ)
k

(
y

1− x

)
in (6) and in the equality of (7) and (8) in (5),

respectively.

Theorem 3. The polynomials (25) satisfy the partial differential equation:

y2Eyy − ((λ− 2)y− (1− x))Ey + k(λ− k− 1)E = 0. (29)

Proof. Let us consider n → k − 1, λ → λ − 2, and x → y
1−x in (19) and multiply the

equation by P(λ+2k+1,γ)
n−k (x)(1− x)k. Let us use the first partial derivative with respect to

the y variable:

∂

∂y 1E(λ,γ)
n,k (x, y) = k(λ− k− 1)P(λ+2k+1,γ)

n−k (x)(1− x)k−1N(λ−2)
k−1

(
y

1− x

)
and the second partial derivative with respect to the y variable:

∂2

∂y2 1E(λ,γ)
n,k (x, y) = (k− 1)2(λ− k− 2)2P(λ+2k+1,γ)

n−k (x)(1− x)k−2N(λ−4)
k−2

(
y

1− x

)
.

The partial differential Equation (29) is obtained by using (20).

Theorem 4. The set of polynomials 1E(λ−2k,γ)
n+k,k (x, y) is generated by

∞

∑
n,k=0

1E(λ−2k,γ)
n+k,k (x, y)

tn+k

k!
=

2λ+γ+1(1 + v)λ exp
(
− v(1−x)

y

)
(1 + 4v)R(1− t + R)λ+1(1 + t + R)γ

where R =
√

1− 2xt + t2 and v = ty/(1 + v)3 with v(0) = 0.

Proof. The result follows from Relations (3), (13), and (21).

Theorem 5. The polynomials (25) have the following parameter derivative:

∂

∂γ 1E(λ,γ)
n,k (x, y) =

n−k−1

∑
l=0

1
n + k + λ + γ + l + 2 1E(λ,γ)

n,k (x, y) +
n−k−1

∑
l=0

(−1)l+1

(l + 1)

×
(2(n− l) + λ + γ)(n + k + λ− l + 1)l+1

(2n− l + λ + γ + 1)(n + k + λ + γ− l + 1)l+1
1E(λ,γ)

n−l−1,k(x, y),

for n ≥ k + 1, k ≥ 0, and
∂

∂γ 1E(λ,γ)
n,n (x, y) = 0.
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Proof. From (10), we have

∂

∂γ 1E(λ,γ)
n,k (x, y) =

∂

∂γ

(
P(λ+2k+1,γ)

n−k (x)
)
(1− x)k N(λ)

k

(
y

1− x

)

=
n−k−1

∑
l=0

1E(λ,γ)
n,k (x, y)

n + k + λ + γ + l + 2
+ (1− x)k N(λ)

k

(
y

1− x

)
(λ + 2k + 2)n−k

(λ + γ + 2k + 2)n−k

×
n−k−1

∑
l=0

(−1)l+1(2(n− l) + λ + γ)(λ + γ + 2k + 2)n−k−l−1
(l + 1)(2n− l + λ + γ + 1)(λ + 2k + 2)n−k−l−1

P(λ+2k+1,γ)
n−k−l−1 (x)

=
n−k−1

∑
l=0

1E(λ,γ)
n,k (x, y)

n + k + λ + γ + l + 2
+

n−k−1

∑
l=0

(−1)l+1(2(n− l) + λ + γ)

(l + 1)(2n− l + λ + γ + 1)

× (λ + n + k− l + 1) · · · (λ + n + k + 1)
(λ + γ + n + k− l + 1) · · · (λ + γ + n + k + 1) 1E(λ,γ)

n−1−l,k(x, y)

=
n−k−1

∑
l=0

1
n + k + λ + γ + l + 2 1E(λ,γ)

n,k (x, y) +
n−k−1

∑
l=0

(−1)l+1

(l + 1)

×
(2(n− l) + λ + γ)(n + k + λ− l + 1)l+1

(2n− l + λ + γ + 1)(n + k + λ + γ− l + 1)l+1
1E(λ,γ)

n−l−1,k(x, y).

Lemma 1. If we substitute x → 1− 2x
γ and y→ 2y

γ and take the limit as γ→ ∞ in Definition (25),
from Relation (9), we obtain:

lim
γ→∞

[(γ

2

)k
1E(λ,γ)

n,k

(
1− 2x

γ
,

2y
γ

)]
= lim

γ→∞

[
P(λ+2k+1,γ)

n−k

(
1− 2x

γ

)
xk N(λ)

k

( y
x

)]
= L(λ+2k+1)

n−k (x)xk N(λ)
k

( y
x

)
= 2E(λ)

n,k (x, y)

which is a new bivariate orthogonal polynomial set expressed as the product of a finite set and an
infinite sequence of univariate orthogonal polynomials.

3.2. The Set of Polynomials 2E(λ)
n,k (x, y)

Definition 2. Let us define

2E(λ)
n,k (x, y) = L(λ+2k+1)

n−k (x)xk N(λ)
k

( y
x

)
, k = 0, 1, . . . , n. (30)

The set
{

2E(λ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w2(x, y) = x2λy−λe−
(

x+ x
y

)

over the domain Ω2 = {(x, y) : 0 < x, y < ∞} for λ > 2N + 1. In fact, the corresponding
orthogonality relation is

∞∫
0

∞∫
0

x2λ

yλex+ x
y

2E(λ)
n,k (x, y) 2E(λ)

r,s (x, y)dxdy =
k!Γ(n + k + λ + 2)Γ(λ− k)

(n− k)!(λ− 2k− 1)
δn,rδk,s

for n, r = 0, 1, . . . , N <
λ− 1

2
, N = max{n, r}.

Theorem 6. The polynomials defined in (30) satisfy the recurrence relation (28) for Ẽn,k(x, y) =

2E(λ)
n,k (x, y), An,k = n + k + 1, Bn,k = −1, Cn,k = 2n + λ + 2, and Dn,k = n + k + λ + 1.



Axioms 2023, 12, 932 11 of 35

Theorem 7. The polynomials 2E(λ)
n,k (x, y) satisfy the partial differential equations:

x2Exx + 2xyExy + y2Eyy + x(λ + 2− x)Ex + y(λ + 2− x)Ey + (nx− k(λ + k + 1))E = 0

and
y2Eyy − ((λ− 2)y− x)Ey + k(λ− k− 1)E = 0.

Theorem 8. The set of the polynomials (30) has the generating function:

∞

∑
n,k=0

2E(λ−2k)
n+k,k (x, y)

tn+k

k!
=

(1 + v)λ

(1 + 4v)(1− t)λ+2 exp
(
− tx

1− t
− vx

y

)
,

with the conditions v = ty(1 + v)−3 and v(0) = 0.

3.3. The Set of Polynomials 3E(λ,γ)
n,k (x, y)

Definition 3. Let us define

3E(λ,γ)
n,k (x, y) = P(λ,γ+2k+1)

n−k (x)(1 + x)k N(γ)
k

(
y

1 + x

)
, k = 0, 1, . . . , n. (31)

The set
{

3E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w3(x, y) = (1− x)λ(1 + x)2γy−γ exp(−(1 + x)/y)

over the domain Ω3 = {(x, y) : −1 < x < 1, 0 < y < ∞} for λ > −1, γ > 2N + 1. Indeed,
the orthogonality relation corresponding to these polynomials is:

1∫
−1

∞∫
0

(1− x)λ(1 + x)2γy−γ exp
(
−1 + x

y

)
3E(λ,γ)

n,k (x, y) 3E(λ,γ)
r,s (x, y)dxdy

=
22k+λ+γ+2k!Γ(n− k + λ + 1)Γ(n + k + γ + 2)Γ(γ− k)

(n− k)!(γ− 2k− 1)(2n + λ + γ + 2)Γ(n + k + λ + γ + 2)
δn,rδk,s

for n, r = 0, 1, . . . , N <
γ− 1

2
, λ > −1, and N = max{n, r}.

Theorem 9. The polynomials given by (31) satisfy the recurrence relations:

(1− x)(2n + λ + γ + 3) 3E(λ+1,γ)
n,k (x, y)

= 2(n− k + λ + 1) 3E(λ,γ)
n,k (x, y)− 2(n− k + 1) 3E(λ,γ)

n+1,k(x, y).

and the relation (28) for An,k = 2(n− k + 1)(n + k + λ + γ + 2)(2n + λ + γ + 1), Bn,k =

(2n + λ + γ + 1)3, Cn,k = (2n + λ + γ + 2)
(

λ2 − (γ + 2k + 1)2
)

, Ẽn,k(x, y) = 3E(λ,γ)
n,k (x, y),

and Dn,k = 2(n− k + λ)(n + k + γ + 1)(2n + λ + γ + 3).

Theorem 10. The polynomials 3E(λ,γ)
n,k (x, y) satisfy the partial differential equation:

y2Eyy − ((γ− 2)y− (1 + x))Ey + k(γ− k− 1)E = 0.

Theorem 11. The set of the polynomials (31) is generated by:
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∞

∑
n,k=0

3E(λ,γ−2k)
n+k,k (x, y)

tn+k

k!
=

2λ+γ+1(1 + v)γ(1 + t + R)−(γ+1)

(1 + 4v)R(1− t + R)λ
exp

(
−v(1 + x)

y

)

where R =
√

1− 2xt + t2 and v = ty(1 + v)−3, v(0) = 0.

Lemma 2. If we substitute x → 2x
λ − 1 and y→ 2y

λ and take the limit as λ→ ∞ in Definition (31),
we obtain:

lim
λ→∞

[(
λ

2

)k

3E(λ,γ)
n,k

(
2x
λ
− 1,

2y
λ

)]
= lim

λ→∞

[
P(λ,γ+2k+1)

n−k

(
2x
λ
− 1
)

xk N(γ)
k

( y
x

)]
= (−1)n−kL(γ+2k+1)

n−k (x)xk N(γ)
k

( y
x

)
= (−1)n−k

2E(γ)
n,k (x, y),

where 2E(γ)
n,k (x, y) is defined in (30).

Theorem 12. The parameter derivative of the polynomials 3E(λ,γ)
n,k (x, y) is given by:

∂

∂λ
3E(λ,γ)

n,k (x, y)

= (1 + x)k N(γ)
k

(
y

1 + x

)n−k−1

∑
l=0

P(λ,γ+2k+1)
n−k (x)

n + k + λ + γ + l + 2
+

(γ + 2k + 2)n−k
(λ + γ + 2k + 2)n−k

×
n−k−1

∑
l=0

(2(k + l) + λ + γ + 2)(λ + γ + 2k + 2)l P
(λ,γ+2k+1)
l (x)

(n− k− l)(n + k + λ + γ + l + 2)(γ + 2k + 2)l

}

=
n−k−1

∑
l=0

1
n + k + λ + γ + l + 2 3E(λ,γ)

n,k (x, y)

+
n−k−1

∑
l=0

(2(n− l) + λ + γ)(n + k + γ− l + 1)l+1
(l + 1)(2n− l + λ + γ + 1)(n + k + λ + γ− l + 1)l+1

3E(λ,γ)
n−l−1,k(x, y),

for n ≥ k + 1, k ≥ 0 and
∂

∂λ
3E(λ,γ)

n,n (x, y) = 0.

3.4. The Set of Polynomials 4E(λ,γ)
n,k (x, y)

Definition 4. Let us define

4E(λ,γ)
n,k (x, y) = N(λ−2k−1)

n−k (x)xkP(λ,γ)
k

( y
x

)
, k = 0, 1, . . . , n. (32)

The set
{

4E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w4(x, y) = (x− y)λ(x + y)γx−(2λ+γ) exp(−1/x)

over the domain Ω4 = {(x, y) : 0 < x < ∞,−x < y < x} for λ > 2N + 2, γ > −1. The or-
thogonality relation corresponding to these polynomials is given by:

∞∫
0

x∫
−x

x−(2λ+γ)e−1/x(x− y)λ(x + y)γ
4E(λ,γ)

n,k (x, y) 4E(λ,γ)
r,s (x, y)dydx

=
2λ+γ+1(n− k)!Γ(λ− n− k− 1)Γ(k + λ + 1)Γ(k + γ + 1)

k!(λ− 2n− 2)(2k + λ + γ + 1)Γ(k + λ + γ + 1)
δn,rδk,s,
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for n, r = 0, 1, . . . , N <
λ− 2

2
, γ > −1, N = max{n, r}.

Theorem 13. The polynomials 4E(λ,γ)
n,k (x, y) satisfy the recurrence relation (28), where

An,k = (λ− 2n− 1)(λ− n− k− 2), Bn,k = (λ− 2n− 3)3, Cn,k = (2n− λ + 2)(λ− 2k− 1),

Dn,k = (n− k)(λ− 2n− 3), as well as Ẽn,k(x, y) = 4E(λ,γ)
n,k (x, y).

Theorem 14. The polynomials 4E(λ,γ)
n,k (x, y) satisfy the second-order partial differential equation:

x3Exx + 2x2yExy + xy2Eyy − x((λ− 3)x− 1)Ex

− y((λ− 3)x− 1)Ey + (n(λ− n− 2)x− k)E = 0.

Theorem 15. For the polynomials 4E(λ+2k,γ)
n+k,k (x, y), we have the generating function:

∞

∑
n,k=0

4E(λ+2k,γ)
n+k,k (x, y)

tn+k

n!
=

(1 + v)λ−1e−v/x

1 + 2v
(1 + ξ)λ+1(1 + η)γ+1

1− 2ξ − 3ξη

where we denoted v =
tx

1 + v
, with v(0) = 0, ξ =

t(y + x)
2

(1 + η)(1 + ξ)3, as well as

η =
t(y− x)

2
(1 + η)(1 + ξ)3.

Lemma 3. If we substitute y→ x− 2y
γ and take the limit as γ→ ∞ in Definition (32), then

lim
γ→∞

[
4E(λ,γ)

n,k

(
x, x− 2y

γ

)]
= lim

γ→∞

[
N(λ−2k−1)

n−k (x)xkP(λ,γ)
k

(
1− 2y

γx

)]
= N(λ−2k−1)

n−k (x)xkL(λ)
k

( y
x

)
= 5E(λ)

n,k (x, y).

3.5. The Set of Polynomials 5E(λ)
n,k (x, y)

Definition 5. Let us define

5E(λ)
n,k (x, y) = N(λ−2k−1)

n−k (x)xkL(λ)
k

( y
x

)
, k = 0, 1, . . . , n. (33)

The set
{

5E(λ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w5(x, y) = x−2λyλ exp(−(1 + y)/x)

over the domain Ω5 = {(x, y) : 0 < x, y < ∞} for λ > 2N + 2. The orthogonality relation
reads as

∞∫
0

∞∫
0

x−2λyλ exp
(
−1 + y

x

)
5E(λ)

n,k (x, y) 5E(λ)
r,s (x, y)dydx

=
(n− k)!Γ(λ− n− k− 1)Γ(k + λ + 1)

k!(λ− 2n− 2)
δn,rδk,s

for n, r = 0, 1, . . . , N <
λ− 2

2
, N = max{n, r}.

Theorem 16. For the polynomials 5E(λ)
n,k (x, y) defined by (33), the recurrence relation (28) holds

true for Ẽn,k(x, y) = 5E(λ)
n,k (x, y), with the coefficients:
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An,k = (λ− 2n− 1)(λ− n− k− 2), Bn,k = (λ− 2n− 3)3,

Cn,k = (2n− λ + 2)(λ− 2k− 1), Dn,k = (n− k)(λ− 2n− 3).

Theorem 17. The polynomials 5E(λ)
n,k (x, y) satisfy the second-order partial differential equations:

x3Exx + 2x2yExy + xy2Eyy − x((λ− 3)x− 1)Ex − y((λ− 3)x− 1)Ey

+ (n(λ− n− 2)x− k)E = 0

and
xyEyy + ((λ + 1)x− y)Ey + kE = 0.

Theorem 18. For the polynomials 5E(λ+2k)
n+k,k (x, y), the generating function:

∞

∑
n,k=0

5E(λ+2k)
n+k,k (x, y)

tn+k

n!k!
=

(1 + v)λ−1(1 + w)λ+1 exp
(
− v+wy

x

)
(1 + 2v)(1− 2w)

holds where v = xt/(1 + v), v(0) = 0, and w = ty(1 + w)3, w(0) = 0.

3.6. The Set of Polynomials 6E(λ,γ)
n,k (x, y)

Definition 6. Let us define

6E(λ,γ)
n,k (x, y) = M(λ−2k−1,γ+2k+1)

n−k (x)xk Hk

( y
x

)
, k = 0, 1, . . . , n. (34)

The set
{

6E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w6(x, y) = xγ(1 + x)−(λ+γ) exp
(
−y2/x2

)
over the domain Ω6 = {(x, y) : 0 < x < ∞,−∞ < y < ∞} for λ > 2N + 2, γ > −2.
The corresponding orthogonality relation takes the form:

∞∫
0

∞∫
−∞

xγ(1 + x)−(λ+γ) exp
(
− y2

x2

)
6E(λ,γ)

n,k (x, y) 6E(λ,γ)
r,s (x, y)dxdy

=
2k(n− k)!k!

√
πΓ(λ− n− k− 1)Γ(γ + n + k + 2)

(λ− 2n− 2)Γ(λ + γ− n + k)
δn,rδk,s,

for n, r = 0, 1, . . . , N <
λ− 2

2
, γ > −2, N = max{n, r}.

Theorem 19. The polynomials 6E(λ,γ)
n,k (x, y) defined in (34) satisfy the following recurrence

relations:

6E(λ,γ)
n,k (x, y) = ((λ− 2k− 3)x− (γ + 2k + 2)) 6E(λ−2,γ+1)

n−1,k (x, y)

− (n− k− 1)(λ− n− k− 3)x(x + 1) 6E(λ−4,γ+2)
n−2,k (x, y), n ≥ 2,

6E(λ,γ)
n,k (x, y) = 2y 6E(λ−2,γ+2)

n−1,k−1 (x, y)− 2(k− 1)x2
6E(λ−4,γ+4)

n−2,k−2 (x, y),

for n ≥ 2, 0 ≤ k ≤ n− 2, the differential relation:

∂j

∂yj 6E(λ,γ)
n,k (x, y) = 2j(k− j + 1)j 6E(λ−2j,γ+2j)

n−j,k−j (x, y), 0 ≤ j ≤ k ≤ n
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as well as the relation (28) by substituting Ẽn,k(x, y) = 6E(λ,γ)
n,k (x, y), and the coefficients are given

by An,k = (λ− n− k− 2)(λ− 2n− 1), Bn,k = (λ− 2n− 3)3, Cn,k = (λ− 2n− 2)(2(n− k)2
−(λ− 2k− 1)(γ + 2n + 2)),and Dn,k = (n− k)(λ− 2n− 3)(λ + γ− n + k)(n + k + γ + 1).

Theorem 20. The polynomials 6E(λ,γ)
n,k (x, y) satisfy the partial differential equations:

x2(x + 1)Exx + 2xy(x + 1)Exy + y2(x + 1)Eyy − x[(λ− 3)x− (γ + 2)]Ex

− y[(λ− 3)x− (γ + 2)]Ey + [n(λ− n− 2)x− k(γ + k + 1)]E = 0,

and
x2Eyy − 2yEy + 2kE = 0.

Theorem 21. The polynomials 6E(λ+2k,γ−2k)
n+k,k (x, y) are generated by

∞

∑
n,k=0

6E(λ+2k,γ−2k)
n+k,k (x, y)

tn+k

n!k!
=

21−λ

(
1− t +

√
(1 + t)2 + 4xt

)λ+γ

e2yt−(xt)2

√
(1 + t)2 + 4xt

(
1 + t +

√
(1 + t)2 + 4xt

)γ+1 .

Lemma 4. If we substitute x → x
λ

and y → y
λ

and take the limit as λ → ∞ in Definition (34),
we obtain

lim
λ→∞

[
λk

6E(λ,γ)
n,k

( x
λ

,
y
λ

)]
= lim

λ→∞

[
M(λ−2k−1,γ+2k+1)

n−k

( x
λ

)
xk Hk

( y
x

)]
= (−1)n−k(n− k)!L(γ+2k+1)

n−k (x)xk Hk

( y
x

)
= (−1)n−k(n− k)!Z(γ)

n,k (x, y)

where we used the notation Z(γ)
n,k (x, y) introduced in [22].

Remark 1. The bivariate orthogonal polynomials Z(γ)
n,k (x, y) are the product of two infinite families

of univariate orthogonal polynomials.

3.7. The Set of Polynomials 7E(λ,γ)
n,k (x, y)

Definition 7. Let us define

7E(λ,γ)
n,k (x, y) = M(λ−2k−1,γ)

n−k (x)(1 + x)k Hk

(
y

1 + x

)
, k = 0, 1, . . . , n. (35)

The set
{

7E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w7(x, y) = xγ(1 + x)−(λ+γ) exp
(
−y2/(1 + x)2

)
over the domain Ω7 = {(x, y) : 0 < x < ∞, −∞ < y < ∞} for λ > 2N + 2, γ > −1. It
follows from the orthogonality relation:

∞∫
0

∞∫
−∞

xγ(1 + x)−(λ+γ)e
− y2

(1+x)2 7E(λ,γ)
n,k (x, y) 7E(λ,γ)

r,s (x, y)dydx

=
2k(n− k)!k!

√
πΓ(λ− n− k− 1)Γ(γ + n− k + 1)

(λ− 2n− 2)Γ(λ + γ− n− k− 1)
δn,rδk,s

for n, r = 0, 1, . . . , N < λ−2
2 , γ > −1, N = max{n, r}.
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Theorem 22. The polynomials 7E(λ,γ)
n,k (x, y) satisfy the following recurrence relations:

7E(λ,γ)
n,k (x, y) = 2y 7E(λ−2,γ)

n−1,k−1(x, y)− 2(k− 1)(1 + x)2
7E(λ−4,γ)

n−2,k−2(x, y), n ≥ 2,

7E(λ,γ)
n,k (x, y) = ((λ− 2k− 3)x− (γ + 1)) 7E(λ−2,γ+1)

n−1,k (x, y)

− (n− k− 1)(λ− n− k− 3)x(x + 1) 7E(λ−4,γ+2)
n−2,k (x, y),

for n ≥ 2, 0 ≤ k ≤ n− 2, the differential relation:

∂j

∂yj 7E(λ,γ)
n,k (x, y) = 2j(k− j + 1)j 7E(λ−2j,γ)

n−j,k−j (x, y) , 0 ≤ j ≤ k ≤ n

as well as the relation (28) by substituting Ẽn,k(x, y) = 7E(λ,γ)
n,k (x, y), and the coefficients

are explicitly given by An,k = (λ− n− k− 2)(λ− 2n− 1), Bn,k = (λ− 2n− 3)3, Cn,k =
(λ− 2n− 2)(2(n− k)2 − (λ− 2k− 1)(2(n− k) + γ + 1)), and Dn,k = (n− k)(λ− 2n− 3)
×(λ + γ− n− k− 1)(γ + n− k).

Theorem 23. The polynomials 7E(λ,γ)
n,k (x, y) satisfy the partial differential equations:

x(1 + x)2Exx + 2xy(1 + x)Exy + xy2Eyy − (1 + x)((λ− 3)x− (γ + 1))Ex

− y((λ− 3)x− (γ + 1))Ey + (n(λ− n− 2)(1 + x)− k(λ + γ− k− 1))E = 0

and
(1 + x)2Eyy − 2yEy + 2kE = 0.

Theorem 24. The set 7E(λ+2k,γ)
n+k,k (x, y) is generated by

∞

∑
n,k=0

7E(λ+2k,γ)
n+k,k (x, y)

tn+k

n!k!
=

e2ty−t2(1+x)2
(

1− t +
√
(1 + t)2 + 4xt

)λ+γ−1

2λ−1
√
(1 + t)2 + 4xt

(
1 + t +

√
(1 + t)2 + 4xt

)γ .

Lemma 5. If we substitute x → x
λ and take the limit as λ→ ∞ in Definition (35), we obtain

lim
λ→∞

[
7E(λ,γ)

n,k

( x
λ

, y
)]

= (−1)n−k(n− k)!L(γ)
n−k(x)Hk(y)

which gives the product of the Laguerre and Hermite polynomials [23–25].

3.8. The Set of Polynomials 8E(λ,γ)
n,k (x, y)

Definition 8. Let us define

8E(λ,γ)
n,k (x, y) = P(λ+2k+1,γ)

n−k (x)(1− x)k I(λ)k

(
y

1− x

)
, k = 0, 1, . . . , n. (36)

The set
{

8E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w8(x, y) = (1− x)3λ−1(1 + x)γ
(
(1− x)2 + y2

)−(λ−1/2)

over the domain Ω8 = {(x, y) : −1 < x < 1,−∞ < y < ∞} for λ > N + 1, γ > −1. The or-
thogonality relation corresponding to these polynomials is given by
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1∫
−1

∞∫
−∞

(1− x)3λ−1(1 + x)γ(
(1− x)2 + y2

)(λ−1/2) 8E(λ,γ)
n,k (x, y) 8E(λ,γ)

r,s (x, y)dydx

=
22k+3λ+γk!Γ2(λ)Γ(n + k + λ + 2)Γ(n− k + γ + 1)δn,rδk,s

(n− k)!(2n + λ + γ + 2)(λ− k− 1)Γ(2λ− k− 1)Γ(n + k + λ + γ + 2)

for n, r = 0, 1, . . . , N < λ− 1, γ > −1, N = max{n, r}.

Theorem 25. The polynomials 8E(λ,γ)
n,k (x, y) defined in (36) satisfy the recurrence relation (28) for

Ẽn,k(x, y) = 8E(λ,γ)
n,k (x, y), and the coefficients defined by

An,k = 2(n− k + 1)(n + k + λ + γ + 2)(2n + λ + γ + 1),

Bn,k = (2n + λ + γ + 1)3, Cn,k = (2n + λ + γ + 2)
(
(λ + 2k + 1)2 − γ2

)
,

Dn,k = 2(n + k + λ + 1)(n− k + γ)(2n + λ + γ + 3).

Theorem 26. The polynomials 8E(λ,γ)
n,k (x, y) satisfy the partial differential equation:(

y2 + (1− x)2
)

Eyy − (2λ− 3)yEy − k(k + 2− 2λ)E = 0.

Theorem 27. For the polynomials given by (36), we have the generating function:

∞

∑
n,k=0

8E(λ−2k,γ)
n+k,k (x, y)

tn+k

k!
=

2λ+γ+1(1 + ξ)λ(1 + η)λ

R(1− t + R)λ+1(1 + t + R)γ(1 + 3ξ + 3η + 5ξη)

where R =
√

1− 2xt + t2, ξ =
t
(

y+
√

y2+(1−x)2
)

(1+ξ)2(1+η)2 and η =
t
(

y−
√

y2+(1−x)2
)

(1+ξ)2(1+η)2 .

Theorem 28. The parameter derivative of the polynomials (36) is given by

∂

∂γ

(
8E(λ,γ)

n,k (x, y)
)
=

n−k−1

∑
l=0

1
n + k + λ + γ + 2 + l 8E(λ,γ)

n,k (x, y)

+
n−k−1

∑
l=0

(−1)l+1(2(n− l) + λ + γ)(n + k + λ + 1− l)l+1
(l + 1)(2n + λ + γ + 1− l)(n + k + λ + γ + 1− l)l+1

8E(λ,γ)
n−1−l,k(x, y)

for n ≥ k + 1, k ≥ 0, and ∂
∂γ 8E(λ,γ)

n,n (x, y) = 0.

Lemma 6. If we substitute x → 2x
λ − 1 and y → 2y√

λ

(
1− x

λ

)
and take the limit as λ → ∞ in

Definition (36), we obtain

lim
λ→∞

[
2−kλ−

k
2 8E(λ,γ)

n,k

(
2x
λ
− 1,

2y√
λ

(
1− x

λ

))]
= (−1)n−kL(γ)

n−k(x)Hk(y)

where L(γ)
n−k(x)Hk(y) defined in [23–25] is the product of two infinite sequences of univariate

orthogonal polynomials.

From a different viewpoint, we give the following limit case.

Lemma 7. If we substitute x → 1− 2x
γ and y→ 2y

γ and take the limit as γ→ ∞ in Definition (36),
we obtain
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lim
γ→∞

[(γ

2

)k
8E(λ,γ)

n,k

(
1− 2x

γ
,

2y
γ

)]
= L(λ+2k+1)

n−k (x)xk I(λ)k

( y
x

)
= 9E(λ)

n,k (x, y).

3.9. The Set of Polynomials 9E(λ)
n,k (x, y)

Definition 9. Let us introduce

9E(λ)
n,k (x, y) = L(λ+2k+1)

n−k (x)xk I(λ)k

( y
x

)
, k = 0, 1, . . . , n. (37)

The set
{

9E(λ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w9(x, y) = xλe−x
(

1 + y2/x2
)−(λ−1/2)

over the domain Ω9 = {(x, y) : 0 < x < ∞,−∞ < y < ∞} for λ > N + 1. That is, the cor-
responding orthogonality relation:

∞∫
0

∞∫
−∞

xλe−x
(

1 + y2/x2
)−(λ−1/2)

9E(λ)
n,k (x, y) 9E(λ)

r,s (x, y)dydx

=
22λ−2k!Γ2(λ)Γ(n + k + λ + 2)δn,rδk,s

(n− k)!(λ− k− 1)Γ(2λ− k− 1)

is satisfied for n, r = 0, 1, . . . , N < λ− 1, N = max{n, r}.

Theorem 29. For the polynomials (37), we have the recurrence relation (28) for
Ẽn,k(x, y) = 9E(λ)

n,k (x, y), An,k = n − k + 1, Bn,k = −1, Cn,k = 2n + 2 + λ, and
Dn,k = n + k + λ + 1.

Theorem 30. The polynomials 9E(λ)
n,k (x, y) satisfy the partial differential equations:

x2Exx + 2xyExy + y2Eyy + x(λ + 2− x)Ex + y(λ + 2− x)Ey + [nx− k(λ + k + 1)]E = 0

and (
x2 + y2

)
Eyy − (2λ− 3)yEy − k(k + 2− 2λ)E = 0.

Theorem 31. The set of the polynomials 9E(λ−2k)
n+k,k (x, y) is generated by

∞

∑
n,k=0

9E(λ−2k)
n+k,k (x, y)

tn+k

k!
=

exp
(−tx

1−t
)
(1 + ξ)λ(1 + η)λ

(1− t)λ+2(1 + 3ξ + 3η + 5ξη)

where ξ =
t
(

y+
√

x2+y2
)

(1+ξ)2(1+η)2 and η =
t
(

y−
√

x2+y2
)

(1+ξ)2(1+η)2 .

3.10. The Set of Polynomials 10E(λ,γ)
n,k (x, y)

Definition 10. Let us define

10E(λ,γ)
n,k (x, y) = P(λ,γ+2k+1)

n−k (x)(1 + x)k I(γ)k

(
y

1 + x

)
, k = 0, 1, . . . , n. (38)

The set
{

10E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:
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w10(x, y) = (1− x)λ(1 + x)3γ−1
(
(1 + x)2 + y2

)−(γ− 1
2 )

over the domain Ω10 = {(x, y) : −1 < x < 1,−∞ < y < ∞} for λ > −1, γ > N + 1.
That is,

1∫
−1

∞∫
−∞

(1− x)λ(1 + x)3γ−1(
(1 + x)2 + y2

)γ−1/2 10E(λ,γ)
n,k (x, y) 10E(λ,γ)

r,s (x, y)dydx

=
22k+λ+3γk!Γ2(γ)Γ(n− k + λ + 1)Γ(n + k + γ + 2)δn,rδk,s

(n− k)!(2n + λ + γ + 2)(γ− k− 1)Γ(n + k + λ + γ + 2)Γ(2γ− k− 1)

for n, r = 0, 1, . . . , N < γ− 1, λ > −1, N = max{n, r}.

Theorem 32. The polynomials defined by (38) satisfy the recurrence relation:

(2n + λ + γ + 3)(1− x) 10E(λ+1,γ)
n,k (x, y)

= 2(n− k + λ + 1) 10E(λ,γ)
n,k (x, y)− 2(n− k + 1) 10E(λ,γ)

n+1,k(x, y)

and the relation (28) if we consider Ẽn,k(x, y) = 10E(λ,γ)
n,k (x, y) and the coefficients

An,k = 2(n− k + 1)(n + k + λ + γ + 2)(2n + λ + γ + 1),

Bn,k = (2n + λ + γ + 1)3,

Cn,k = (2n + λ + γ + 2)(λ− γ− 2k− 1)(λ + γ + 2k + 1),

Dn,k = 2(n− k + λ)(n + k + γ + 1)(2n + λ + γ + 3).

Theorem 33. The polynomials 10E(λ,γ)
n,k (x, y) satisfy the partial differential equation:(

(1 + x)2 + y2
)

Eyy − (2γ− 3)yEy − k(k + 2− 2γ)E = 0.

Theorem 34. The polynomials 10E(λ,γ−2k)
n+k,k (x, y) have the generating function:

∞

∑
n,k=0

10E(λ,γ−2k)
n+k,k (x, y)

tn+k

k!
=

2λ+γ+1(1 + ξ)γ(1 + η)γ

R(1− t + R)λ(1 + t + R)γ+1(1 + 3ξ + 3η + 5ξη)
,

where R =
√

1− 2xt + t2 and ξ =
t
(

y+
√

y2+(1+x)2
)

(1+ξ)2(1+η)2 , η =
t
(

y−
√

y2+(1+x)2
)

(1+ξ)2(1+η)2 .

Lemma 8. If we substitute x → 2x
λ − 1 and y→ 2y

λ and take the limit as λ→ ∞ in Definition (38),
we obtain

lim
λ→∞

[(
λ

2

)k

10E(λ,γ)
n,k

(
2x
λ
− 1,

2y
λ

)]
= (−1)n−kL(γ+2k+1)

n−k (x)xk I(γ)k

( y
x

)
= (−1)n−k

9E(γ)
n,k (x, y).

From a different viewpoint, we give the following limit case.

Lemma 9. If we substitute x → 1− 2x
γ and y → 2y√

γ

(
1− x

γ

)
and take the limit as γ → ∞ in

Definition (38), we obtain
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lim
γ→∞

[
2−kγ−

k
2 10E(λ,γ)

n,k

(
1− 2x

γ
,

2y√
γ

(
1− x

γ

))]
= L(λ)

n−k(x)Hk(y).

Theorem 35. The parameter derivative of the polynomials 10E(λ,γ)
n,k (x, y) is given by

∂

∂λ

(
10E(λ,γ)

n,k (x, y)
)
=

n−k−1

∑
l=0

1
n + k + λ + γ + 2 + l 10E(λ,γ)

n,k (x, y)

+
n−k−1

∑
l=0

(2(n− l) + λ + γ)(n + k + γ + 1− l)l+1
(l + 1)(2n + λ + γ + 1− l)(n + k + λ + γ + 1− l)l+1

10E(λ,γ)
n−1−l,k(x, y)

for n ≥ k + 1, k ≥ 0 and ∂
∂λ 10E(λ,γ)

n,n (x, y) = 0.

3.11. The Set of Polynomials 11E(λ,γ)
n,k (x, y)

Definition 11. Let us define

11E(λ,γ)
n,k (x, y) = P(λ,γ+2k+1)

n−k (x)(1 + x)k I(λ)k

(
y

1 + x

)
, k = 0, 1, . . . , n. (39)

The set
{

11E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w11(x, y) = (1− x)λ(1 + x)2λ+γ−1
(
(1 + x)2 + y2

)−(λ−1/2)

over the domain Ω11 = {(x, y) : −1 < x < 1,−∞ < y < ∞} for λ > N + 1, γ > −2. In fact,

1∫
−1

∞∫
−∞

(1− x)λ(1 + x)2λ+γ−1(
(1 + x)2 + y2

)λ− 1
2

11E(λ,γ)
n,k (x, y) 11E(λ,γ)

r,s (x, y)dydx

=
22k+3λ+γk!Γ2(λ)Γ(n− k + λ + 1)Γ(γ + n + k + 2)δn,rδk,s

(n− k)!(2n + λ + γ + 2)(λ− k− 1)Γ(n + k + λ + γ + 2)Γ(2λ− k− 1)

for n, r = 0, 1, . . . , N < λ− 1, γ > −2, N = max{n, r}.

Theorem 36. The polynomials (39) satisfy the following recurrence relations:

11E(λ,γ)
n,k (x, y)− 2(λ− k)y 11E(λ,γ+2)

n−1,k−1(x, y)

+ (k− 1)(2λ− k)(1 + x)2
11E(λ,γ+4)

n−2,k−2(x, y) = 0, n ≥ k ≥ 2,

(2n + λ + γ + 2) 11E(λ,γ)
n,k (x, y) = (n + k + λ + γ + 2) 11E(λ,γ+1)

n,k (x, y)

+ (n− k + λ) 11E(λ,γ+1)
n−1,k (x, y), n ≥ 1,

(n + k + λ + γ + 2)(1 + x) 11E(λ,γ+1)
n,k (x, y) + 2(n + k + γ + 1) 11E(λ,γ−1)

n,k (x, y)

− ((2n + λ + γ + 2)x + 2n + 4k + λ + 3γ + 4) 11E(λ,γ)
n,k (x, y) = 0

and the relation (28) for the coefficients An,k = 2(n− k + 1)(n + k + λ + γ + 2)(2n + λ + γ + 1),

Bn,k = (2n + λ + γ + 1)3,Cn,k = (2n + λ + γ + 2)
(

λ2 − (γ + 2k + 1)2
)
,Dn,k = 2(n− k + λ)

×(n + k + γ + 1)(2n + λ + γ + 3) and Ẽn,k(x, y) = 11E(λ,γ)
n,k (x, y).
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Theorem 37. The polynomials 11E(λ,γ)
n,k (x, y) are solutions to the partial differential equation:(

(1 + x)2 + y2
)

Eyy − (2λ− 3)yEy − k(k + 2− 2λ)E = 0.

Theorem 38. The polynomials 11E(λ,γ−2k)
n+k,k (x, y) have the generating function:

∞

∑
n,k=0

11E(λ,γ−2k)
n+k,k (x, y)

tn+k

k!
=

2λ+γ+1
(

1 + 2ty− t2(1 + x)2
)λ−1

R(1− t + R)λ(1 + t + R)γ+1 ,

where the function R =
√

1− 2xt + t2.

Theorem 39. The parameter derivative of the polynomials (39) is given by

∂

∂γ 11E(λ,γ)
n,k (x, y) =

n−k−1

∑
l=0

1
n + k + λ + γ + l + 2 11E(λ,γ)

n,k (x, y)

+
n−k−1

∑
l=0

(−1)l+1(2(n− l) + λ + γ)(λ + n− k− l)l+1
(l + 1)(2n− l + λ + γ + 1)(n + k + λ + γ− l + 1)l+1

11E(λ,γ)
n−l−1,k(x, y),

for n ≥ k + 1, k ≥ 0, and
∂

∂γ 11E(λ,γ)
n,n (x, y) = 0.

Lemma 10. If we substitute x → 2x
λ
− 1 and y → 2y

λ
√

λ
and take the limit as λ → ∞ in

Definition (39), we obtain

lim
λ→∞

(√λ

2

)k

11E(λ,γ)
n,k

(
2x
λ
− 1,

2y
λ
√

λ

)
= (−1)n−kL(γ+2k+1)

n−k (x)xk Hk

( y
x

)
= (−1)n−k Z(γ)

n,k (x, y),

where Z(γ)
n,k (x, y) is defined in [22], and moreover,

lim
γ→∞

[
2−k

11E(λ,γ)
n,k

(
1− 2x

γ
, 2y
(

1− x
γ

))]
= L(λ)

n−k(x)I(λ)k (y) = 12E(λ)
n,k (x, y).

3.12. The Set of Polynomials 12E(λ)
n,k (x, y)

Definition 12. Let us define

12E(λ)
n,k (x, y) = L(λ)

n−k(x)I(λ)k (y), k = 0, 1, . . . , n. (40)

The set
{

12E(λ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w12(x, y) = xλe−x
(

1 + y2
)−(λ−1/2)

over the domain Ω12 = {(x, y) : 0 < x < ∞,−∞ < y < ∞} for λ > N + 1. The orthogonal-
ity relation corresponding to these polynomials is
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∞∫
0

∞∫
−∞

xλe−x
(

1 + y2
)−(λ− 1

2 )
12E(λ)

n,k (x, y) 12E(λ)
r,s (x, y)dydx

=
22λ−2k!Γ2(λ)Γ(λ + n− k + 1)

(n− k)!(λ− k− 1)Γ(2λ− k− 1)
δn,rδk,s

for n, r = 0, 1, . . . , N < λ− 1, N = max{n, r}.

Theorem 40. The polynomials defined in (40) can also be computed by the Rodrigues representation:

12E(λ)
n,k (x, y) =

(−2)k(λ− k)kexx−λ
(
1 + y2)λ− 1

2

(n− k)!(2λ− 2k− 1)k

∂n
(

e−xxn−k+λ
(
1 + y2)k−λ+ 1

2

)
∂xn−k∂yk .

Theorem 41. For the polynomials defined by (40), the recurrence relation:

12E(λ)
n,k (x, y) = 2(λ− k)y 12E(λ)

n−1,k−1(x, y)− (k− 1)(2λ− k) 12E(λ)
n−2,k−2(x, y)

holds true, as well as Relation (28), where Ẽn,k(x, y) = 12E(λ)
n,k (x, y) and coefficients

An,k = n− k + 1, Bn,k = −1, Cn,k = 2(n− k) + λ + 1, and Dn,k = n− k + λ.

Theorem 42. The polynomials 12E(λ)
n,k (x, y) defined in (40) satisfy the partial differential equations:

xExx + (λ + 1− x)Ex + (n− k)E = 0

and (
1 + y2

)
Eyy − y(2λ− 3)Ey − k(k + 2− 2λ)E = 0.

Theorem 43. The polynomials 12E(λ)
n+k,k(x, y) have the generating function:

∞

∑
n,k=0

12E(λ)
n+k,k(x, y)

tn+k

k!
=

(
1 + 2ty− t2)λ−1

(1− t)λ+1 exp
(
− tx

1− t

)
.

3.13. The Set of Polynomials 13E(λ,γ)
n,k (x, y)

Definition 13. Let us define

13E(λ,γ)
n,k (x, y) = P(λ+k+1/2,γ+k+1/2)

n−k (x)
(√

1− x2
)k

I(λ)k

(
y√

1− x2

)
, (41)

for k = 0, 1, . . . , n.

The set
{

13E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w13(x, y) = (1− x)2λ− 1
2 (1 + x)λ+γ− 1

2
(

1− x2 + y2
)−(λ−1/2)

over the domain Ω13 = {(x, y) : −1 < x < 1,−∞ < y < ∞} for λ > N + 1, γ > −3/2.
That is,
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1∫
−1

∞∫
−∞

(1− x)2λ− 1
2 (1 + x)λ+γ− 1

2

(1− x2 + y2)
λ− 1

2
13E(λ,γ)

n,k (x, y) 13E(λ,γ)
r,s (x, y)dydx

=
22k+3λ+γk!Γ2(λ)Γ(n + λ + 3/2)Γ(n + γ + 3/2)δn,rδk,s

(n− k)!(2n + λ + γ + 2)(λ− k− 1)Γ(n + k + λ + γ + 2)Γ(2λ− k− 1)

holds true for n, r = 0, 1, . . . , N < λ− 1, γ > −3/2, N = max{n, r}.

Theorem 44. The polynomials 13E(λ,γ)
n,k (x, y) defined in (41) satisfy the relation (28), where in

this case, the coefficients are given by

An,k = 2(n− k + 1)(n + k + λ + γ + 2)(2n + λ + γ + 1),

Bn,k = (2n + λ + γ + 1)3, Cn,k = (2n + λ + γ + 2)(λ− γ)(λ + γ + 2k + 1),

Dn,k = 2(n + λ + 1/2)(n + γ + 1/2)(2n + λ + γ + 3).

Theorem 45. The polynomials (41) satisfy the partial differential equation:(
1− x2 + y2

)
Eyy − (2λ− 3)yEy − k(k + 2− 2λ)E = 0.

Theorem 46. The polynomials 13E(λ,γ)
n,k (x, y) have the generating function:

∞

∑
n,k=0

13E(λ−k,γ−k)
n+k,k (x, y)

tn+k

k!
=

2λ+γ+1(1 + ξ)λ(1 + η)λ(1 + 2ξ + 2η + 3ξη)−1

R(1− t + R)λ+1/2(1 + t + R)γ+1/2 ,

where R =
√

1− 2xt + t2, ξ =
t(y +

√
y2 + 1− x2)

(1 + ξ)(1 + η)
, and η =

t(y−
√

y2 + 1− x2)

(1 + ξ)(1 + η)
.

Theorem 47. The parameter derivative of the polynomials 13E(λ,γ)
n,k (x, y) is given by

∂

∂γ 13E(λ,γ)
n,k (x, y) =

n−k−1

∑
l=0

1
n + k + λ + γ + l + 2 13E(λ,γ)

n,k (x, y)

+
n−k−1

∑
l=0

(−1)l+1(2(n− l) + λ + γ)(n + λ− l + 1/2)l+1
(l + 1)(2n− l + λ + γ + 1)(n + k + λ + γ− l + 1)l+1

13E(λ,γ)
n−1−l,k(x, y)

for n ≥ k + 1, k ≥ 0, and ∂
∂γ 13E(λ,γ)

n,n (x, y) = 0.

Lemma 11. If we substitute x → 1− 2x
γ and y → 2y√

γ and take the limit as γ → ∞ in Defini-
tion (41), we obtain

lim
γ→∞

[(√
γ

2

)k

13E(λ,γ)
n,k

(
1− 2x

γ
,

2y√
γ

)]

= lim
γ→∞

P(λ+k+1/2,γ+k+1/2)
n−k

(
1− 2x

γ

)√x− x2

γ

k

I(λ)k

 y√
x− x2

γ




= L(λ+k+1/2)
n−k (x)

(√
x
)k I(λ)k

(
y√
x

)
= 14E(λ)

n,k (x, y).
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3.14. The Set of Polynomials 14E(λ)
n,k (x, y)

Definition 14. Let us define

14E(λ)
n,k (x, y) = L(λ+k+1/2)

n−k (x)
(√

x
)k I(λ)k

(
y√
x

)
, k = 0, 1, . . . , n. (42)

The set
{

14E(λ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w14(x, y) = e−xx2λ−1/2
(

x + y2
)−(λ−1/2)

over the domain Ω14 = {(x, y) : 0 < x < ∞,−∞ < y < ∞} for λ > N + 1, and

∞∫
0

∞∫
−∞

x2λ− 1
2 e−x

(
x + y2

)−(λ−1/2)
14E(λ)

n,k (x, y) 14E(λ)
r,s (x, y)dydx

=
22λ−2k!Γ2(λ)Γ(n + λ + 3/2)

(n− k)!(λ− k− 1)Γ(2λ− k− 1)
δn,rδk,s

for n, r = 0, 1, . . . , N < λ− 1, N = max{n, r}.

Theorem 48. For the polynomials 14E(λ)
n,k (x, y) given by (42), the recurrence relation (28) holds

true, where Ẽn,k(x, y) = 14E(λ)
n,k (x, y) and the coefficients An,k = n − k + 1, Bn,k = −1,

Cn,k = 2n− k + λ + 3/2, and Dn,k = n + λ + 1/2.

Theorem 49. The polynomials 14E(λ)
n,k (x, y) are solutions of the partial differential equations:

4x2Exx + 4xyExy + y2Eyy + 4x(λ + 3/2− x)Ex + 2y(λ + 1− x)Ey

+ (2(2n− k)x− k(k + 1 + 2λ))E = 0

and (
x + y2

)
Eyy − (2λ− 3)yEy − k(k + 2− 2λ)E = 0.

Theorem 50. The set of the polynomials (42) is generated by

∞

∑
n,k=0

14E(λ−k)
n+k,k (x, y)

tn+k

k!
=

(1 + ξ)λ(1 + η)λ exp
( xt

t−1
)

(1− t)λ+3/2(1 + 2ξ + 2η + 3ξη)
,

where ξ =
t
(

y+
√

x+y2
)

(1+ξ)(1+η)
and η =

t
(

y−
√

x+y2
)

(1+ξ)(1+η)
.

3.15. The Set of Polynomials 15E(λ,γ)
n,k (x, y)

Definition 15. Let us define

15E(λ,γ)
n,k (x, y) = M(λ−2k−1,γ+2k+1)

n−k (x)xkL(γ)
k

( y
x

)
, k = 0, 1, . . . , n. (43)

The set
{

15E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w15(x, y) = yγ(1 + x)−(λ+γ) exp(−y/x)

over the domain Ω15 = {(x, y) : 0 < x, y < ∞} for λ > 2N + 2, γ > −1, and
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∞∫
0

∞∫
0

yγe−
y
x (1 + x)−(λ+γ)

15E(λ,γ)
n,k (x, y) 15E(λ,γ)

r,s (x, y)dydx

=
(n− k)!Γ(λ− n− k− 1)Γ(n + k + γ + 2)Γ(k + γ + 1)

k!(λ− 2n− 2)Γ(λ + γ− n + k)
δn,rδk,s

for n, r = 0, 1, . . . , N < λ−2
2 , γ > −1.

Theorem 51. The polynomials 15E(λ,γ)
n,k (x, y) satisfy the relation (28) for Ẽn,k(x, y) = 15E(λ,γ)

n,k
(x, y), with coefficients An,k = (λ− n− k− 2) (λ− 2n− 1), Bn,k = (λ− 2n− 3)3, Cn,k =
(λ− 2n− 2)×(2(n− k)2 − (λ− 2k− 1)(γ + 2n + 2)), as well as Dn,k = (n− k)(λ− 2n− 3)
(λ + γ−n + k) ×(n + k + γ + 1).

Theorem 52. The set of the polynomials 15E(λ,γ)
n,k (x, y) satisfies the partial differential equations:

x2(x + 1)Exx + 2xy(x + 1)Exy + y2(x + 1)Eyy − x((λ− 3)x− (γ + 2))Ex

− y((λ− 3)x− (γ + 2))Ey + (n(λ− n− 2)x− k(k + γ + 1))E = 0

and
xyEyy + ((γ + 1)x− y)Ey + kE = 0.

Theorem 53. The polynomials 15E(λ+2k,γ−2k)
n+k,k (x, y) are generated by

∞

∑
n,k=0

15E(λ+2k,γ−2k)
n+k,k (x, y)

tn+k

n!
=

21−λ(1 + v)γ+1e−
vy
x (1− t + A(x, t))λ+γ

(1 + 2v)(1 + t + A(x, t))γ+1 A(x, t)

where A(x, t) =
√
(1 + t)2 + 4xt and v = xt

1+v , v(0) = 0.

Lemma 12. If we substitute x → x
λ and y → y

λ and take the limit as λ → ∞ in Definition (43),
we obtain

lim
λ→∞

[
λk

15E(λ,γ)
n,k

( x
λ

,
y
λ

)]
= lim

λ→∞

[
M(λ−2k−1,γ+2k+1)

n−k

( x
λ

)
xkL(γ)

k

( y
x

)]
= (−1)n−k(n− k)!L(γ+2k+1)

n−k (x)xkL(γ)
k

( y
x

)
= (−1)n−k(n− k)!R(γ,γ)

n,k (x, y)

where R(γ,γ)
n,k (x, y) are actually the Laguerre–Laguerre–Koornwinder polynomials [26].

3.16. The Set of Polynomials 16E(λ,γ)
n,k (x, y)

Definition 16. Let us define

16E(λ,γ)
n,k (x, y) = M(λ−2k−1,γ)

n−k (x)(1 + x)kL(γ)
k

(
y

1 + x

)
, k = 0, 1, . . . , n. (44)

The set
{

16E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w16(x, y) = xγyγ(1 + x)−(λ+2γ)e−y/(1+x)

over the domain Ω16 = {(x, y) : 0 < x, y < ∞} for λ > 2N + 2, γ > 0. The corresponding
orthogonality relation is
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∞∫
0

∞∫
0

xγyγe−
y

1+x (1 + x)−(λ+2γ)
16E(λ,γ)

n,k (x, y) 16E(λ,γ)
r,s (x, y)dydx

=
(n− k)!Γ(λ− n− k− 1)Γ(k + γ + 1)Γ(n− k + γ + 1)

k!(λ− 2n− 2)Γ(λ + γ− n− k− 1)
δn,rδk,s

for n, r = 0, 1, . . . , N < λ−2
2 , γ > 0, N = max{n, r}.

Theorem 54. The polynomials given by (44) satisfy the recurrence relation:

k 16E(λ,γ)
n,k (x, y)− ((2k + γ− 1)(1 + x)− y) 16E(λ−2,γ)

n−1,k−1(x, y)

+ (k + γ− 1)(1 + x)2
16E(λ−4,γ)

n−2,k−2(x, y) = 0

as well as the relation (28) for Ẽn,k(x, y) = 16E(λ,γ)
n,k (x, y), with

An,k = (λ− n− k− 2)(λ− 2n− 1), Bn,k = (λ− 2n− 3)3,

Cn,k = (λ− 2n− 2)(2(n− k)2 − (λ− 2k− 1)(γ + 2(n− k) + 1)),

Dn,k = (n− k)(λ− 2n− 3)(λ + γ− n− k− 1)(n− k + γ).

Theorem 55. The polynomials 16E(λ,γ)
n,k (x, y) satisfy the partial differential equations:

x(1 + x)2Exx + 2xy(1 + x)Exy + xy2Eyy − (1 + x)((λ− 3)x− (γ + 1))Ex

− y((λ− 3)x− (γ + 1))Ey + (n(λ− n− 2)(1 + x)− k(λ + γ− k− 1))E = 0

and
y(1 + x)Eyy + ((γ + 1)(1 + x)− y)Ey + kE = 0.

Theorem 56. The set of polynomials 16E(λ+2k,γ)
n+k,k (x, y) has the generating function:

∞

∑
n,k=0

16E(λ+2k,γ)
n+k,k (x, y)

tn+k

n!
=

21−λ(1− t + A(x, t))λ+γ−1 exp
(

yt
t(1+x)−1

)
A(x, t)(1− t(1 + x))γ+1(1 + t + A(x, t))γ

where A(x, t) =
√
(1 + t)2 + 4xt.

Lemma 13. If we substitute x → x
λ and take the limit as λ→ ∞ in Definition (44), we obtain

lim
λ→∞

[
16E(λ,γ)

n,k

( x
λ

, y
)]

= lim
λ→∞

[
M(λ−2k−1,γ)

n−k

( x
λ

)(
1 +

x
λ

)k
L(γ)

k

(
y

1 + x
λ

)]
= (−1)n−k(n− k)!L(γ)

n−k(x)L(γ)
k (y) = (−1)n−k(n− k)!L(γ,γ)

n,k (x, y)

where the polynomials L(γ,γ)
n,k (x, y) are defined in [23–25].

3.17. The Set of Polynomials 17E(λ,γ)
n,k (x, y)

Definition 17. Let us define

17E(λ,γ)
n,k (x, y) = L(γ+2k+1)

n−k (x)xk M(λ,γ)
k

( y
x

)
, k = 0, 1, . . . , n. (45)

The set
{

17E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:
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w17(x, y) = yγxλ+γ(x + y)−(λ+γ) exp(−x)

over the domain Ω17 = {(x, y) : 0 < x, y < ∞} for λ > 2N + 1, γ > −1. The corresponding
orthogonality relation takes the form:

∞∫
0

∞∫
0

yγxλ+γe−x(x + y)−(λ+γ)
17E(λ,γ)

n,k (x, y) 17E(λ,γ)
r,s (x, y)dxdy

=
k!Γ(n + k + γ + 2)Γ(λ− k)Γ(γ + k + 1)

(n− k)!(λ− 2k− 1)Γ(λ + γ− k)
δn,rδk,s

for n, r = 0, 1, . . . , N < λ−1
2 , γ > −1, N = max{n, r}.

Theorem 57. The polynomials defined in (45) satisfy the three-term recurrence relation (28)
for Ẽn,k(x, y) = 17E(λ,γ)

n,k (x, y), An,k = n − k + 1, Bn,k = −1, Cn,k = 2n + γ + 2, and
Dn,k = n + k + γ + 1.

Theorem 58. The polynomials 17E(λ,γ)
n,k (x, y) satisfy the partial differential equations:

x2Exx + 2xyExy + y2Eyy + x(γ + 2− x)Ex + y(γ + 2− x)Ey + (nx− k(γ + k + 1))E = 0

and
y(x + y)Eyy + ((γ + 1)x− (λ− 2)y)Ey + k(λ− k− 1)E = 0.

Theorem 59. The polynomials 17E(λ,γ−2k)
n+k,k (x, y) are generated by

∞

∑
n,k=0

17E(λ,γ−2k)
n+k,k (x, y)

tn+k

k!
=

exp
( xt

t−1
)
(1 + ξ)γ+1(1 + η)1−λ−γ

(1− t)γ+2(1 + 2ξ − 2η − ξη)

where ξ =
−t(x + y)(1 + η)3

1 + ξ
and η =

−ty(1 + η)3

1 + ξ
.

Lemma 14. If we substitute y→ y
λ and take the limit as λ→ ∞ in Definition (45), we obtain

lim
λ→∞

[
17E(λ,γ)

n,k

(
x,

y
λ

)]
= lim

λ→∞

[
L(γ+2k+1)

n−k (x)xk M(λ,γ)
k

( y
λx

)]
= (−1)kk!L(γ+2k+1)

n−k (x)xkL(γ)
k

( y
x

)
= (−1)kk!R(γ,γ)

n,k (x, y),

where R(γ,γ)
n,k (x, y) is defined in [26].

3.18. The Set of Polynomials 18E(λ,γ)
n,k (x, y)

Definition 18. Let us define

18E(λ,γ)
n,k (x, y) = M(λ−2k−1,γ)

n−k (x)(1 + x)kP(λ,γ)
k

(
y

1 + x

)
, k = 0, 1, . . . , n. (46)

The set
{

18E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w18(x, y) = xγ(1 + x)−2(λ+γ)(1 + x− y)λ(1 + x + y)γ

over the domain Ω18 = {(x, y) : 0 < x < ∞,−(1 + x) < y < 1 + x} for λ > 2N + 2,
γ > −1. The corresponding orthogonality relation is
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∞∫
0

1+x∫
−(1+x)

xγ(1 + x− y)λ(1 + x + y)γ

(1 + x)2(λ+γ) 18E(λ,γ)
n,k (x, y) 18E(λ,γ)

r,s (x, y)dydx

=
(n− k)!Γ(λ− n− k− 1)Γ(n− k + γ + 1)
2−(λ+γ+1)k!(λ− 2n− 2)(2k + λ + γ + 1)

Γ(k + λ + 1)Γ(k + γ + 1)
Γ(λ + γ− n− k− 1)Γ(k + λ + γ + 1)

δn,rδk,s

for n, r = 0, 1, . . . , N < λ−2
2 , γ > −1, N = max{n, r}.

Theorem 60. The polynomials defined by (46) satisfy the recurrence relation (28), where
Ẽn,k(x, y) = 18E(λ,γ)

n,k (x, y), and the coefficients:

An,k = (λ− n− k− 2)(λ− 2n− 1), Bn,k = (λ− 2n− 3)3,

Cn,k = (λ− 2n− 2)(2(n− k)(n− k + 1)− (γ + 2(n− k) + 1)(λ− 2k− 1)),

Dn,k = (n− k)(λ− 2n− 3)(λ + γ− n− k− 1)(n− k + γ).

Theorem 61. The polynomials 18E(λ,γ)
n,k (x, y) satisfy the partial differential equation:

x(1 + x)2Exx + 2xy(1 + x)Exy + xy2Eyy

− (1 + x)((λ− 3)x− (γ + 1))Ex − y((λ− 3)x− (γ + 1))Ey

+ (n(λ− n− 2)(1 + x)− k(λ + γ− k− 1))E = 0.

Theorem 62. The set of the polynomials 18E(λ+2k,γ)
n+k,k (x, y) has the generating function:

∞

∑
n,k=0

18E(λ+2k,γ)
n+k,k (x, y)

tn+k

n!
=

21−λ(1 + ξ)λ+1(1 + η)γ+1(1− t + A(x, t))λ+γ−1

A(x, t)(1 + t + A(x, t))γ(1− 2ξ − 3ξη)

where we denoted ξ = t(y+1+x)(1+η)(1+ξ)3

2 , η = t(y−1−x)(1+η)(1+ξ)3

2 , as well as A(x, t) =√
(1 + t)2 + 4xt.

Lemma 15. If we substitute x → x
λ and y→

(
2y
λ − 1

)(
1 + x

λ

)
and take the limit as λ→ ∞ in

Definition (46), we obtain

lim
λ→∞

[
18E(λ,γ)

n,k

(
x
λ

,
(

2y
λ
− 1
)(

1 +
x
λ

))]
= (−1)n(n− k)!L(γ)

n−k(x)L(γ)
k (y) = (−1)n(n− k)!L(γ,γ)

n,k (x, y)

where L(γ,γ)
n,k (x, y) is defined in [23–25].

3.19. The Set of Polynomials 19E(λ,γ)
n,k (x, y)

Definition 19. Let us define

19E(λ,γ)
n,k (x, y) = M(λ−2k−1,γ+2k+1)

n−k (x)xkP(λ,γ)
k

( y
x

)
, k = 0, 1, . . . , n. (47)

The set
{

19E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w19(x, y) = x−λ(1 + x)−(λ+γ)(x− y)λ(x + y)γ

over the domain Ω19 = {(x, y) : 0 < x < ∞,−x < y < x} for λ > 2N + 2, γ > −1. That is,
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∞∫
0

x∫
−x

x−λ(1 + x)−(λ+γ)(x− y)λ(x + y)γ
19E(λ,γ)

n,k (x, y) 19E(λ,γ)
r,s (x, y)dydx

=
(n− k)!Γ(λ− n− k− 1)Γ(n + k + γ + 2)Γ(k + λ + 1)Γ(k + γ + 1)δn,rδk,s

2−(λ+γ+1)k!(λ− 2n− 2)(2k + λ + γ + 1)Γ(λ + γ− n + k)Γ(k + λ + γ + 1)

for n, r = 0, 1, . . . , N < λ−2
2 , γ > −1, N = max{n, r}.

Theorem 63. The polynomials (47) satisfy the relation (28) for Ẽn,k(x, y) = 19E(λ,γ)
n,k (x, y),

and coefficients:

An,k = (λ− n− k− 2)(λ− 2n− 1), Bn,k = (λ− 2n− 3)3,

Cn,k = (λ− 2n− 2)(2(n− k)2 − (λ− 2k− 1)(γ + 2n + 2)),

Dn,k = (n− k)(λ− 2n− 3)(λ + γ− n + k)(n + k + γ + 1).

Theorem 64. The polynomials 19E(λ,γ)
n,k (x, y) satisfy the partial differential equation:

x2(1 + x)Exx + 2xy(1 + x)Exy + y2(1 + x)Eyy − x((λ− 3)x− (γ + 2))Ex

− y((λ− 3)x− (γ + 2))Ey + (n(λ− n− 2)x− k(γ + k + 1))E = 0.

Theorem 65. The polynomials 19E(λ+2k,γ−2k)
n+k,k (x, y) have the generating function

∞

∑
n,k=0

19E(λ+2k,γ−2k)
n+k,k (x, y)

tn+k

n!
=

21−λ(1 + ξ)λ+1(1 + η)γ+1(1− t + A(x, t))λ+γ

A(x, t)(1 + t + A(x, t))γ+1(1− 2ξ + 2η − ξη)

where A(x, t) =
√
(1 + t)2 + 4xt and ξ = t(y+x)(1+ξ)3

2(1+η)
, η = t(y−x)(1+ξ)3

2(1+η)
.

Lemma 16. If we substitute x → x
λ and y → 2y

λ2 − x
λ and take the limit as λ → ∞ in Defini-

tion (47), we obtain

lim
λ→∞

[
λk

19E(λ,γ)
n,k

(
x
λ

,
2y
λ2 −

x
λ

)]
= (−1)n(n− k)!L(γ+2k+1)

n−k (x)xkL(γ)
k

( y
x

)
= (−1)n(n− k)!R(γ,γ)

n,k (x, y)

where R(γ,γ)
n,k (x, y) is defined in [26].

3.20. The Set of Polynomials 20E(λ,γ)
n,k (x, y)

Definition 20. Let us define

20E(λ,γ)
n,k (x, y) = P(λ+2k+1,γ)

n−k (x)(1− x)k M(λ,γ)
k

(
y

1− x

)
, k = 0, 1, . . . , n. (48)

The set
{

20E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w20(x, y) = yγ(1 + x)γ(1− x)2λ(1− x + y)−(λ+γ)

over the domain Ω20 = {(x, y) : −1 < x < 1, 0 < y < ∞} for λ > 2N + 1, γ > −1. The cor-
responding orthogonality relation takes the form:



Axioms 2023, 12, 932 30 of 35

1∫
−1

∞∫
0

yγ(1 + x)γ(1− x)2λ

(1− x + y)λ+γ 20E(λ,γ)
n,k (x, y) 20E(λ,γ)

r,s (x, y)dydx

=
22k+λ+γ+2k!Γ(n + k + λ + 2)Γ(n− k + γ + 1)

(n− k)!(2n + λ + γ + 2)(λ− 2k− 1)
Γ(λ− k)Γ(k + γ + 1)

Γ(n + k + λ + γ + 2)Γ(λ + γ− k)
δn,rδk,s

for n, r = 0, 1, . . . , N < λ−1
2 , γ > −1, N = max{n, r}.

Theorem 66. The polynomials given by (48) satisfy (28), where

An,k = 2(n− k + 1)(n + k + λ + γ + 2)(2n + λ + γ + 1),

Bn,k = (2n + λ + γ + 1)3,

Cn,k = (2n + λ + γ + 2)
(
(λ + 2k + 1)2 − γ2

)
,

Dn,k = 2(n + k + λ + 1)(n− k + γ)(2n + λ + γ + 3)

and Ẽn,k(x, y) = 20E(λ,γ)
n,k (x, y).

Theorem 67. The polynomials 20E(λ,γ)
n,k (x, y) satisfy the partial differential equation:

y(1− x + y)Eyy − ((λ− 2)y− (γ + 1)(1− x))Ey + k(λ− k− 1)E = 0.

Theorem 68. The set of the polynomials 20E(λ−2k,γ)
n+k,k (x, y) has the generating function:

∞

∑
n,k=0

20E(λ−2k,γ)
n+k,k (x, y)

tn+k

k!
=

2λ+γ+1(1 + ξ)γ+1(1− t + R)−(λ+1)

(1− 2η − 3ξη)(1 + η)λ+γ−1R(1 + t + R)γ
,

where R =
√

1− 2xt + t2, ξ = t(x− y− 1)(1 + ξ)(1 + η)3, and η = −ty(1 + ξ)(1 + η)3.

Lemma 17. If we substitute x → 2x
λ − 1 and y → 2y(λ−x)

λ2(1−x) and take the limit as λ → ∞ in
Definition (48), we obtain

lim
λ→∞

[
2−k

20E(λ,γ)
n,k

(
2x
λ
− 1,

2y(λ− x)
λ2(1− x)

)]
= (−1)nk!L(γ)

n−k(x)L(γ)
k

(
y

1− x

)
= (−1)nk!L(γ,γ)

n,k

(
x,

y
1− x

)
where L(γ,γ)

n,k
(

x, y
1−x
)

are defined in [23–25] by replacing y→ y
1−x .

3.21. The Set of Polynomials 21E(λ,γ)
n,k (x, y)

Definition 21. Let us define

21E(λ,γ)
n,k (x, y) = P(λ,γ+2k+1)

n−k (x)(1 + x)k M(λ,γ)
k

(
y

1 + x

)
, k = 0, 1, . . . , n. (49)

The set
{

21E(λ,γ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w21(x, y) = (1− x)λ(1 + x)λ+γyγ(1 + x + y)−(λ+γ)

over the domain Ω21 = {(x, y) : −1 < x < 1, 0 < y < ∞} for λ > 2N + 1, γ > −1. Indeed,
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1∫
−1

∞∫
0

(1− x)λ(1 + x)λ+γyγ(1 + x + y)−(λ+γ)
21E(λ,γ)

n,k (x, y) 21E(λ,γ)
r,s (x, y)dydx

=
22k+λ+γ+2k!Γ(n− k + λ + 1)Γ(n + k + γ + 2)Γ(λ− k)Γ(k + γ + 1)δn,rδk,s

(n− k)!(2n + λ + γ + 2)(λ− 2k− 1)Γ(n + k + λ + γ + 2)Γ(λ + γ− k)

for n, r = 0, 1, . . . , N < λ−1
2 , γ > −1, N = max{n, r}.

Theorem 69. The polynomials given by (49) satisfy the relation (28) for Ẽn,k(x, y) = 21E(λ,γ)
n,k (x, y),

with coefficients:

An,k = 2(n− k + 1)(n + k + λ + γ + 2)(2n + λ + γ + 1),

Bn,k = (2n + λ + γ + 1)3, Cn,k = (2n + λ + γ + 2)
(

λ2 − (γ + 2k + 1)2
)

,

Dn,k = 2(n− k + λ)(n + k + γ + 1)(2n + λ + γ + 3).

Theorem 70. The polynomials 21E(λ,γ)
n,k (x, y) satisfy the partial differential equation:

y(1 + x + y)Eyy − ((λ− 2)y− (γ + 1)(1 + x))Ey + k(λ− k− 1)E = 0.

Theorem 71. The polynomials 21E(λ,γ−2k)
n+k,k (x, y) are generated by

∞

∑
n,k=0

21E(λ,γ−2k)
n+k,k (x, y)

tn+k

k!
=

2λ+γ+1(1 + ξ)γ+1(1 + η)−(λ+γ−1)(1− t + R)−λ

R(1 + t + R)γ+1(1 + 2ξ − 2η − ξη)

where ξ = − t(1 + x + y)(1 + η)3

1 + ξ
, η = − ty(1 + η)3

1 + ξ
, and R =

√
1− 2xt + t2.

Lemma 18. If we substitute x → 2x
λ − 1 and y → 2y

λ2 and take the limit as λ → ∞ in Defini-
tion (49), we obtain

lim
λ→∞

[(
λ

2

)k

21E(λ,γ)
n,k

(
2x
λ
− 1,

2y
λ2

)]
= lim

λ→∞

[
P(λ,γ+2k+1)

n−k

(
2x
λ
− 1
)

xk M(λ,γ)
k

( y
λx

)]
= (−1)nk!L(γ+2k+1)

n−k (x)xkL(γ)
k

( y
x

)
= (−1)nk!R(γ,γ)

n,k (x, y),

where R(γ,γ)
n,k (x, y) is defined in [26].

3.22. The Set of Polynomials 22E(λ)
n,k (x, y)

Definition 22. Let us define

22E(λ)
n,k (x, y) = N(λ−2k−1)

n−k (x)xk Hk

( y
x

)
, k = 0, 1, . . . , n. (50)

The set
{

22E(λ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w22(x, y) =
x−λ

e
1
x +(

y
x )

2

over the domain Ω22 = {(x, y) : 0 < x < ∞,−∞ < y < ∞} for λ > 2N + 2. The orthogo-
nality relation is given by
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∞∫
0

∞∫
−∞

x−λ

e
x+y2

x2

22E(λ)
n,k (x, y) 22E(λ)

r,s (x, y)dydx =
(n− k)!k!

√
πΓ(λ− n− k− 1)

2−k(λ− 2n− 2)
δn,rδk,s,

for n, r = 0, 1, . . . , N <
λ− 2

2
, N = max{n, r}.

Theorem 72. The polynomials 22E(λ)
n,k (x, y) defined in (50) satisfy the recurrence relations:

22E(λ)
n,k (x, y) = 2y 22E(λ−2)

n−1,k−1(x, y)− 2(k− 1)x2
22E(λ−4)

n−2,k−2(x, y), n ≥ 2,

22E(λ)
n,k (x, y)− ((λ− 2k− 3)x− 1) 22E(λ−2)

n−1,k (x, y)

+ (n− k− 1)(λ− n− k− 3)x2
22E(λ−4)

n−2,k (x, y) = 0, n ≥ 2, 0 ≤ k ≤ n− 2,

the differential relations:

∂j

∂yj 22E(λ)
n,k (x, y) = 2j(k− j + 1)j 22E(λ−2j)

n−j,k−j(x, y), 0 ≤ j ≤ k ≤ n

as well as Relation (28) for Ẽn,k(x, y) = 22E(λ)
n,k (x, y), with coefficients explicitly given by

An,k = (λ− n− k− 2)(λ− 2n− 1), Bn,k = (λ− 2n− 3)3, Cn,k = (2n− λ + 2)(λ− 2k− 1),
and Dn,k = (n− k)(λ− 2n− 3).

Theorem 73. The polynomials 22E(λ)
n,k (x, y) defined in (50) satisfy the partial differential equations:

x3Exx + 2x2yExy + xy2Eyy − x((λ− 3)x− 1)Ex

− y((λ− 3)x− 1)Ey + (n(λ− n− 2)x− k)E = 0,

and
x2Eyy − 2yEy + 2kE = 0.

Theorem 74. For the polynomials 22E(λ+2k)
n+k,k (x, y), we have the generating function:

∞

∑
n,k=0

22E(λ+2k)
n+k,k (x, y)

tn+k

n!k!
=

(1 + v)λ−1 exp
(
2yt− t2x2)

(1 + 2v) exp(v/x)

where v = tx
1+v , v(0) = 0.

3.23. The Set of Polynomials 23E(λ)
n,k (x, y)

Definition 23. Let us define

23E(λ)
n,k (x, y) = I(λ−k−1/2)

n−k (x)
(

1 + x2
)k/2

Hk

(
y√

1 + x2

)
, k = 0, 1, . . . , n. (51)

The set
{

23E(λ)
n,k (x, y)

}n,N

k,n=0
is orthogonal with respect to the weight function:

w23(x, y) =
e−y2/(1+x2)

(1 + x2)
λ−1/2

over the domain Ω23 = {(x, y) : −∞ < x, y < ∞} for λ > N + 3/2. The orthogonality
relation corresponding to these polynomials is:



Axioms 2023, 12, 932 33 of 35

∞∫
−∞

∞∫
−∞

(
1 + x2

)−(λ−1/2)
exp

(
− y2

1 + x2

)
23E(λ)

n,k (x, y) 23E(λ)
r,s (x, y)dydx

=
22λ−k−3(n− k)!k!

√
πΓ2(λ− k− 1/2)

(λ− n− 3/2)Γ(2λ− n− k− 2)
δn,rδk,s,

for n, r = 0, 1, . . . , N < λ− 3
2

, N = max{n, r}.

Theorem 75. The polynomials defined in (51) satisfy the recurrence relations:

23E(λ)
n,k (x, y) = 2y 23E(λ−1)

n−1,k−1(x, y)− 2(k− 1)
(

1 + x2
)

23E(λ−2)
n−2,k−2(x, y),

4(n− k− 1)(λ− k− 5/2)2

(
1 + x2

)
23E(λ−2)

n−2,k (x, y)

− 4(λ− k− 3/2)(λ− k− 2)x 23E(λ−1)
n−1,k (x, y) = (n + k + 3− 2λ) 23E(λ)

n,k (x, y),

for n ≥ 2, 0 ≤ k ≤ n− 2, the differential properties:

∂j

∂yj 23E(λ)
n,k (x, y) = 2j(k− j + 1)j 23E(λ−j)

n−j,k−j(x, y), 0 ≤ j ≤ k ≤ n

and the relation (28) for Ẽn,k(x, y) = 23E(λ)
n,k (x, y), An,k = 1, Bn,k = 2λ− 2n− 3, Cn,k = 0, and

Dn,k = (n− k)(2λ− n− k− 2).

Theorem 76. The polynomials 23E(λ)
n,k (x, y) defined in (51) satisfy the partial differential equations:(

1 + x2
)2

Exx + 2xy
(

1 + x2
)

Exy + x2y2Eyy + 2(2− λ)x
(

1 + x2
)

Ex + y
(

1− 2(λ− 2)x2
)

Ey

−
(

n + (n− k)(n + k + 2− 2λ) + n(n + 3− 2λ)x2
)

E = 0,

and (
1 + x2

)
Eyy − 2yEy + 2kE = 0.

Theorem 77. For the polynomials 23E(λ+k)
n+k,k (x, y), we have the following generating function:

∞

∑
n,k=0

23E(λ+k)
n+k,k (x, y)

tn+k

n!k!
=
(

1 + 2tx− t2
)λ−3/2

exp
(

2yt− t2
(

1 + x2
))

.

Lemma 19. If we substitute x → x√
λ

and take the limit as λ→ ∞ in Definition (51), we obtain

lim
λ→∞

[
λ−

n−k
2 23E(λ)

n,k

(
x√
λ

, y
)]

= lim
λ→∞

λ−
n−k

2 I(λ−k−1/2)
n−k

(
x√
λ

)(
1 +

x2

λ

)k/2

Hk

 y√
1 + x2

λ


= Hn−k(x)Hk(y) = Hn,k(x, y)

where Hn,k(x, y) are the Hermite-Hermite polynomials defined in [23–25].

4. Conclusions

Classical univariate orthogonal polynomials with respect to a positive weight func-
tion have been deeply analyzed since the works of Laplace in 1810. They include the
Jacobi, Laguerre, and Hermite polynomials. As for the latter family, they were studied by
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Chebyshev in 1959 and by Hermite in 1964. Hermite introduced in 1865 for the first time a
sequence of multidimensional orthogonal polynomials. Later, a number of properties and
characterizations have been considered, which enlarged the univariate families to the Bessel
polynomials if we consider definite weights. Very recently, new families emerged under the
name of exceptional families, which provide a vast extension of the first mentioned families
in many areas of mathematics, in particular the “time-and-band limiting” commutative
property found and exploited by D. Slepian, H. Landau, and H. Pollak at Bell Labs in the
1960s [27]. On the other hand, finite families of orthogonal polynomials in the univariate
case have been considered since the works of Romanovski connected with the analysis of
probability distribution functions in statistics [28].

As for the finite bivariate case, up to now, there were only 15 classes defined by Gül-
doğan et al., and these were obtained from the product of two finite univariate polynomials.
In this paper, 23 finite bivariate orthogonal polynomials were obtained from the product of
a finite and an infinite univariate orthogonal polynomials. Therefore, the study fills a gap
in the literature, providing a way to generalize to other dimensions. Once we have these
new finite families, Fourier transforms can be calculated or q-analogues can be studied,
which shall be considered in future works.
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