Article

Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps

Yonghui Ren

Citation: Ren, Y. Generalized Refinements of Reversed AM-GM Operator Inequalities for Positive Linear Maps. Axioms 2023, 12, 977. https://doi.org/10.3390/ axioms12100977

Academic Editor: Christophe Chesneau

Received: 9 September 2023
Revised: 5 October 2023
Accepted: 9 October 2023
Published: 17 October 2023

Copyright: © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ $4.0 /$).

College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China; yonghuiren1992@163.com

Abstract

We shall present some more generalized and further refinements of reversed AM-GM operator inequalities for positive linear maps due to Xue's and Ali's publications.

Keywords: AM-GM; operator inequalities; positive linear maps
MSC: 47A64; 47A30; 47B02

1. Introduction

Let m, M be scalars and I be the identity operator. $B(\mathcal{H})$ denote all bounded linear operators acting on a Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$. In addition, $A \geq 0$ means the operator A is positive. We say $A \geq B$ if $A-B \geq 0$. A linear map $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ is called positive (strictly positive) if $\Phi(A) \geq 0(\Phi(A)>0)$ whenever $A \geq 0(A>0)$, and Φ is said to be unital if $\Phi(I)=I$.

If $A, B \in B(\mathcal{H})$ are two positive operators, then the operator weighted arithmetic mean and geometric mean are defined as

$$
A \nabla_{v} B=(1-v) A+v B \text { and } A \not \sharp_{v} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{v} A^{\frac{1}{2}}
$$

for $v \in[0,1]$, respectively. Denoted $A \nabla_{v} B$ by $A \nabla B$ and $A \not \sharp_{v} B$ by $A \sharp B$ when $v=\frac{1}{2}$ for brevity. The Kantorovich constant and Specht's ratio are defined by $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ and $S(h)=\frac{h^{\frac{1}{h-1}}}{e \ln \frac{1}{h-1}}$ when $h>0$. If there is no special explanations, we always default to $a, b>0$ and $v \in[0,1]$ in this paper.

It is well known that the famous Young's inequality reads

$$
\begin{equation*}
a^{1-v} b^{v} \leq(1-v) a+v b \tag{1}
\end{equation*}
$$

Furuichi [1] improved (1) with Specht's ratio

$$
\begin{equation*}
S\left(\left(\frac{b}{a}\right)^{r}\right) a^{1-v} b^{v} \leq(1-v) a+v b \tag{2}
\end{equation*}
$$

where $r=\min \{v, 1-v\}$. Zuo et al. [2] further improved (2) as

$$
\begin{equation*}
S\left(\left(\frac{b}{a}\right)^{r}\right) a^{1-v} b^{v} \leq K^{r}\left(\frac{b}{a}\right) a^{1-v} b^{v} \leq(1-v) a+v b . \tag{3}
\end{equation*}
$$

Sababheh and Moslehian [3] gave a refinement of (3) in the following form

$$
\begin{equation*}
K(\sqrt[2^{N}]{h}, 2)^{\beta_{N}(v)} a^{1-v} b^{v}+S_{N}(v ; b, a) \leq(1-v) a+v b \tag{4}
\end{equation*}
$$

where $N \in \mathbb{N}^{+}, h=\frac{a}{b}, \beta_{N}(v)=\min \left\{\alpha_{N}(v), 1-\alpha_{N}(v)\right\}$ with $\alpha_{N}(v)=1+\left[2^{N_{v}}\right]-2^{N} v$ and

$$
\begin{equation*}
S_{N}(v ; b, a)=\sum_{j=1}^{N} s_{j}(v)\left(\sqrt[2 j]{a^{2 j^{j-1}-k_{j}(v)} b^{k_{j}(v)}}-\sqrt[2 j]{b^{k_{j}(v)+1} a^{2^{j-1}-k_{j}(v)-1}}\right)^{2} \tag{5}
\end{equation*}
$$

for $j=1,2, \cdots, N, k_{j}(v)=\left[2^{j-1} v\right], r_{j}(v)=\left[2^{j} v\right]$ and $s_{j}(v)=(-1)^{r_{j}(v)} 2^{j-1} v+(-1)^{r_{j}(v)+1}\left[\frac{r_{j}(v)+1}{2}\right]$.
Taking $v=\frac{1}{2}$ in (1), we can get the following AM-GM operator inequality for any two positive operators A and B,

$$
\begin{equation*}
A \sharp B \leq A \nabla B . \tag{6}
\end{equation*}
$$

Lin [4] gave a reverse of inequality (6) involving unital positive linear maps Φ :

$$
\begin{equation*}
\Phi(A \nabla B) \leq K(h, 2) \Phi(A \sharp B) \tag{7}
\end{equation*}
$$

for $0<m I \leq A, B \leq M I$ and $h=\frac{M}{m}$. In generally, for any two positive operators A, B and $P>1$,

$$
\begin{equation*}
A \geq B \nRightarrow A^{P} \geq B^{P} \tag{8}
\end{equation*}
$$

For example, putting $P=2, A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. However, Lin [4] showed that the inequality (7) can be squared under the same conditions as in it,

$$
\begin{equation*}
\Phi^{2}(A \nabla B) \leq K^{2}(h, 2) \Phi^{2}(A \sharp B) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{2}(A \nabla B) \leq K^{2}(h, 2)(\Phi(A) \sharp \Phi(B))^{2} . \tag{10}
\end{equation*}
$$

Moreover, the author [4] found that Specht's ratio and Kantorovich constant have the following relations

$$
\begin{equation*}
S(h) \leq K(h, 2) \leq S^{2}(h) \tag{11}
\end{equation*}
$$

for $h>1$. Also, Lin [4] conjectured $K(h)$ can be replaced by $S(h)$ in (9) and (10). Xue [5] solved Lin's conjecture under some conditions: $0<m I \leq A, B \leq M I, \sqrt{\frac{M}{m}} \leq 2.314$ and $h=\frac{M}{m}$, she got

$$
\begin{equation*}
\Phi^{2}(A \nabla B) \leq K(h, 2) \Phi^{2}(A \sharp B) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{2}(A \nabla B) \leq K(h, 2)(\Phi(A) \sharp \Phi(B))^{2} . \tag{13}
\end{equation*}
$$

Recently, Ali et al. [6] gave some refinements of inequalities (12) and (13) as follows:
Theorem 1. Let $0<m \leq M, \sqrt{\frac{M}{m}} \leq 2.314$. For every positive unital linear map Φ,
(1) if $0<m I \leq A, B \leq \frac{M+m}{2} I$, then

$$
\Phi^{2}\left(A \nabla B+\frac{M+m}{2} m\left(\frac{A^{-1}+B^{-1}}{2}-\left(A^{-1} \sharp B^{-1}\right)\right)\right) \leq\left(\frac{M+m}{2 \sqrt{M m}}\right)^{2} \Phi^{2}\left(A \not \sharp_{v} B\right) ;
$$

$$
\Phi^{2}\left(A \nabla B+\frac{M+m}{2} m\left(\frac{A^{-1}+B^{-1}}{2}-\left(A^{-1} \sharp B^{-1}\right)\right)\right) \leq\left(\frac{M+m}{2 \sqrt{M m}}\right)^{2}(\Phi(A) \sharp v \Phi(B))^{2} ;
$$

(2) if $0<\frac{M+m}{2} I \leq A, B \leq M I$, then

$$
\begin{gathered}
\Phi^{2}\left(A \nabla B+\frac{M+m}{2} M\left(\frac{A^{-1}+B^{-1}}{2}-\left(A^{-1} \sharp B^{-1}\right)\right)\right) \leq\left(\frac{M+m}{2 \sqrt{M m}}\right)^{2} \Phi^{2}\left(A \not \sharp_{v} B\right) ; \\
\Phi^{2}\left(A \nabla B+\frac{M+m}{2} M\left(\frac{A^{-1}+B^{-1}}{2}-\left(A^{-1} \sharp B^{-1}\right)\right)\right) \leq\left(\frac{M+m}{2 \sqrt{M m}}\right)^{2}\left(\Phi(A) \not \sharp_{v} \Phi(B)\right)^{2} ;
\end{gathered}
$$

(3) if $0<m I \leq A<\frac{M+m}{2} I \leq B \leq M I$, then

$$
\begin{aligned}
& \Phi^{2}\left(A \nabla B+\frac{M+m}{2}\left(\frac{m A^{-1}+M B^{-1}}{2}-\left(m A^{-1} \sharp M B^{-1}\right)\right)\right) \leq\left(\frac{M+m}{2 \sqrt{M m}}\right)^{2} \Phi^{2}\left(A \not \sharp_{v} B\right) ; \\
& \Phi^{2}\left(A \nabla B+\frac{M+m}{2}\left(\frac{m A^{-1}+M B^{-1}}{2}-\left(m A^{-1} \sharp M B^{-1}\right)\right)\right) \leq\left(\frac{M+m}{2 \sqrt{M m}}\right)^{2}\left(\Phi(A) \not \sharp_{v} \Phi(B)\right)^{2} ;
\end{aligned}
$$

(4) if $0<m I \leq B \leq \frac{M+m}{2} I \leq A \leq M I$, then

$$
\begin{gathered}
\Phi^{2}\left(A \nabla B+\frac{M+m}{2}\left(\frac{M A^{-1}+m B^{-1}}{2}-\left(M A^{-1} \sharp m B^{-1}\right)\right)\right) \leq\left(\frac{M+m}{2 \sqrt{M m}}\right)^{2} \Phi^{2}\left(A \sharp_{v} B\right) ; \\
\Phi^{2}\left(A \nabla B+\frac{M+m}{2}\left(\frac{M A^{-1}+m B^{-1}}{2}-\left(M A^{-1} \sharp m B^{-1}\right)\right)\right) \leq\left(\frac{M+m}{2 \sqrt{M m}}\right)^{2}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{2} ;
\end{gathered}
$$

For more information about operator inequalities involving positive linear maps, we refer the readers to [7-11] and references therein.

In this paper, we shall give some more generalized and further refinements of reversed AM-GM operator inequalities for positive linear maps due to Ali's results.

2. Main Results

We give some lemmas to prove our main results.
Lemma 1. Let $0<m I \leq A \leq m^{\prime} I<M^{\prime} I \leq B \leq M I, h=\frac{M}{m}, h^{\prime}=\frac{M^{\prime}}{m^{\prime}}$. Then we have

$$
\begin{equation*}
K\left(\sqrt[2^{N}]{h^{\prime}}, 2\right)^{\beta_{N}(v)} A \not \sharp_{v} B+\sum_{j=1}^{N} s_{j}(v)\left(A \not \sharp_{\alpha_{j}(v)} B+A \not \sharp_{\alpha_{j}(v)+2^{1-j}} B-2 A \not \sharp_{\alpha_{j}(v)+2^{-j}} B\right) \leq A \nabla_{v} B, \tag{14}
\end{equation*}
$$

where $\alpha_{j}(v)=\frac{k_{j}(v)}{2^{j-1}}, k_{j}(v)=\left[2^{j-1} v\right]$ and $\beta_{N}(v)=\min \left\{1+\left[2^{N_{v}}\right]-2^{N_{v}}, 2^{N_{v}}-\left[2^{N_{v}}\right]\right\}$, $r_{j}(v)=\left[2^{j} v\right]$ and $s_{j}(v)=(-1)^{r_{j}(v)} 2^{j-1} v+(-1)^{r_{j}(v)+1}\left[\frac{r_{j}(v)+1}{2}\right]$.

Proof. Putting $a=1$ in (4), we obtain

$$
K\left(\sqrt[2^{N}]{\frac{1}{b}}, 2\right)^{\beta_{N}(v)} b^{v}+\sum_{j=1}^{N} s_{j}(v)\left(b^{\alpha_{j}(v)}+b^{\alpha_{j}(v)+2^{1-j}}-2 b^{\alpha_{j}(v)+2^{-j}}\right) \leq(1-v)+v b .
$$

Taking $X=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$, and then $S p(X) \subseteq\left[h^{\prime}, h\right] \subseteq(1,+\infty)$. By standard functional calculus and the Kantorovich constant $K\left(\frac{1}{t}, 2\right)$ is a decreasing function on $\frac{1}{t} \in(0,1)$, we get

$$
\begin{equation*}
K\left(\sqrt[2^{N}]{\frac{1}{h^{\prime}}}, 2\right)^{\beta_{N}(v)} X^{v}+\sum_{j=1}^{N} s_{j}(v)\left(X^{\alpha_{j}(v)}+X^{\alpha_{j}(v)+2^{1-j}}-2 X^{\alpha_{j}(v)+2^{-j}}\right) \leq(1-v)+v X \tag{15}
\end{equation*}
$$

Multiplying $A^{\frac{1}{2}}$ on both sides of inequality (15), with the fact $K(h, 2)=K\left(\frac{1}{h}, 2\right)$, we can get (14) directly.

Lemma 2. Under the same conditions as in Lemma 1, we have

$$
\begin{equation*}
A \nabla_{v} B+\operatorname{MmK}\left(\sqrt[2^{N}]{h^{\prime}}, 2\right)^{\beta_{N}(v)}\left(A \sharp_{v} B\right)^{-1}+M m S_{N}\left(v ; B^{-1}, A^{-1}\right) \leq M+m \tag{16}
\end{equation*}
$$

where $S_{N}\left(v ; B^{-1}, A^{-1}\right)=\sum_{j=1}^{N} s_{j}(v)\left(A^{-1} \sharp_{\alpha_{j}(v)} B^{-1}+A^{-1} \sharp_{\alpha_{j}(v)+2^{1-j}} B^{-1}-2 A^{-1} \sharp_{\alpha_{j}(v)+2^{-j}} B^{-1}\right)$.
Proof. If $0<m I \leq A, B \leq M I$, then

$$
(M-A)(A-m) A^{-1} \geq 0 \quad \text { and } \quad(M-B)(B-m) B^{-1} \geq 0
$$

that is

$$
\begin{equation*}
A+M m A^{-1} \leq M+m \text { and } B+M m B^{-1} \leq M+m . \tag{17}
\end{equation*}
$$

So we have

$$
\begin{equation*}
A \nabla_{v} B+M m\left(A^{-1} \nabla_{v} B^{-1}\right) \leq M+m . \tag{18}
\end{equation*}
$$

Thus, we obtain

$$
\begin{aligned}
& A \nabla_{v} B+\operatorname{MmS}_{N}\left(v ; B^{-1}, A^{-1}\right)+\operatorname{MmK}\left(\sqrt[2^{N}]{h^{\prime}}, 2\right)^{\beta_{N}(v)}\left(A \sharp_{v} B\right)^{-1} \\
& =A \nabla_{v} B+\operatorname{Mm}\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)+K\left(\sqrt[2^{N}]{h^{\prime}}, 2\right)^{\beta_{N}(v)}\left(A^{-1} \sharp_{v} B^{-1}\right)\right) \\
& \leq A \nabla_{v} B+\operatorname{Mm}\left(A^{-1} \nabla_{v} B^{-1}\right) \quad(\text { by }(14)) \\
& \leq M+m . \quad(\text { by }(18))
\end{aligned}
$$

Lemma 3 ([12]). Let $A, B \geq 0$. Then the following norm inequality holds

$$
\begin{equation*}
\|A B\| \leq \frac{1}{4}\|A+B\|^{2} \tag{19}
\end{equation*}
$$

Lemma 4 ([13]). Let Φ be a unital positive linear map and $A>0$. Then

$$
\begin{equation*}
\Phi(A)^{-1} \leq \Phi\left(A^{-1}\right) \tag{20}
\end{equation*}
$$

Lemma 5 ([14]). (i) If $0 \leq P \leq 1$ and $A \geq B \geq 0$, then

$$
\begin{equation*}
A^{P} \geq B^{P} \tag{21}
\end{equation*}
$$

(ii) Let Φ be a unital positive linear map and $A, B>0$. For $v \in[0,1]$, we have

$$
\begin{equation*}
\Phi\left(A \sharp_{v} B\right) \leq \Phi(A) \sharp_{v} \Phi(B) . \tag{22}
\end{equation*}
$$

Lemma 6 ([15]). Let $A, B \geq 0$. Then for $1 \leq P<+\infty$,

$$
\begin{equation*}
\left\|A^{P}+B^{P}\right\| \leq\left\|(A+B)^{P}\right\| . \tag{23}
\end{equation*}
$$

Theorem 2. Let $0<m I \leq M I, \sqrt{\frac{M}{m}} \leq 2.314$ and $S_{N}\left(v ; B^{-1}, A^{-1}\right)$ defined as in Lemma 2. Then for every positive unital linear map Φ and $P \in[0,2]$,
(1) if $0<m I \leq A \leq m_{1}^{\prime} I<M_{1}^{\prime} I \leq B \leq \frac{M+m}{2} I$, then

$$
\begin{gather*}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)} \Phi^{P}\left(A \not \sharp_{v} B\right) ; \tag{24}\\
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ; \tag{25}
\end{gather*}
$$

where $h=\frac{M}{m}, h_{1}^{\prime}=\frac{M_{1}^{\prime}}{m_{1}^{\prime}}$ and $v \in[0,1]$.
(2) if $0<\frac{M+m}{2} I \leq A \leq m_{2}^{\prime} I<M_{2}^{\prime} I \leq B \leq M I$, then

$$
\begin{gather*}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} M\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{2}^{\prime}}, 2\right)} \Phi^{P}\left(A \sharp_{v} B\right) ; \tag{26}\\
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} M\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{2}^{\prime}}, 2\right)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ; \tag{27}
\end{gather*}
$$

where $h=\frac{M}{m}, h_{2}^{\prime}=\frac{M_{2}^{\prime}}{m_{2}^{\prime}}$ and $v \in[0,1]$.
(3) if $0<m I \leq A \leq m_{3}^{\prime} I<\frac{M+m}{2} I \leq B \leq M I$, then

$$
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq \frac{\left(\frac{M}{m}\right)^{\frac{P}{2}(1-2 v)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{3}^{\prime}} 2\right)} \Phi^{P}\left(A \sharp_{v} B\right) ;
$$

$$
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq \frac{\left(\frac{M}{m}\right)^{\frac{P}{2}(1-2 v)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P}
$$

where $h=\frac{M}{m}, h_{3}^{\prime}=\frac{M+m}{2 m_{3}^{\prime}}$ and $v \in\left[0, \frac{1}{2}\right]$.
(4) if $0<m I \leq B \leq \frac{M+m}{2} I<M_{4}^{\prime} I \leq A \leq M I$, then

$$
\begin{equation*}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; m B^{-1}, M A^{-1}\right)\right)\right) \leq \frac{\left(\frac{M}{m}\right)^{\frac{P}{2}(2 v-1)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{4}^{\prime}} 2\right)} \Phi^{P}\left(A \sharp_{v} B\right) ; \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; m B^{-1}, M A^{-1}\right)\right)\right) \leq \frac{\left(\frac{M}{m}\right)^{\frac{P}{2}(2 v-1)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{4}^{\prime}}, 2\right)}\left(\Phi(A) \not \sharp_{v} \Phi(B)\right)^{P} ; \tag{31}
\end{equation*}
$$

where $h=\frac{M}{m}, h_{4}^{\prime}=\frac{2 M_{4}^{\prime}}{M+m}$ and $v \in\left[\frac{1}{2}, 1\right]$.

Proof. If $0<m I \leq A \leq m_{1}^{\prime} I<M_{1}^{\prime} I \leq B \leq \frac{M+m}{2} I$, we obtain

$$
\begin{align*}
& \left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \times \frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)} \Phi^{-1}\left(A \sharp_{v} B\right)\right\| \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)} \Phi^{-1}\left(A \sharp_{v} B\right)\right\|^{2} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)} \Phi\left(\left(A \sharp_{v} B\right)^{-1}\right)\right\|^{2} \\
& =\frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}\left(A \sharp_{v} B\right)^{-1}+\frac{M+m}{2} m S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right\|^{2} \\
& \leq \frac{1}{4}\left(\frac{M+m}{2}+m\right)^{2}, \tag{32}
\end{align*}
$$

where the first inequality is by (19), the second one is by (20), and the last inequality comes from (16). That is

$$
\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \Phi^{-1}\left(A \not \sharp_{v} B\right)\right\| \leq \frac{\left(\frac{M+m}{2}+m\right)^{2}}{4 \frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}}
$$

Since $1 \leq \sqrt{\frac{M}{m}} \leq 2.314$, it follows that $\left(\sqrt{\frac{M}{m}}-1\right)^{2}\left[\left(\sqrt{\frac{M}{m}}\right)^{3}-\frac{2 M}{m}+\sqrt{\frac{M}{m}}-4\right] \leq 0$, which is equivalent to

$$
\begin{equation*}
\frac{\left(\frac{M+m}{2}+m\right)^{2}}{4 \frac{M+m}{2} m} \leq \frac{M+m}{2 \sqrt{M m}} \tag{33}
\end{equation*}
$$

So we have

$$
\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \Phi^{-1}\left(A \sharp_{v} B\right)\right\| \leq \frac{M+m}{2 \sqrt{M m} K\left(\sqrt[2 N]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}}
$$

That is

$$
\begin{equation*}
\Phi^{2}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq\left(\frac{K(h, 2)}{K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{2 \beta_{N}(v)}}\right) \Phi^{2}\left(A \not \sharp_{v} B\right) . \tag{34}
\end{equation*}
$$

In addition, we can get

$$
\begin{aligned}
& \left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \times \frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right\|^{-1} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right\|^{2} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)} \Phi^{-1}\left(A \sharp_{v} B\right)\right\|^{2} \\
& \leq \frac{1}{4}\left(\frac{M+m}{2}+m\right)^{2}
\end{aligned}
$$

where the first inequality is by (19), the second is by (22), and the third is by (32). That is

$$
\begin{aligned}
& \left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right\| \\
& \leq \frac{\left(\frac{M+m}{2}+m\right)^{2}}{4 \frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}} \leq \frac{K^{\frac{1}{2}}(h, 2)}{K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}}
\end{aligned}
$$

So we have

$$
\begin{equation*}
\Phi^{2}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq\left(\frac{K(h, 2)}{K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{2 \beta_{N}(v)}}\right)\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{2} . \tag{35}
\end{equation*}
$$

We can get (24) and (25) by (34) and (35) with Lemma 5 (i), respectively.

$$
\text { Since } \frac{\left(\frac{M+m}{2}+M\right)^{2}}{4 \frac{M+m}{2} M} \leq \frac{\left(\frac{M+m}{2}+m\right)^{2}}{4 \frac{M+m}{2} m} \text {, by } 2 \text { nd case } 0<\frac{M+m}{2} I \leq A \leq m_{2}^{\prime} I<M_{2}^{\prime} I \leq B \leq M I
$$

we can similarly obtain the inequalities (26) and (27) by (16), (17), (19) and (20). So we omit the details.

$$
\text { If } 0<m I \leq A \leq m_{3}^{\prime} I<\frac{M+m}{2} I \leq B \leq M I \text { and } v \in\left[0, \frac{1}{2}\right] \text {, then we have }
$$

$$
A+\frac{M+m}{2} m A^{-1} \leq \frac{M+m}{2}+m \text { and } B+\frac{M+m}{2} M B^{-1} \leq \frac{M+m}{2}+M .
$$

So

$$
\begin{equation*}
A \nabla_{v} B+\frac{M+m}{2}\left(\left(m A^{-1}\right) \nabla_{v}\left(M B^{-1}\right)\right) \leq\left(v+\frac{1}{2}\right) M+\left(\frac{3}{2}-v\right) m \leq M+m \tag{36}
\end{equation*}
$$

Compute

$$
\begin{align*}
& \left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \times \frac{M+m}{2} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v} \Phi^{-1}\left(A \not \sharp_{v} B\right)\right\| \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\frac{M+m}{2} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v} \Phi^{-1}\left(A \not \sharp_{v} B\right)\right\|^{2} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\frac{M+m}{2} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v} \Phi\left(\left(A \not \sharp_{v} B\right)^{-1}\right)\right\|^{2} \\
& =\frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)+K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)}\left(\left(m A^{-1}\right) \sharp_{v}\left(M B^{-1}\right)\right)\right)\right)\right\|^{2} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(\left(m A^{-1}\right) \nabla_{v}\left(M B^{-1}\right)\right)\right)\right\|^{2} \\
& \leq \frac{(M+m)^{2}}{4} . \tag{37}
\end{align*}
$$

where the first inequality is by (19), the second is by (20), the third is by (14), and the last one is by (36). That is

$$
\begin{aligned}
& \left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \Phi^{-1}\left(A \sharp_{v} B\right)\right\| \\
& \leq \frac{(M+m)^{2}}{4 \frac{M+m}{2} m^{1-v} M^{v} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)}}=\frac{\left(\frac{M}{m}\right)^{\frac{1}{2}-v} K^{\frac{1}{2}}(h, 2)}{K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)}} .
\end{aligned}
$$

That is

$$
\begin{equation*}
\Phi^{2}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq \frac{\left(\frac{M}{m}\right)^{1-2 v} K(h, 2)}{K\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)^{2 \beta_{N}(v)}} \Phi^{2}\left(A \sharp_{v} B\right) . \tag{38}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
& \left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \times \frac{M+m}{2} m^{1-v} M^{v} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right\|^{2} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\frac{M+m}{2} m^{1-v} M^{v} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right\|^{2} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\frac{M+m}{2} m^{1-v} M^{v} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} \Phi^{-1}\left(A \not \sharp_{v} B\right)\right\|^{2} \\
& \leq \frac{(M+m)^{2}}{4},
\end{aligned}
$$

where the first inequality is by (19), the second is by (22), and the third is by (37). That is

$$
\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right\| \leq \frac{\left(\frac{M}{m}\right)^{\frac{1}{2}-v} K^{\frac{1}{2}}(h, 2)}{K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)}}
$$

so we have

$$
\begin{equation*}
\Phi^{2}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq \frac{\left(\frac{M}{m}\right)^{1-2 v} K(h, 2)}{K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{2 \beta_{N}(v)}}\left(\Phi(A) \not \sharp_{v} \Phi(B)\right)^{2} . \tag{39}
\end{equation*}
$$

We can get (28) and (29) by (38) and (39) with Lemma 5 (i), respectively.
We can similarly obtain the inequalities (30) and (31) under the conditions $0<m I \leq$ $B \leq \frac{M+m}{2} I<M_{3}^{\prime} I \leq A \leq M I$ and $v \in\left[\frac{1}{2}, 1\right]$. So we omit the details.

Here we complete the proof.
Remark 1. Putting $v=\frac{1}{2}, N=1$ and $P=2$ in Theorem 2, we can get Theorem 1.
Next, we present the generalizations of Theorem 2 for $P \geq 2$.
Theorem 3. Let $0<m I \leq M I, \sqrt{\frac{M}{m}} \leq 2.314$ and $S_{N}\left(v ; B^{-1}, A^{-1}\right)$ defined as in Lemma 2. Then for every positive unital linear map Φ and $P \geq 2$,
(i) if $0<m I \leq A \leq m_{1}^{\prime} I<M_{1}^{\prime} I \leq B \leq \frac{M+m}{2} I$, then

$$
\begin{gather*}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{4^{P-2} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)} \Phi^{P}\left(A \sharp_{v} B\right) ; \tag{40}\\
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{4^{P-2} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ; \tag{41}
\end{gather*}
$$

where $h=\frac{M}{m}, h_{1}^{\prime}=\frac{M_{1}^{\prime}}{m_{1}^{\prime}}$ and $v \in[0,1]$.
(ii) if $0<\frac{M+m}{2} I \leq A \leq m_{2}^{\prime} I<M_{2}^{\prime} I \leq B \leq M I$, then

$$
\begin{gather*}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} M\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{4^{P-2} K^{\frac{p}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{2}^{\prime}}, 2\right)} \Phi^{P}\left(A \sharp_{v} B\right) ; \tag{42}\\
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} M\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{4^{P-2} K^{\frac{p}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2 N]{h_{2}^{\prime}}, 2\right)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ; \tag{43}
\end{gather*}
$$

where $h=\frac{M}{m}, h_{2}^{\prime}=\frac{M_{2}^{\prime}}{m_{2}^{\prime}}$ and $v \in[0,1]$.
(iii) if $0<m I \leq A \leq m_{3}^{\prime} I<\frac{M+m}{2} I \leq B \leq M I$, then
$\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq \frac{4^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{2}(1-2 v)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)} \Phi^{P}\left(A \not \sharp_{v} B\right) ;$
$\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq \frac{4^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{2}(1-2 v)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ;$
where $h=\frac{M}{m}, h_{3}^{\prime}=\frac{M+m}{2 m_{3}^{\prime}}$ and $v \in\left[0, \frac{1}{2}\right]$.
(iv) if $0<m I \leq B \leq \frac{M+m}{2} I<M_{4}^{\prime} I \leq A \leq M I$, then
$\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; m B^{-1}, M A^{-1}\right)\right)\right) \leq \frac{4^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{2}(2 v-1)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{4}^{\prime}}, 2\right)} \Phi^{P}\left(A \sharp_{v} B\right) ;$
$\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; m B^{-1}, M A^{-1}\right)\right)\right) \leq \frac{4^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{2}(2 v-1)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{4}^{\prime}}, 2\right)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ;$
where $h=\frac{M}{m}, h_{4}^{\prime}=\frac{2 M_{4}^{\prime}}{M+m}$ and $v \in\left[\frac{1}{2}, 1\right]$.
Proof. The proof of the line (ii) and (iv) are similar to the one presented in (i) and (iii), respectively, thus we omit them. Under the conditions i) $0<m I \leq A \leq m_{1}^{\prime} I<M_{1}^{\prime} I \leq B \leq$ $\frac{M+m}{2} I$, we have

$$
\begin{aligned}
& \left\|\Phi^{\frac{P}{2}}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \times\left(\frac{M+m}{2}\right)^{\frac{P}{2}} m^{\frac{P}{2}} K^{\frac{P}{2} \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right) \Phi^{-\frac{P}{2}}\left(A \sharp_{v} B\right)\right\| \\
& \leq \frac{1}{4}\left\|\Phi^{\frac{P}{2}}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\left(\frac{M+m}{2}\right)^{\frac{p}{2}} m^{\frac{P}{2}} K^{\frac{P}{2} \beta_{N}(v)}\left(\sqrt[2 N]{h_{1}^{\prime}}, 2\right) \Phi^{-\frac{P}{2}}\left(A \not \sharp_{v} B\right)\right\|^{2} \\
& \leq \frac{1}{4} \|\left(\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)} \Phi^{-1}\left(A \not \sharp_{v} B\right)\right)^{\frac{P}{2}} \|^{2}\right. \\
& =\frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)} \Phi^{-1}\left(A \sharp_{v} B\right)\right\|^{P} \\
& \leq \frac{1}{4}\left(\frac{M+m}{2}+m\right)^{P} .
\end{aligned}
$$

where the first inequality is by (19), the second is by (23) and the third is by (32). That is

$$
\begin{aligned}
& \left\|\Phi^{\frac{p}{2}}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \Phi^{-\frac{p}{2}}\left(A \sharp_{v} B\right)\right\| \\
& \leq \frac{\left(\frac{M+m}{2}+m\right)^{P}}{4\left(\frac{M+m}{2}\right)^{\frac{P}{2}} m^{\frac{P}{2}} K^{\frac{p}{2} \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)} \leq \frac{4^{\frac{P}{2}-1}\left(\frac{M+m}{2 \sqrt{M m}}\right)^{\frac{p}{2}}}{K^{\frac{P}{2} \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)}=\frac{4^{\frac{P}{2}-1} K^{\frac{p}{4}}(h, 2)}{K^{\frac{P}{2} \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)}
\end{aligned}
$$

where the second inequality is by (33). So we have

$$
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{4^{P-2} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)} \Phi^{P}\left(A \sharp_{v} B\right) .
$$

In addition, we can get

$$
\begin{aligned}
& \left\|\Phi^{\frac{p}{2}}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \times\left(\frac{M+m}{2}\right)^{\frac{p}{2}} m^{\frac{p}{2}} K^{\frac{p}{2} \beta_{N}(v)}\left(\sqrt[2 N]{h_{1}^{\prime}}, 2\right)\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-\frac{p}{2}}\right\| \\
& \leq \frac{1}{4}\left\|\Phi^{\frac{p}{2}}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\left(\frac{M+m}{2}\right)^{\frac{p}{2}} m^{\frac{p}{2}} K^{\frac{p}{2}} \beta_{N}(v)\left(\sqrt[2 N]{h_{1}^{\prime}}, 2\right)\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-\frac{p}{2}}\right\|^{2} \\
& \leq \frac{1}{4} \|\left(\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}\left(\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right)^{\frac{p}{2}} \|^{2}\right. \\
& =\frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right\|^{P} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)+\frac{M+m}{2} m K\left(\sqrt[2 N]{h_{1}^{\prime}}, 2\right)^{\beta_{N}(v)} \Phi^{-1}\left(A \sharp_{v} B\right)\right\|^{P} \\
& \leq \frac{1}{4}\left(\frac{M+m}{2}+m\right)^{p} .
\end{aligned}
$$

where the first inequality is by (19), the second is by (23), the third is by (22) and the last is by (32). That is

$$
\left\|\Phi^{\frac{P}{2}}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right)\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-\frac{P}{2}}\right\| \leq \frac{4^{\frac{P}{2}-1} K^{\frac{P}{4}}(h, 2)}{K^{\frac{P}{2} \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)}
$$

so we have

$$
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq \frac{4^{P-2} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P}
$$

as desired.

$$
\text { If } 0<m I \leq A \leq m_{3}^{\prime} I<\frac{M+m}{2} I \leq B \leq M I \text { and } v \in\left[0, \frac{1}{2}\right] \text {, then }
$$

$$
\begin{aligned}
& \left\|\Phi^{\frac{p}{2}}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \times\left[\frac{M+m}{2} K\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v}\right]^{\frac{p}{2}} \Phi^{-\frac{p}{2}}\left(A \sharp_{v} B\right)\right\| \\
& \leq \frac{1}{4}\left\|\Phi^{\frac{p}{2}}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\left[\frac{M+m}{2} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v}\right]^{\frac{p}{2}} \Phi^{-\frac{p}{2}}\left(A \sharp_{v} B\right)\right\|^{2} \\
& \leq \frac{1}{4}\left\|\left(\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\frac{M+m}{2} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v} \Phi^{-1}\left(A \sharp_{v} B\right)\right)^{\frac{p}{2}}\right\|^{2} \\
& =\frac{1}{4} \| \Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)+\frac{M+m}{2} K\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v} \Phi^{-1}\left(A \sharp_{v} B\right) \|^{P}\right. \\
& \leq \frac{1}{4}(M+m)^{P} .
\end{aligned}
$$

where the first inequality is by (19), the second is by (23) and the third is by (37). That is

$$
\begin{aligned}
& \left\|\Phi^{\frac{P}{2}}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \Phi^{-\frac{P}{2}}\left(A \sharp_{v} B\right)\right\| \\
& \leq \frac{(M+m)^{P}}{4\left[\frac{M+m}{2} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v}\right]^{\frac{P}{2}}}=\frac{2^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{4}}(1-2 v) K^{\frac{P}{4}}(h, 2)}{K^{\frac{P}{2} \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)} .
\end{aligned}
$$

So we have

$$
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq \frac{4^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{2}(1-2 v)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)} \Phi^{P}\left(A \not \sharp_{v} B\right) .
$$

At the same time, we can get

$$
\begin{aligned}
& \left\|\Phi^{\frac{p}{2}}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \times\left[\frac{M+m}{2} K\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v}\right]^{\frac{p}{2}}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-\frac{p}{2}}\right\|^{2} \\
& \leq \frac{1}{4}\left\|\Phi^{\frac{p}{2}}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\left[\frac{M+m}{2} K\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v}\right]^{\frac{p}{2}}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-\frac{p}{2}}\right\|^{2} \\
& \leq \frac{1}{4}\left\|\left(\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\frac{M+m}{2} K\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right)^{\frac{p}{2}}\right\|^{2} \\
& =\frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\frac{M+m}{2} K\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{-1}\right\|^{P} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)+\frac{M+m}{2} K\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)^{\beta_{N}(v)} m^{1-v} M^{v} \Phi^{-1}\left(A \sharp_{v} B\right)\right\|^{P} \\
& \leq \frac{1}{4}(M+m)^{P} .
\end{aligned}
$$

where the first inequality is by (19), the second is by (23), the third is by (22) and the last is by (37). That is

$$
\begin{aligned}
& \left\|\Phi^{\frac{p}{2}}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right)\left(\Phi(A) H_{v} \Phi(B)\right)^{-\frac{p}{2}}\right\| \\
& \leq \frac{(M+m)^{P}}{4\left(\frac{M+m}{2} m^{1-v} M^{v}\right)^{\frac{p}{2}} K^{\frac{p}{2}} \beta_{N}(v)\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)}=\frac{2^{P-2}\left(\frac{M}{m}\right)^{\frac{p}{4}}(1-2 v) K^{\frac{p}{4}}(h, 2)}{K^{\frac{p}{2} \beta_{N}(v)}\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)} .
\end{aligned}
$$

So we have

$$
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq \frac{4^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{2}(1-2 v)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2 N]{h_{3}^{\prime}}, 2\right)}\left(\Phi(A) \not \sharp_{v} \Phi(B)\right)^{P} .
$$

Here we complete the proof.
Theorems 2 and 3 implies the following results.
Corollary 1. Let $0<m \leq M, \sqrt{\frac{M}{m}} \leq 2.314$ and $S_{N}\left(v ; B^{-1}, A^{-1}\right)$ defined as in Lemma 2. Then for every positive unital linear map Φ and $P \geq 0$,
(i) if $0<m I \leq A \leq m_{1}^{\prime} I<M_{1}^{\prime} I \leq B \leq \frac{M+m}{2} I, v \in[0,1]$, then

$$
\begin{gathered}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq W_{1} \Phi^{P}\left(A \not \sharp_{v} B\right) ; \\
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} m\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq W_{1}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ;
\end{gathered}
$$

where $h=\frac{M}{m}, h_{1}^{\prime}=\frac{M_{1}^{\prime}}{m_{1}^{\prime}}, W_{1}=\max \left\{\frac{K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)}, \frac{4^{P-2} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}}(v)}\left(\sqrt[2^{N}]{\sqrt{h_{1}^{\prime}}, 2}\right)\right\}$.
(ii) if $0<\frac{M+m}{2} I \leq A \leq m_{2}^{\prime} I<M_{2}^{\prime} I \leq B \leq M I, v \in[0,1]$, then

$$
\begin{gathered}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} M\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq W_{2} \Phi^{P}\left(A \not \sharp_{v} B\right) ; \\
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2} M\left(S_{N}\left(v ; B^{-1}, A^{-1}\right)\right)\right) \leq W_{2}\left(\Phi(A) \not \sharp_{v} \Phi(B)\right)^{P} ;
\end{gathered}
$$

where $h=\frac{M}{m}, h_{2}^{\prime}=\frac{M_{2}^{\prime}}{m_{2}^{\prime}}, W_{2}=\max \left\{\frac{K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{\overline{h_{2}^{\prime}}, 2}\right)}, \frac{4^{P-2} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}}(v)\left(\sqrt[2^{N}]{h_{1}^{\prime}}, 2\right)}\right\}$.
(iii) if $0<m I \leq A \leq m_{3}^{\prime} I<\frac{M+m}{2} I \leq B \leq M I, v \in\left[0, \frac{1}{2}\right]$, then

$$
\begin{gathered}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq W_{3} \Phi^{P}\left(A \sharp_{v} B\right) ; \\
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; M B^{-1}, m A^{-1}\right)\right)\right) \leq W_{3}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ;
\end{gathered}
$$

where $h=\frac{M}{m}, h_{3}^{\prime}=\frac{M+m}{2 m_{3}^{\prime}}, W_{3}=\max \left\{\frac{\left(\frac{M}{m}\right)^{\frac{P}{2}(1-2 v)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)}, \frac{4^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{2}(1-2 v)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{3}^{\prime}}, 2\right)}\right\}$.
(iv) if $0<m I \leq B \leq \frac{M+m}{2} I<M_{4}^{\prime} I \leq A \leq M I, v \in\left[\frac{1}{2}, 1\right]$, then

$$
\begin{gathered}
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; m B^{-1}, M A^{-1}\right)\right)\right) \leq W_{4} \Phi^{P}\left(A \sharp_{v} B\right) ; \\
\Phi^{P}\left(A \nabla_{v} B+\frac{M+m}{2}\left(S_{N}\left(v ; m B^{-1}, M A^{-1}\right)\right)\right) \leq W_{4}\left(\Phi(A) \sharp_{v} \Phi(B)\right)^{P} ;
\end{gathered}
$$

$$
\text { where } h=\frac{M}{m}, h_{4}^{\prime}=\frac{2 M_{4}^{\prime}}{M+m}, W_{4}=\max \left\{\frac{\left(\frac{M}{m}\right)^{\frac{P}{2}(2 v-1)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{4}^{\prime}}, 2\right)}, \frac{4^{P-2}\left(\frac{M}{m}\right)^{\frac{P}{2}(2 v-1)} K^{\frac{P}{2}}(h, 2)}{K^{P \beta_{N}(v)}\left(\sqrt[2^{N}]{h_{4}^{\prime}}, 2\right)}\right\} .
$$

Funding: This research received no external funding.
Data Availability Statement: Not applicable.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Furuichi, S. Refined Young inequalities with Specht's ratio. J. Egypt. Math. Soc. 2012, 20, 46-49. [CrossRef]
2. Zuo, H.L.; Shi, G.H.; Fujii, M. Refined Young inequality with Kantorovich constant. J. Math. Inequal. 2011, 5, 551-556. [CrossRef]
3. Sababheh, M.; Moslehian, M.S. Advanced refinements of Young and Heinz inequalities. J. Number Theory 2017, 172, 178-199. [CrossRef]
4. Lin, M.H. Squaring a reverse AM-GM inequality. Studia Math. 2013, 215, 187-194. [CrossRef]
5. Xue, J.M. Some refinements of operator reverse AM-GM inequality. J. Inequal. Appl. 2017, 2017, 283. [CrossRef] [PubMed]
6. Ali, I.; Shakoor, A.; Rehman, A. More refinements of the operator reverse AM-GM inequality for positive linear maps. J. Math. Inequal. 2019, 13, 287-300. [CrossRef]
7. Ighachane, M.A.; Akkouchi, M. Further refinements of Young's type inequality for positive linear maps. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2021, 115, 19. [CrossRef]
8. Karim, S.; Ali, I.; Mushtaq, M. Improvements of operator reverse AM-GM inequality involving positive linear maps. J. Inequal. Appl. 2020, 73, 12. [CrossRef]
9. Karim, S.; Ali, I.; Mushtaq, M. New developments on operator reverse AM-GM inequality for positive linear maps. Acta Math. Sin. 2022, 38, 419-430. [CrossRef]
10. Srivastava, H.M.; Chandel, R.C.S.; Kumar, H. Some general Hurwitz-Lerch type Zeta functions associated with the SrivastavaDaoust multiple hypergeometric functions. J. Nonlinear Var. Anal. 2022, 6, 299-315.
11. Yang, C.S.; Li, Y. On the further refinement of some operator inequalities for positive linear map. J. Math. Inequal. 2021, 15, 781-797. [CrossRef]
12. Bhatia, R.; Kittaneh, F. Notes on matrix arithmetic-geometric mean inequalities. Linear Algebra Appl. 2000, 308, 203-211. [CrossRef]
13. Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2007.
14. Pečarić, J.; Furuta, T.; Hot, J.; Seo, Y. Mond-Pečarić Method in Operator Inequalities; Element: Zagreb, Croatia, 2005.
15. Ando, T.; Zhan, X. Norm inequalities related to operator monotone functions. Math. Ann. 1999, 315, 771-780. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

