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Abstract: This paper calculates numerical solutions of an extended three-coupled Korteweg–de
Vries system by the q-homotopy analysis transformation method (q-HATM), which is a hybrid of
the Laplace transform and the q-homotopy analysis method. Multiple investigations inspecting
planetary oceans, optical cables, and cosmic plasma have employed the KdV model, significantly
contributing to its development. The uniqueness, convergence, and maximum absolute truncation
error of this algorithm are demonstrated. A numerical simulation has been performed to validate the
accuracy and validity of the proposed approach. With high accuracy and few algorithmic processes,
this algorithm supplies a series solution in the form of a recursive relation.
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1. Introduction

In the past two decades, nonlinear science has begun to appear in modern mathe-
matics, physics, engineering technology, and other important fields [1–4]. Presently, the
primary topic of research in many categories, which include natural science and engineering
technology, has shifted from linear problems to nonlinear problems. Such a form of com-
plex problem necessitates extensive research and faces distinct difficulties. However, the
study of nonlinear PDEs [5–9] has already started to encounter problems. In physics, fluid
mechanics, communication technology, material science, dynamical systems, and biology,
nonlinear coupled PDEs are commonly implemented. As a consequence, understanding
how to solve nonlinear PDEs has both important theoretical and practical consequences.

Traditional numerical methods require more computer memory to calculate numerical
solutions. This means that the semi-analytical technique and the Laplace transform elimi-
nate the time-consuming drawbacks and need less CPU processing time while analyzing
the numerical solutions of nonlinear phenomena in the actual world. A hybrid of the homo-
topy polynomials, the Laplace transform, and the q-HAM [10–14] is the q-HATM [15–19].
We analyze the uniqueness, convergence, and utmost absolute error [20,21] of q-HATM
solutions. This algorithm has the advantages of both methods.

This article is going to investigate the extended three-coupled Korteweg–de Vries
system [22–24],

ut = β1uxxx + β2uxv + β2uvx,

vt = β1β3vxxx + 2β2β3vvx − β2wx,

wt = β1wxxx + β2vwx − 2β2uux,

(1)

with real differentiable functions associated with variables x and t including u, v, and w,
while β1, β2, and β3 are three non-zero real constants. In investigations of planetary oceans,
optical fibers, and cosmic plasma, the KdV model has been extensively employed.
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The main framework of this paper is as follows. The fundamental concepts of the
sub-equation method [25–27] and the q-HATM are outlined in Section 2; the uniqueness
and convergence of numerical solutions are also confirmed. The extended three-coupled
Korteweg–de Vries system is discussed in Section 3 along with its analytical and numerical
solutions. Section 4 shows the numerical results and comments. Section 5 concludes by
providing some recommendations and outlining the key findings.

2. Analysis of the Presented Methodology
2.1. The Sub Equation Method

The Riccati equation is the foundation of the sub equation approach,

ψ
′
(η) = α + ψ2(η). (2)

When it comes to a particular PDE with two variables,

F(x, t, ut, ux, uxx, · · · ) = 0, (3)

the travelling wave solution [25–27] is

η = bt + x, u(x, t) = U(η), (4)

in this case, b is a constant that will be explained further.
Substituting Equation (4) into Equation (3), the following equation is established,

G(U(η), U
′
(η), . . .) = 0. (5)

Presumptive analytical solutions of Equation (5) are as follows:

U(η) =
N

∑
i=0

aiψ
i(η), aN 6= 0, (6)

The principle of balance can be employed for estimating a positive integer N, and the
coefficients ai (0 ≤ i ≤ N) will be calculated afterward.

Equation (2) possesses five types of analytical solutions, which are listed below,

ψ(η) =



−
√
−αtanh(

√
−αη), α < 0,

−
√
−αcoth(

√
−αη), α < 0,

− 1
η

, α = 0,
√

αtan(
√

αη), α > 0,

−
√

αcot(
√

αη), α > 0.

(7)

With the help of the previously mentioned results, we can formulate equations for b
and ai (i = 1, 2, . . . , N) by juggling the coefficients of a polynomial describing ψ(η). Then,
we get the analytical solutions of Equation (3).

2.2. Fundamental Plan of the q-HATM

The following introduces [15–19] the basic idea of the q-HATM for nonlinear PDEs,
assuming that the PDEs have the following form,

ut(x, t) + Nu(x, t) + Ru(x, t) = f (x, t), (8)
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where N is Lipschitz continuous and a nonlinear differential operator. The linear differential
operator R is bounded, meaning that given a number µ, we acquire ‖Ru‖≤µ‖u‖. The
source term is f (x, t). Applying the Laplace transform to Equation (8), we have

sL [u(x, t)] +L [Nu(x, t)] +L [Ru(x, t)] = u(x, 0) +L [ f (x, t)], (9)

The simplification of Equation (9) gives

L [u(x, t)] +
1
s
L [Nu(x, t) + Ru(x, t)− f (x, t)]− 1

s
u(x, 0) = 0. (10)

The following is the nonlinear operator,

B[Θ(x, t; q)] = L [Θ(x, t; q)] +
1
s
L [NΘ(x, t; q) + RΘ(x, t; q)− f (x, t)]− 1

s
Θ(x, t; q)(0+), (11)

where the real function of q, x, and t is Θ(x, t; q) and q ∈ [0, 1
n ] (n ≥ 1) is an embedding

parameter. The q-HATM supplies the following non-zero auxiliary function,

(1− nq)L [Θ(x, t; q)− u0(x, t)] = }qH(x, t)B[Θ(x, t; q)], (12)

where the Laplace transform is designated by L , the initial guess of u(x, t) is represented
as u0(x, t), and the auxiliary parameter } 6= 0. In the following, we present the conclusions
for q = 1

n and q = 0, respectively,

Θ(x, t;
1
n
) = u(x, t), Θ(x, t; 0) = u0(x, t). (13)

The solutions Θ(x, t; q) converge to solutions u(x, t) from the initial guess u0(x, t) as
the embedding parameter q increases from 0 to 1

n . Employing Taylor’s theorem [28] about
q, the series expansion of function Θ(x, t; q) is given,

Θ(x, t; q) = u0(x, t) +
∞

∑
l=1

ul(x, t)ql , (14)

where

ul(x, t) =
1
l!

∂lΘ(x, t; q)
∂ql |q=0. (15)

If Equation (14) converges at q = 1
n and the initial guess u0, asymptotic parameter n,

and auxiliary parameter } values are set appropriately,

u(x, t) = lim
q→ 1

n

Θ(x, t; q) =
∞

∑
l=0

ul(x, t)(
1
n
)l . (16)

Dividing Equation (12) by l! after differentiating it l times concerning q. Finalize by
taking q = 0 and becoming,

L [ul(x, t)− klul−1(x, t)] = }H(x, t)Rl(~ul−1), (17)

here
~ul = {u0, u1 · · · , ul}. (18)

The inverse Laplace transform acts on Equation (17), which becomes

ul(x, t) = klul−1(x, t) + }H(x, t)L −1[Rl(~ul−1)], (19)
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where

Rl(~ul−1) =
1

(l − 1)!
∂l−1B(Θ(x, t; q))

∂ql−1 |q=0, kl =

{
0, l ≤ 1,
n, l > 1.

(20)

To acquire the iteration terms of ul(x, t), our suggested technique employs homotopy
polynomials to provide a unique correction function. The numerical solutions for q-HATM
series are

u[M](x, t) =
M

∑
l=0

ul(x, t)(
1
n
)l . (21)

2.3. Convergence Analysis of the q-HATM

The recommended approach has been employed during this study to investigate the
convergence of Equation (8).

Theorem 1 (Uniqueness theorem). For any α in (0, 1), where γ = }(λ + µ)T + n + }, the
solution of Equation (8) generated employing the q-HATM is unique.

Proof. The solution to Equation (8) is expressed as

u(x, t) =
∞

∑
l=0

ul(x, t)(
1
n
)l , (22)

where

ul(x, t) = }L −1[
1
s
L [Nu(x, t) + Ru(x, u)]] + (kl + })ul−1(x, t)− (1− kl

n
)

1
s
[u(x, 0) + f (x, t)]. (23)

Assuming that the two solutions to Equation (8) are u and u4, the above equation
yields the following result:

|u− u4|= |}L −1[
1
s
L [N(u− u4) + R(u− u4)]] + (n + })(u− u4)|. (24)

It follows from the Laplace convolution theorem [29] that we possess

|u− u4| ≤ }
∫ t

0
(|N(u− u4)|+|R(u− u4)|)(t− τ)dτ + (n + })|u− u4|

≤ }
∫ t

0
(λ + µ)|u− u4|(t− τ)dτ + (n + })|u− u4|.

(25)

Further, making use of the integral mean value theorem [30],

|u− u4| ≤ }(λ + µ)|u− u4|T + (n + })|u− u4|
≤ γ|u− u4|,

(26)

where γ = }(λ + µ)T + n + }. This means that,

|u− u4| ≤ γ|u− u4| ⇒ (γ− 1)|u− u4| ≥ 0, (27)

as 0 < γ < 1; then, u = u4. As a result, Equation (8) has a unique solution.

Theorem 2 (Convergence theorem). Considering that Q : X → X is a nonlinear mapping,
alongside X, in this case, being a Banach space, this allows for

‖Q(u)−Q(w)‖ ≤ γ‖u− w‖, ∀ u, w ∈ X. (28)
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In line with Banach’s theory [31] of fixed points, Q has a fixed point. The sequence generated
via the q-HATM similarly converges to the fixed point of Q for u0 and w0, which has been selected
at random among X, and

‖ul − un‖ ≤
γn

1− γ
‖u1 − u0‖, ∀ u0, w0 ∈ X. (29)

Proof. The norm is denoted by ‖g(t)‖=maxt∈J |g(t)|. The Banach space (C[J], ‖.‖) includes
continuous functions performed on J. As previously mentioned, the sequence {un} is a
Cauchy-like sequence in the Banach space X,

‖ul − un‖ = maxt∈J |ul − un|

= maxt∈J |}L −1[
1
s
L [N(ul−1 − un−1) + R(ul−1 − un−1)]] + (n + })(ul−1 − un−1)|

≤ maxt∈J [}L −1[
1
s
L [|N(ul−1 − un−1)|+|R(ul−1 − un−1)|]] + (n + })|ul−1 − un−1|].

(30)

The Laplace transform’s convolution theorem allows the following:

‖ul − un‖ ≤ maxt∈J [}
∫ t

0
[|N(ul−1 − un−1)|+|R(ul−1 − un−1)|](t− τ)dτ + (n + })|ul−1 − un−1|]

≤ maxt∈J [}
∫ t

0
[(λ + µ)|ul−1 − un−1|](t− τ)dτ + (n + })|ul−1 − un−1|].

(31)

Following that, implementing the integral mean value theorem,

‖ul − un‖ ≤ maxt∈J [}(λ + µ)|ul−1 − un−1|T + (n + })|ul−1 − un−1|]
≤ γ‖ul−1 − un−1‖ ⇔ γ = }(λ + µ)T + n + }.

(32)

If l = n + 1, then the situation is as follows:

‖un+1 − un‖ ≤ γ‖un − un−1‖ ≤ γ2‖un−1 − un−2‖ ≤ · · · ≤ γn‖u1 − u0‖. (33)

Employing the trigonometric inequality produces

‖ul − un‖ = ‖un+1 − un + un+2 − un+1 + · · ·+ ul − ul−1‖
≤ ‖un+1 − un‖+ ‖un+2 − un+1‖+ · · ·+ ‖ul − ul−1‖

≤ [γn + γn+1 + · · ·+ γl−1]‖u1 − u0‖

≤ γn × [1 + γ + · · ·+ γl−n−1]‖u1 − u0‖

≤ γn × 1− γl−n−1

1− γ
‖u1 − u0‖.

(34)

Since 0 < γ < 1, then 1− γl−n−1 < 1, and we have

‖ul − un‖ ≤
γn

1− γ
‖u1 − u0‖. (35)

However, ‖u1 − u0‖ < ∞, so as l → ∞, then ‖ul − un‖ → 0. Given that all Cauchy se-
quences are convergent, the sequence {un} in the Banach space C[J] is a Cauchy sequence.

Theorem 3. The utmost absolute truncation error will be calculated as follows if there is a real
number 0 < γ < 1 and ‖ul+1‖ ≤ γ‖ul‖ is satisfied:

‖u(x, t)− u[M](x, t)‖ ≤ γM+1

nM(n− γ)
‖u0(x, t)‖. (36)
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Proof. Given the values of n (n ≥ 1) and } (} 6= 0), we have

‖u(x, t)− u[M](x, t)‖ = ‖
∞

∑
l=0

ul(x, t)(
1
n
)l −

M

∑
l=0

ul(x, t)(
1
n
)l‖

≤
∞

∑
l=M+1

‖ul(x, t)‖( 1
n
)l

≤
∞

∑
l=M+1

γl‖u0(x, t)‖( 1
n
)l

≤
∞

∑
l=M+1

(
γ

n
)l‖u0(x, t)‖

≤ (
γ

n
)M+1[1 +

γ

n
+ (

γ

n
)2 + · · · ]‖u0(x, t)‖

≤ (
γ

n
)M+1 1

1− γ
n
‖u0(x, t)‖

=
γM+1

nM(n− γ)
‖u0(x, t)‖.

(37)

This proof of the theorem has now been finished.

3. Applications of the Extended Three-Coupled Korteweg–de Vries System
3.1. Analytical Solutions for Equation (1)

We right now utilize the sub equation approach to discover the analytical solutions to
Equation (1). As a consequence, we perform the wave transformation described below,

η = bt + x, u(x, t) = U(η), v(x, t) = V(η), w(x, t) = W(η). (38)

Here are the simplified ODEs that result from inserting Equation (38) into Equation (1),

bU
′
= β1U

′′′
+ β2U

′
V + β2UV

′
,

bV
′
= β1β3V

′′′
+ 2β2β3VV

′ − β2W
′
,

bW
′
= β1W

′′′
+ β2VW

′ − 2β2UU
′
.

(39)

The homogeneous balance between the nonlinear item and the highest-order deriva-
tive has to be obtained by Equation (39), which results in the following solutions,

U(η) = a0 + a1ψ(η) + a2ψ2(η),

V(η) = b0 + b1ψ(η) + b2ψ2(η),

W(η) = c0 + c1ψ(η) + c2ψ2(η).

(40)

The following solutions are derived by computing the system of equations created by
substituting Equation (40) into Equation (39),

a0 = −
a2(−144αβ3

1 − 18b0β2
1β2 + a2

2β3
2 + 144αβ3

1β3 + 36b0β2
1β2β3)

108β3
1

, a1 = 0,

b2 = −6β1

β2
, c2 =

a2
2β2

3β1
, b1 = 0, c1 = 0, b =

a2
2β3

2 + 144αβ3
1β3 + 36b0β2

1β2β3

18β2
1

,

(41)
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where a2, b0, and c0 are arbitrary constants. In other words, we acquire three different
travelling wave solutions for Equation (1): a soliton solution with α < 0,

u(x, t) = −
a2(−144αβ3

1 − 18b0β2
1β2 + a2

2β3
2 + 144αβ3

1β3 + 36b0β2
1β2β3)

108β3
1

− a2αtanh2(
√
−α(x +

a2
2β3

2 + 144αβ3
1β3 + 36b0β2

1β2β3

18β2
1

t)),

v(x, t) = b0 +
6β1

β2
αtanh2(

√
−α(x +

a2
2β3

2 + 144αβ3
1β3 + 36b0β2

1β2β3

18β2
1

t)),

w(x, t) = c0 −
a2

2β2

3β1
αtanh2(

√
−α(x +

a2
2β3

2 + 144αβ3
1β3 + 36b0β2

1β2β3

18β2
1

t)),

(42)

a periodic solution with α > 0,

u(x, t) = −
a2(−144αβ3

1 − 18b0β2
1β2 + a2

2β3
2 + 144αβ3

1β3 + 36b0β2
1β2β3)

108β3
1

+ a2αtan2(
√

α(x +
a2

2β3
2 + 144αβ3

1β3 + 36b0β2
1β2β3

18β2
1

t)),

v(x, t) = b0 −
6β1

β2
αtan2(

√
α(x +

a2
2β3

2 + 144αβ3
1β3 + 36b0β2

1β2β3

18β2
1

t)),

w(x, t) = c0 +
a2

2β2

3β1
αtan2(

√
α(x +

a2
2β3

2 + 144αβ3
1β3 + 36b0β2

1β2β3

18β2
1

t)),

(43)

and a rational solution with α = 0,

u(x, t) = −
a2(−18b0β2

1β2 + a2
2β3

2 + 36b0β2
1β2β3)

108β3
1

+ a2(
18β2

1
18β2

1x + a2
2β3

2 + 36b0β2
1β2β3

)2,

v(x, t) = b0 −
6β1

β2
(

18β2
1

18β2
1x + a2

2β3
2 + 36b0β2

1β2β3
)2,

w(x, t) = c0 +
a2

2β2

3β1
(

18β2
1

18β2
1x + a2

2β3
2 + 36b0β2

1β2β3
)2.

(44)

3.2. Numerical Solutions for Equation (1)

Take Equation (1), for example,

ut = β1uxxx + β2uxv + β2uvx,

vt = β1β3vxxx + 2β2β3vvx − β2wx,

wt = β1wxxx + β2vwx − 2β2uux,

(45)

with initial conditions

u(x, 0) = −
a2(−144αβ3

1 − 18b0β2
1β2 + a2

2β3
2 + 144αβ3

1β3 + 36b0β2
1β2β3)

108β3
1

− a2αtanh2(
√
−αx),

v(x, 0) = b0 +
6β1

β2
αtanh2(

√
−αx), w(x, 0) = c0 −

a2
2β2

3β1
αtanh2(

√
−αx).

(46)
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When the starting conditions from Equation (46) are coupled with the Laplace trans-
form from Equation (45), we obtain

L [u(x, t)] =
1
s
L [β1

∂3u
∂x3 + β2

∂u
∂x

v + β2u
∂v
∂x

] +
1
s

u(x, 0),

L [v(x, t)] =
1
s
L [β1β3

∂3v
∂x3 + 2β2β3v

∂v
∂x
− β2

∂w
∂x

] +
1
s

v(x, 0),

L [w(x, t)] =
1
s
L [β1

∂3w
∂x3 + β2v

∂w
∂x
− 2β2u

∂u
∂x

] +
1
s

w(x, 0).

(47)

The following formula is used to create the zero-order deformation equation, where
i = 1, 2, 3, and Θi(x, t; q) = Θi, respectively,

(1− nq)L [Θ1 − u0(x, t)] = }qH(x, t)B1(Θ1, Θ2, Θ3),

(1− nq)L [Θ2 − v0(x, t)] = }qH(x, t)B2(Θ1, Θ2, Θ3),

(1− nq)L [Θ3 − w0(x, t)] = }qH(x, t)B3(Θ1, Θ2, Θ3).

(48)

The nonlinear operators are:

B1(Θ1, Θ2, Θ3) = L [Θ1]−
1
s

u(x, 0)− 1
s
L [β1

∂3Θ1

∂x3 + β2
∂Θ1

∂x
Θ2 + β2Θ1

∂Θ2

∂x
],

B2(Θ1, Θ2, Θ3) = L [Θ2]−
1
s

v(x, 0)− 1
s
L [β1β3

∂3Θ2

∂x3 + 2β2β3Θ2
∂Θ2

∂x
− β2

∂Θ3

∂x
],

B3(Θ1, Θ2, Θ3) = L [Θ3]−
1
s

w(x, 0)− 1
s
L [Θ1

∂3Θ3

∂x3 + β2Θ2
∂Θ3

∂x
− 2β2Θ1

∂Θ1

∂x
].

(49)

The algorithm which has been proposed as follows has been employed to calculate
the m-order deformation equation,

L [ul(x, t)− klul−1(x, t)] = }R1, l(~ul−1,~vl−1, ~wl−1),

L [vl(x, t)− klvl−1(x, t)] = }R2, l(~ul−1,~vl−1, ~wl−1),

L [wl(x, t)− klwl−1(x, t)] = }R3, l(~ul−1,~vl−1, ~wl−1),

(50)

where
R1, l(~ul−1,~vl−1, ~wl−1) = L [ul−1(x, t)]− (1− kl

n
)

1
s

u(x, 0)

− 1
s
L [β1

∂3ul−1

∂x3 + β2

l−1

∑
k=0

vk
∂ul−1−k

∂x
+ β2

l−1

∑
k=0

uk
∂vl−1−k

∂x
],

R2, l(~ul−1,~vl−1, ~wl−1) = L [vl−1(x, t)]− (1− kl
n
)

1
s

v(x, 0)

− 1
s
L [β1β3

∂3vl−1

∂x3 + 2β2β3

l−1

∑
k=0

vk
∂vl−1−k

∂x
− β2

∂wl−1
∂x

],

R3, l(~ul−1,~vl−1, ~wl−1) = L [wl−1(x, t)]− (1− kl
n
)

1
s

w(x, 0)

− 1
s
L [β1

∂3wl−1

∂x3 + β2

l−1

∑
k=0

vk
∂wl−1−k

∂x
− 2β2

l−1

∑
k=0

uk
∂ul−1−k

∂x
].

(51)

In Equation (50), we can utilize the inverse Laplace transform to deduce

ul(x, t) = klul−1(x, t) + }L −1R1, l(~ul−1,~vl−1, ~wl−1),

vl(x, t) = klvl−1(x, t) + }L −1R2, l(~ul−1,~vl−1, ~wl−1),

wl(x, t) = klwl−1(x, t)] + }L −1R3, l(~ul−1,~vl−1, ~wl−1).

(52)

The following results have been achieved by dealing with the equations provided earlier,
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u0(x, t) = −
a2(−144αβ3

1 − 18b0β2
1β2 + a2

2β3
2 + 144αβ3

1β3 + 36b0β2
1β2β3)

108β3
1

− a2αtanh2(
√
−αx),

v0(x, t) = b0 +
6β1

β2
αtanh2(

√
−αx),

w0(x, t) = c0 −
a2

2β2

3β1
αtanh2(

√
−αx),

u1(x, t) =
√
−ααa2ht tanh

(√
−αx

)
sech2(√−αx

)(
a2

2β3
2 + 36β2

1β3(4αβ1 + b0β2)
)

9β2
1

,

v1(x, t) = −
2
√
−ααht tanh

(√
−αx

)
sech2(√−αx

)(
a2

2β3
2 + 36β2

1β3(4αβ1 + b0β2)
)

3β1β2
,

w1(x, t) = −
β2
(

β3
2 + 36β2

1(β2 − 4β1)β3
)
ht tanh(x)sech2(x)

27β3
1

,

...

(53)

Similar calculations can be carried out for the remaining iteration terms. Finally, the
numerical solutions of Equation (45) are supplied as

u[M](x, t) = u0(x, t) +
M

∑
l=1

ul(x, t)(
1
n
)l ,

v[M](x, t) = v0(x, t) +
M

∑
l=1

vl(x, t)(
1
n
)l ,

w[M](x, t) = w0(x, t) +
M

∑
l=1

wl(x, t)(
1
n
)l .

(54)

As N → ∞, the numerical solutions for Equation (1) correspondingly converge to the
analytical solutions of Equation (45) for n = 1 and } = −1.

4. Numerical Results and Simulation

With the q-HATM results in mind, the extended three-coupled Korteweg–de Vries
system will be numerically simulated in this section. The comparisons between numerical
solutions and analytical solutions generated by q-HATM with a five-term approximation are
shown in Figures 1–3. The absolute error function of Equation (1) is shown in Figure 4. The
} curves are shown in Figures 5–7 for distinct n and x values. By altering the horizontal line
in the } curve, which symbolizes the convergence range of the extended coupled Korteweg–
de Vries system, we may change the convergence range of the series solutions. Figures 5–7
emphatically demonstrate that the numerical solutions converge in the intervals (−2.1, 0.1)
and (−3.8, 0.2) for n = 1 and n = 2, respectively. As a result, we discovered that the range
of the permitted } convergence interval is wider when n = 3. Figures 5–7 demonstrate that
when the n value increases, the convergence range also does. The comparisons between
numerical solutions and analytical solutions are displayed in Tables 1–3. These charts show
the accuracy of the results of the proposed method.
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Figure 1. (a) Numerical solutions. (b) Analytical solutions. (c) Comparison of numerical solutions
and analytical solutions at n = 1 and } = −1 for Equation (1).
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Figure 2. (a) Numerical solutions. (b) Analytical solutions. (c) Comparison of numerical solutions
and analytical solutions at n = 1 and } = −1 for Equation (1).
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Figure 3. (a) Numerical solutions. (b) Analytical solutions. (c) Comparison of numerical solutions
and analytical solutions at n = 1 and } = −1 for Equation (1).

Figure 4. Surface of (a) absolute error = |uexa. − unum.|. (b) Absolute error = |vexa. − vnum.|. (c) Abso-
lute error = |wexa. − wnum.| at n = 1 and } = −1 of Equation (1).
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Figure 5. When n = 1 and t = 0.01, the outline of (a) numerical solutions u, (b) numerical solutions
v, and (c) numerical solutions w with different x values.
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Figure 6. When n = 2 and t = 0.01, the outline of (a) numerical solutions u, (b) numerical solutions
v, and (c) numerical solutions w with different x values.
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Figure 7. When n = 3 and t = 0.01, the outline of (a) numerical solutions u, (b) numerical solutions
v, and (c) numerical solutions w with different x values.

Table 1. Numerical results for numerical and analytical solutions of u(x, t) when n = 1 and } = −1.

t x Numerical Exact Absolute Error

0.1 −10 −0.25000001 −0.25000001 1.99840× 10−15

−5 −0.25016025 −0.25016025 4.51094× 10−11

0 −1.24610392 −1.24610390 2.24716× 10−8

5 −0.25020576 −0.25020576 4.70228× 10−11

10 −0.25000001 −0.25000000 2.10942× 10−15

0.2 −10 −0.25000001 −0.25000001 6.45040× 10−14

−5 −0.25014142 −0.25014142 1.41446× 10−9

0 −1.23453776 −1.23453633 1.42947× 10−6

5 −0.25023315 −0.25023315 1.53703× 10−9

10 −0.25000001 −0.25000001 6.99441× 10−14
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Table 2. Numerical results for numerical and analytical solutions of v(x, t) when n = 1 and } = −1.

t x Numerical Exact Absolute Error

0.1 −10 −0.99999999 −0.99999999 4.02223× 10−15

−5 −0.99967950 −0.99967950 9.02187× 10−11

0 0.99220785 0.99220780 4.49431× 10−8

5 −0.99958848 −0.99958848 9.40457× 10−11

10 −0.99999998 −0.99999998 4.20917× 10−15

0.2 −10 −0.99999999 −0.99999999 1.28923× 10−13

−5 −0.99971716 −0.99971716 2.82892× 10−9

0 0.96907552 0.96907266 2.85893× 10−6

5 −0.99953370 −0.99953370 3.07407× 10−9

10 −0.99999998 −0.99999998 1.39870× 10−13

Table 3. Numerical results for numerical and analytical solutions of w(x, t) when n = 1 and } = −1.

t x Numerical Exact Absolute Error

0.1 −10 1.99999999 1.99999999 2.01112× 10−15

−5 1.99983975 1.99983975 4.51093× 10−11

0 1.00389608 1.00389610 2.24716× 10−8

5 1.99979424 1.99979424 4.70228× 10−11

10 1.99999999 1.99999999 2.10459× 10−15

0.2 −10 1.99999999 1.99999999 6.44650× 10−14

−5 1.99985858 1.99985858 1.41446× 10−9

0 1.01546224 1.01546367 1.42947× 10−6

5 1.99976685 1.99976685 1.53703× 10−9

10 1.99999999 1.99999999 6.99350× 10−14

5. Conclusions

In the current study, the q-HATM and the Laplace transform have been employed
to evaluate numerical solutions of an extended coupled Korteweg–de Vries system. The
suggested technique has the benefit of not necessitating any discretization, linearization, or
interference. The asymptotic parameter n and auxiliary parameter } have been incorporated
in the numerical solutions of the q-HATM, which provides us with a rapid means to
modify the convergence speed and range within the found series solutions. The numerical
outcomes show what a successful, accurate, and robust procedure iteration is for solving
PDEs. Finally, we can prove that the proposed method is more systematic and accurate,
and it can be used to study the complicated processes of nonlinear phenomena.
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