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Abstract: This paper is dedicated to the advancement of fixed-point results for multi-valued asymptot-
ically non-expansive maps regarding convergence criteria in complete uniformly convex hyperbolic
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these main results. A nice graph and an interesting example are also provided in support of the
hypothesis of the main results.

Keywords: G-asymptotically non-expansive mapping; uniformly convex hyperbolic metric space;
Mann iteration process; multi-valued mapping; directed graphs

MSC: 47H10; 47E10; 05C20

1. Introduction

In 1964, Edelstein [1] proposed the existence of a fixed point (FP) in a non-expansive
mapping T with a non-empty T-closure. The basic concept of asymptotically non-expansive
mappings was first introduced and thoroughly explained by Goebel and Kirk [2]. After this,
many authors proved various FP results by using a class of asymptotically non-expansive
mappings. Some of these contributions are listed here:

• Nanjaras and Panyanak [3] established the principle of demiclosedness for single-
valued asymptotically non-expansive mappings in CAT(0) spaces.

• Alber et al. [4] initiated the idea of total asymptotically non-expansive mappings and
approximated the FP for these mappings.

• Strong and weak convergence for asymptotically non-expansive mappings have been
established in hyperbolic spaces; for example, see [5,6].

In 1969, Nadler [7] presented an FP result for multi-valued contractions. This article
brought a revolution in the area of FP theory, as well as applications in multiple disciplines.
(For more details, readers are referred to [8,9].) Khan et al. [10] evaluated the common
FPs for the two multi-valued non-expansive mappings in hyperbolic spaces by using
a unit-step implicit algorithm. Zhang et al. [11] proved the strong convergence result
for multi-valued total Bregmann quasi-asymptotically non-expansive mappings. In [12],
Khamsi and Khan generalized the results of [2] by introducing the class of multi-valued
asymptotically non-expansive mappings.

In 2008, Jachymski [13] presented an innovative generalization of the Banach con-
traction principle by merging the notions of FP theory with graph theory. Furthermore,
Beg et al. [14] utilized the idea of Jachymski toward the general class of multi-valued
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contractions. In 2015, Alfuraidan and Khamsi [15] proved an existence result for the newly
introduced structure of a monotone, which increased the G-non-expansive mappings in
the setting of hyperbolic metric spaces. In [16], Panyanak and Suantai provided an exten-
sion of Wangkeeree and Preechasilp’s result [17] by utilizing multi-valued non-expansive
mappings. In [18], Anakkamatee and Tongnoi extended Browder’s convergence result for
the collection of G-non-expansive mappings in CAT(0) spaces. In [19], Chifu et al. applied
an FP theorem for an appropriate operator on the Cartesian product of a b-metric space
in the presence of a graph. Afterward, numerous FP results for generalized metric spaces
have been equipped with graphs and have flourished (see, e.g., [20–24]).

In this article, inspired by the abovementioned developments, some strong conver-
gence theorems for the class of asymptotically G-non-expansive mappings in the setting of
uniformly convex hyperbolic metric space are presented. These results will provide the
generalizations of the consequences of Goebel and Kirk [2], Khamsi and Khan [12], and
many others.

2. Preliminaries

The theory of multi-valued mappings is a compelling fusion of analysis, topology,
and geometry. It has been receiving an degree of important attention by researchers
working in a variety of fields in the mathematical sciences. All mappings that are single-
valued in traditional analysis are inherently multi-valued, whereas many problems in
applied mathematics are multi-valued in nature. For example, the problems of stability
and control theory can be solved with the aid of FP methods for multi-valued mappings.
The inverse of a single-valued map is the first naturally occurring instance of a set-valued
map. The importance of multi-valued mappings can be judged by a beginner when they
look at the inverse of basic trigonometric functions (for example, sin−1 x, cos−1 x, etc., in a
given domain of 0 to 2π are multi-valued mappings).

In this article, we consider a useful metric known as the Hausdorff–Pompeiu distance
function on the collection of non-empty bounded and closed subsets of a metric space to
generalize some FP findings in a traditional single-valued F.P theory.

Consider two non-empty sets X and Y. Suppose we have a function T that maps
elements from X to a collection of subsets in Y. For any x in X, T(x) is a set contained in Y,
and this is called the image of x under T. If a point x of X is an element of Tx, it is referred
to as an FP of T. In the following, some examples of multi-valued mappings have been
provided with regard to the existence and uniqueness of their FPs.

Let us start with an illustration of the usual problems involving multi-valued map-
pings. For the two sets X and Y, a multi-valued mapping is a set valued function
from X to 2Y and the power set of Y. Consider a function T : R+ → 2R, such that
Tx = {±y : y is a square root of x}. Then, T is a multi-valued mapping with

T(0) = {0} and T(1) = {−1, 1}.

Here, it should be noted that 1 ∈ T(1) and 0 ∈ T(0), that is T, have FPs.
Now, for X = [1, 2] and Y = [1, 4], suppose F : X → 2Y is a multi-valued map

defined as

F(x) = {y ∈ [1, 4]; x2 ≤ y ≤ 2x}. (1)

Then, F has a unique FP x = 1, that is, 1 ∈ F(1).
Suppose that X = [−1, 1] and G : X → 2X is defined as

G =

{ [
x2 −

√
x,
√

x− x2], x ∈ [0, 1];[
x2 −

√
−x,
√
−x− x2], x ∈ [−1, 0).

(2)

Then, G has infinitely many FPs x ∈ G for all x ∈
[−275

1250 , 275
1250

]
.
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Now, if X = [−1, 1] and the multi-valued map H : X → 2X are defined as

H(x) =
{

[x2,
√

x]
⋃
[−
√

x,−x2], x ∈ [0, 1];[
x2,
√
−x
]⋃

[−
√
−x,−x2], x ∈ [−1, 0),

(3)

then the whole domain of H form the set of FPs.
The graphs of the functions defined by (1)–(3) are depicted below as Figures 1–3,

respectively. It is evident that these graphs exhibit multi-valued behavior and possess FPs.

0.5 1.0 1.5 2.0
x

1

2

3

4

y

Figure 1. Graphical representation of the unique FPs of the mapping, as defined by (1).
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Figure 2. Visualization of the numerous FPs of the mapping, as defined by (2).
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Figure 3. Illustration of the infinitely many FPs of the mapping, as defined by (3).

Consider a metric space (X, $), and let A be any non-empty subset of X. We symbolize
a couple of collections of subsets as follows:
N(A): all of the non-empty subsets of A;
CK(A): all of the non-empty, convex, and compact subsets of A;
C(A): all of the non-empty, closed subsets of A;
CB(A): all of the non-empty, closed, and bounded subsets of A;
CC(A): all of the non-empty, closed, and convex subsets of A;
CCB(A): all of the non-empty, closed, convex, and bounded subsets of A.

Definition 1. Let A ∈ N(X). A self map g on A is named a contraction if a constant k ∈ [0, 1)
exists such that we have the following:

$(g(x), g(y)) ≤ k$(x, y), ∀x, y ∈ A.

If the above inequality is accurate for k = 1, then the map g is called non-expansive. An FP of g is
an element x in A, for which x = g(x).

The generalized multi-valued Hausdorff distance H : CB(X)× CB(X)→ R is given
as follows:

H(A, B) = max

{
sup
b∈B

$(b, A), sup
a∈A

$(a, B)

}
,

where $(x, A) = infa∈A $(x, a) and A, B ∈ CB(X).
In 1988, Assad [25] initiated the notions of an α-general orbit and an α-starred gen-

eral orbit. These concepts were further generalized by Rus [26] in terms of a general-
ized orbit. Afterward, many authors utilized this idea in subsequent directions (see, for
example, [8,27,28]).

Definition 2. Let C ∈ N(X) and T : C → N(X) be a multi-valued mapping. For x ∈ X,
a generalized orbit of x is the sequence {xn}n∈N that is generated from x0 = x by xn+1 ∈ T(xn)
for any nonnegative integer n. Evidently, the generalized orbits generated from x may differ in
values for a given x ∈ X.
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Remark 1. It was observed that, for a single-valued mapping T, the generalized orbit coincides
with the conventional definition of an orbit.

The class of asymptotically non-expansive mappings has been playing a vital part
in the advancement of FP theory due to it being a generalized version of non-expansive
mappings ([6,9], and many others). In 2017, Khamsi and Khan [12] extended the idea of
asymptotically non-expansive mappings for multi-valued cases. The authors proposed the
solutions for some problems that are related to these mappings in the context of [8]. The
following definition and theorems have been taken from [12]:

Definition 3. We say that a mapping T : X → N(X) is multi-valued asymptotically non-
expansive if there exists a sequence of positive real numbers kn such that limn→∞ kn = 1. In
addition, for any generalized orbit xn of x and for any x, y ∈ X, there exists a generalized orbit yn
of y such that

$(xn+h, yh) ≤ kh$(xn, y),

where n, h ∈ N.

In simpler terms, this means that the mapping T does not increase the distances
between points in X as they are iterated along their generalized orbits, and the rate at which
distances increase is controlled by the sequence kn.

Convexity is an important concept in mathematics and optimization theory that char-
acterizes the curved form of certain geometric shapes or functions. A set or function is said
to be convex if every point on a line segment joining two points in the set or on the graph
of the function lies within the set or above the graph. The concept of convexity finds broad
applications in different areas, including economics, optimization, and physics. For exam-
ple, convex optimization problems arise in many engineering and financial applications,
and convex functions are used to model the behavior of various physical systems.

For the introduction of convex structure in metric spaces, Menger [29] considered the
concept of metric segments as a vital component. The element w := χx⊕ (1− χ)y in the
metric segment [x, y] was defined in terms of

$(x, w) = (1− χ)$(x, y) and $(y, w) = χ$(x, y),

where some χ ∈ [0, 1] are unique. A metric space along with these groups of segments is
understood as a convex metric space. If the subsequent axiom holds

$(χa⊕ (1− χ)x, χb⊕ (1− χ)y) ≤ χ$(a, b) + (1− χ)$(x, y)

for all a, b, x, y ∈ X, and χ ∈ [0, 1], then the space is termed a hyperbolic metric space [30].

Definition 4. In a hyperbolic metric space (X, $), the modulus of uniform convexity is defined as
per the following:

δX(ρ,℘) = inf
{

1− 1
ρ

$

(
1
2

ı⊕ 1
2

, `
)

; $(ı, `) ≤ ρ, $(, `) ≤ ρ, $(ı, ) ≥ ρ℘
}

,

which applies for any ρ > 0,℘ > 0 and ı, , ` ∈ X.
The space is understood as uniformly convex provided that δX(ρ,℘) > 0, whenever ρ > 0

and ℘ > 0.

Throughout this article, our underlying space is supposed to be a complete uniformly
convex hyperbolic metric space, which is abbreviated as CUCHMS.

Theorem 1 ([12]). For CUCHMS X, the following assertions hold.
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1. X has the property (R), i.e., any decreasing sequence of non-empty, convex, bounded, and
closed sets that have a non-empty intersection.

2. If Z ∈ CC(X), then any type function η : X → [0, ∞) attains a minimal point u in Z that is
unique, thereby satisfying

η(u) = inf{η(x); x ∈ Z}.

Furthermore, any minimizing sequence {um} in Z is convergent, that is, limm→∞ η(um) =
η(u).

3. Let Ω > 0 and z ∈ X. Suppose {xm} and {ym} are any two arbitrary sequences in X
satisfying

lim sup
m→∞

$(xm, z) ≤ Ω, lim sup
m→∞

$(ym, z) ≤ Ω,

and

lim
m→∞

$(αxm ⊕ (1− α)ym, z) = Ω,

then limm→∞ $(xm, ym) = 0.

Definition 5. Consider a multi-valued mapping T : C → N(C) and a sequence {xn} in C. Then,
T is called H-continuous if whenever {xn} converges to x in C, we have

lim
n→∞

$(an, T(x)) = 0,

for any sequence {an}, where an belongs to the set T(xn), for all n ∈ N.

Remark 2.

1. In the case of a compact valued operator T, H-continuity coincides with the lower and upper
semi-continuity.

2. An asymptotically non-expansive map T : C → N(C) always fulfills the criterion of H-
continuity.

Theorem 2. Let A ∈ CCB(X). Then, an asymptotically non-expansive map T : A → C(A)
attains an FP.

According to [13], the following concepts are defined with respect to CUCHMS.
Let D symbolize the diagonal of the Cartesian product X × X. Suppose that

G = (W(G), E(G)) characterizes a directed graph (whereby W(G) represents vertices,
and E(G) represents edges), which includes all the loops when assuming that G does
not have any parallel edges, and where the symbol G̃ designates the undirected graph
associated with G.

Definition 6. A self map f on X is known as the Banach G-contraction if it fulfills the following
axioms

1. The edges of G under f are preserved, that is, for all elements ν, ω in X, such that

(fν, fω) ∈ E(G)whenever(ν, ω) ∈ E(G).

2. The corresponding weights of edges of G under f decrease in a subsequent manner, that is, an
element k ∈ (0, 1) exists by satisfying

$(fν, fω) ≤ k$(ν, ω) whenever (ν, ω) ∈ E(G).
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3. Convergence Results for Multi-Valued G-Asymptotically Non-Expansive Mappings

In this section, we define the notion of multi-valued G-asymptotically non-expansive
mappings by combining the concept of asymptotically non-expansive mappings with a
graph. We also list two main conditions (namely (A) and (B)), which will be utilized
further. In 2017, an extension of Goebel and Kirk’s FP theorem for multi-valued asymp-
totically non-expansive mappings has been proposed by Khamsi and Khan [12]. Inspired
by this work, we are also extending this classical result for the class of multi-valued G-
asymptotically non-expansive mappings in the setting of CUCHMS.

Definition 7 (Multi-valued G-Asymptotically Non-expansive Mapping). Let G represent
a directed graph on X. Then, a mapping P : X → C(X) is said to be a multi-valued G-
asymptotically non-expansive mapping if the following conditions hold:

1. There exists {bm} with limm→∞ bm = 1;
2. P preserves the edges, that is,

(q, r) ∈ E(G) implies (q́, ŕ) ∈ E(G),

where q́ is an element of P(q) and ŕ belongs to P(r).
3. Let q and r be any two elements of X. Then, for any generalized orbit {qm} of q, there exists a

generalized orbit {rm} of r such that (qm, r) ∈ E(G), and

$(qm+h, rh) ≤ bh$(qm, r), for m, h ∈ N.

Condition (A). Let G represent a directed graph on X. Let Z ∈ CC(X) and {qm} be a generalized
orbit of q in X. Then, the type function

η(q) = lim sup
m→∞

$(qm, q)

attains a minimum point z in Z, which is unique, that is, for any convergent minimizing sequence
{zm} in Z, where

lim
m→∞

η(zm) = η(z).

Condition (B). Let G represent a directed graph on X and Z ∈ CCB(X). Let q ∈ Z and {qm} be
the generalized orbit of q. Then, for r = αq⊕ (1− α)q1, we have

(i) (q, r) ∈ E(G),
(ii) (qm, r) ∈ E(G) for all m ∈ N.

Theorem 3. Let G be the directed graph on X, and let Z ∈ CCB(X), such that W(G) ⊂ Z. Let
P : Z → C(Z), and, for any q ∈ Z, let {qm} be a generalized orbit of q that satisfies Condition
(A), such that (qm, q) ∈ E(G). If P is an H-continuous G-asymptotically non-expansive mapping,
then P has an FP.

Proof. Suppose that q ∈ Z and {qm} is a generalized orbit of q. The boundedness of Z
ensures the boundedness of {qm}. Consider a type function η produced by {qm}, that
is, η(q) = lim supm→∞ $(qm, q). By Condition (A), η has a unique minimum point γ in
Z. Let γ = αq⊕ (1− α)q1. Then, by Condition (B), we have (qm, γ) ∈ E(G). Since P is
G-asymptotically non-expansive, one has

$(qm+h, γh) ≤ bh$(qm, γ), m, h ∈ N.

This ensures that η(γh) ≤ bhη(γ) is for all h ∈ N. Since limm→∞ bm = 1, we achieve that
{γm} is a minimizing sequence for η as well. Again, by utilizing Condition (A), we obtain
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that {γm} is convergent to γ. Then, the H-continuity of P and γm+1 ∈ P(γm) for any
m ∈ N implies the following:

lim
m→∞

$(γm+1,P(γ)) = 0.

Since P(γ) is closed and {γm} is convergent toward γ, we determine that z exists in P(γ),
thus indicating that γ is the FP of P .

Before stating the next result, we will form a sequence with the help of generalized
orbits and Condition (B). This formation will be utilized in the upcoming result.

Let Z ∈ CCB(X), P : Z → C(Z) be a G-asymptotically non-expansive mapping with
q1 ∈ Z and α ∈ (0, 1). Suppose {q1

m} is a generalized orbit of q1.
Set q2 = αq1 ⊕ (1− α)q1

1, then, by Condition (B), we have

(i) (q2, q1) ∈ E(G);
(ii) (q1

m, q2) ∈ E(G).

Assume that {q2
m} is the generalized orbit of q2. Since P is a G-asymptotically non-

expansive mapping, we therefore have

$(q1
m+h, q2

h) ≤ bh$(q1
m, q2), for all m ∈ N.

Set q3 = αq2 ⊕ (1− α)q2
1. Then, again by Condition (B), we obtain

(i) (q2, q3) ∈ E(G);
(ii) (q2

m, q3) ∈ E(G);

and also
$(q2

m+h, q3
h) ≤ bh$(q2

m, q3).

By repeating the above steps, we create a sequence qm in Z and respectively {qt
m} for any

t ≥ 1 as the generalized orbit of qm, thereby satisfying

$(qt−1
m+h, qt

h) ≤ bh$(qt−1
m , qt)

and
qt+1 = αqt ⊕ (1− α)qt

t. (4)

Theorem 4. Let G be the directed graph on X, and let Z ∈ CCB(X). Let P : Z → C(Z) be a
G-asymptotically non-expansive mapping. Assume that r ∈ Z is an FP of P , thereby satisfying
P(r) = {r}. Assume that

(i) {bm}m∈N is the Lipschitz sequence associated with P and
(ii) the series ∑m∈N(bm − 1) is convergent.

Suppose q1 ∈ Z, α ∈ (0, 1), {q1
m} is a generalized orbit of q1 and {qm}, and let this be the

sequence generated by Equation (4), such that (qm, r), (qt
m, r) ∈ E(G) for each m, t ∈ N. Then,

lim
m→∞

$(qm
1 , qm) = 0,

thus implying limm→∞ $(qm,P(qm)) = 0, that is, that {qm} will be an approximated FP sequence
of P .

Proof. In view of P(r) = {r}, we have

$(qt
m+h, r) ≤ bh$(qt

m, r). (5)
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Using Equation (4) and the definition of CUCHMS, we obtain

$(qt+1, r) ≤ α$(qt, r) + (1− α)$(qt
t, r)

≤ α$(qt, r) + (1− α)bt$(qt, r)

= α$(qt, r) + bt$(qt, r)− αbt$(qt, r)

≤ bt$(qt, r).

From the above inequality, we obtain

$(qt+1, r)− $(qt, r) ≤ (bt − 1)$(qt, r) ≤ (bt − 1)diam(Z)

for any t ∈ N and diam(Z) = sup{$(ω, v) : ω, v ∈ Z}, which indicates the diameter. As
we have

t+s−1

∑
i=t

(bi − 1) ≥ (bt − 1),

we can write

$(qt+s, r)− $(qt, r) ≤ diam(Z)
t+s−1

∑
i=t

(bi − 1)

for any t, s ∈ N. By letting s approach infinity, one obtains

lim sup
l→∞

$(ql , r)− $(qt, r) ≤ diam(Z)
∞

∑
i=t

(bi − 1).

Now, by letting t approach infinity, and by using the given assumption, we have

lim sup
l→∞

$(ql , r) ≤ lim inf
t→∞

$(qt, r),

thus implying the convergence of the sequence {$(qt, r)}. Assume that limt→∞ $(qt, r) = R.
IfR = 0, then it follows from Inequality (5) that

lim sup
t→∞

$(qt
t, r) ≤ lim sup

t→∞
bt$(qt

0, r)

= lim sup
t→∞

bt$(qt, r)

= 0.

Then,

lim
t→∞

$(qt+1, r) = lim
t→∞

$(αqt ⊕ (1− α)qt
t, r)

≤ lim
t→∞
{α$(qt, r) + (1− α)$(qt

t, r)}

= 0.

By using Theorem 1, limt→∞ $(qt, qt
t) = 0.

Now, consider the case forR > 0. By repeating the above steps, we have

lim sup
t→∞

$(qt
t, r) ≤ R, lim

t→∞
$(qt, r) = R and lim

t→∞
$(qt, qt

t) = 0.

With the selection of our generalized orbits, we now assert that

lim
m→∞

$(qm
1 , qm) = 0.
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Evidently, we now have

$(qm, qm
1 ) ≤ $(qm, qm

m) + $
(

qm
m, qm−1

m

)
+ $
(

qm−1
m , qm

1

)
,

≤ $(qm, qm
m) + bm$(qm, qm−1) + b1$

(
qm−1

m−1, qm

)
,

≤ $(qm, qm
m) + bm(1− α)$

(
qm−1

m−1, qm−1

)
+ b1α$

(
qm−1

m , qm−1

)
,

≤ $(qm, qm
m) +

(
sup
t∈N

bt

)
{$
(

qm−1
m−1, qm−1

)
+ $
(

qm−1
m , qm−1

)
}

for any m ≥ 1, which ultimately implies

lim
m→∞

$(qm
1 , xm) = 0.

4. Some Consequences of the Convergence Results

This section highlights the corollaries derived from the main results. As a consequence
of Theorem 4, we obtained the famous result established by Khamsi and Khan (Theorem 2.4,
[12]).

Corollary 1. Let Z ∈ CCB(X) and P : Z → C(Z) be assumed as asymptotically non-expansive
mappings. Suppose

(i) {bm}m∈N is a Lipschitz sequence associated with P , and that
(ii) the sequence ∑m∈N(bm − 1) converges.

For a fixed q1 ∈ Z and α ∈ (0, 1), consider a sequence {qm} that is generated by

qt+1 = αqt ⊕ (1− α)qt
t,

where {qt
m} is a generalized orbit of qt. Then,

lim
m→∞

$(qm
1 , qm) = 0,

which implies limm→∞ $(qm,P(qm)) = 0, that is, {qm} is an approximated FP of P .

Proof. By assuming G = Z× Z, all of the conditions of Theorem 4 are fulfilled, and the
process is completed.

Remark 3. Theorem 3 is a generalized version of the classical FP result by Goebel and Kirk
(Theorem 1, [2]) for the multi-valued mappings that are endowed with graphs and are defined on a
nonlinear domain.

Example 1. Let X = R be a CUCHMS and Z = [0, 1] ∈ CCB(X). Assume that G =
(W(G), E(G)) is the directed graph on X with W(G) = [0, 1

2 ], E(G) = {(q, r); q, r ∈ W(G)}
and P : Z → C(Z) is defined as

P(q) = [0, q2], for all q ∈ Z. (6)

Let (q, r) ∈ E(G). For 0 ≤ q′ ∈ P(q) and r′ ≤ 1
2 ∈ P(r), we have (q′, r′) ∈ E(G). Hence, P is

an example of edge preservation. Now, we show that, for any q, r ∈ X and any generalized orbit
{qm} of q, there exists a generalized orbit {rm} of r, such that (qm, r) ∈ E(G), and thus we have

$(qm+h, rh) ≤ bh$(qm, r), for m, h ∈ N. (7)
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Let {qm} = {q0 = q, q1, q2, ...} and {rm} = {r0 = r, r1, r2, ...} be generalized orbits of q and r,
respectively, where there are qi+1 ∈ P(qi) and ri+1 ∈ P(ri). Take q0 = 1

4 and r0 = 1
2 , so that

(x0, y0) ∈ E(G). Now, to prove (7), we have multiple cases for values of h.
Case 1: For h = 0, (7) becomes

$(qm, r0) ≤ b0$(qm, r), for all (qm, r) ∈ E(G). (8)

Since r0 = r, for b0 = 1, we obtain $(qm, r0) ≤ $(qm, r0). Also r0, q0 and qi+1 ∈W(G) are for all
i ≥ 1. Thus (8) holds.

Case 2: For h = 1, (7) reduces to

$(qm+1, r1) ≤ b1$(qm, r). (9)

Now, for m = 0, we have (9) as $(q1, r1) ≤ b1$(q0, r). Using q0 = 1
4 and r0 = r = 1

2 , we obtain
q1 ∈ [0, 1

16 ], r1 ∈ [0, 1
4 ], then $(q0, r0) =

1
4 and $(q1, r1) ≤ 1

4 . Thus, we have

$(q1, r1) ≤ $(q0, r0).

For m = 1, we have (9) as $(q2, r1) ≤ b1$(q1, r). For q2 ∈ [0, 1
256 ] and r1 ∈ [0, 1

4 ], we have
$(q2, r1) ≤ 1

4 ≤
7

16 ≤ $(q1, r0). Similarly, for m = 2, we have $(q3, r1) ≤ 1
4 ≤

127
256 ≤ $(q2, r0),

which implies $(q3, r1) ≤ $(q2, r0). Thus, we can say that

$(qm+1, r1) ≤ b1$(qm, r),

where b1 = 1 implies that (9) holds.
Case 3: For h = 2, on similar lines of the abovementioned case, we have

$(qm+2, r2) ≤ b2$(qm, r),

where b2 = 1.
Hence, generalizing the above process for h ∈ N, we have

$(qm+h, rh) ≤ bh$(qm, r),

where bh = 1, for all h ∈ N and (qm, r) ∈ E(G). Also, limm→∞ bm = 1 implies (7). Thus, P
is a G-asymptotically non-expansive mapping. Clearly, 0 ∈ Z is a FP of P . Thus, satisfying
P(0) = {0} and {bm}m∈N is the Lipschitz sequence that is associated with P , and the series
∑m∈N(bm − 1) is convergent. As a result, the presumptions of Theorem 4 are all true. Moreover,
suppose q1 = 1

4 ∈ Z, α ∈ (0, 1) and {q1
m} = {q1

0 = q1, q1
1, q1

2, ...}, where q1
i ∈ P(q1

i−1) is the
generalized orbit of q1 and q1

1 ∈ [0, 1
16 ]. Set

q2 = αq1 + (1− α)q1
1.

For α ∈ (0, 1), q2 ∈ (0, 5
16 ) and by Condition (B), we have (q1, q2), (q1

m, q2) ∈ E(G). Since P is
an G-asymptotically non-expansive mapping with bh = 1, we thus have the inequality

$(q1
m+h, q2

h) ≤ bh$(q1
m, q2) ∀ h ∈ N.

Now, assume that q2 = 1
5 and {q2

m} is its generalized orbit. Then, q2
1 ∈ [0, 1

25 ] and q2
2 ∈ [0, 1

625 ].
By setting q3 = αq2 + (1− α)q2

2, we have 0 < q3 < 126
625 . Again, by Condition (B), we have

(q2, q3), (q2
m, q3) ∈ E(G) and

$(q2
m+h, q3

h) ≤ bh$(q2
m, q3).
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Suppose that q3 = 1
6 and {q3

m} are its generalized orbit. Then, q3
1 ∈ [0, 1

36 ]. Following the above
procedure, we can generalize the inequality as follows:

$(qt
m+h, qt+1

h ) ≤ bh$(qt
m, qt+1),

and

qt+1 = αqt + (1− α)qt
t. (10)

Hence, for any t ≥ 1, {qt
m} is the generalized orbit of qt, and {qm} is the sequence generated by

(10), such that (qm, r), (qt
m, r) ∈ E(G) is for every m, t ∈ N, and r = 0 is the FP of P , such that

P(0) = {0}. Clearly, $(qm
1 , qm) is a decreasing sequence and is bounded below by zero. Therefore,

we have

lim
m→∞

$(qm
1 , qm) = 0,

which implies limm→∞ $(qm,P(qm)) = 0, that is, {qm} is an approximated FP sequence of P
(Figure 4).

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y

Figure 4. Representation of multi-valued G-asymptotically non-expansive mapping, as defined
by (6).

Open Problem: On similar lines, one can also define the idea of G-total asymptotically
non-expansive mappings and prove convergence theorems in Hadamard spaces, as well as
in convex hyperbolic metric spaces.

5. Conclusions

Some thoughtful research for multi-valued mappings happened in the middle of 19th
century, which is when mathematicians realized that their needs go far beyond a modest
improvement of single-valued mappings. This paper concludes that an H-continuous
G-asymptotically non-expansive multi-valued mapping has an FP under assured circum-
stances in uniformly convex hyperbolic metric spaces. As a result, the FP theorems provided
by Goebel and Kirk [2], Khamsi and Khan [12], and many others have been generalized.
Some consequences are also presented, which highlight the practical implications of our
findings. Additionally, an application of one of our results is provided in the context of the
Nash equilibrium, which underscores the versatility of our contributions. An attractive
example, some captivating graphs, and an interesting open problem for Hadamard spaces
are also provided to attract new investigations in this field of exploration.
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