
Citation: Fetecau, C.; Moroşanu, C.;
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Abstract: Here, we consider the phase field transition system (a nonlinear system of parabolic type)
introduced by Caginalp to distinguish between the phases of the material that are involved in the
solidification process. We start by investigating the solvability of such boundary value problems
in the class W1,2

p (Q) ×W1,2
ν (Q). One proves the existence, the regularity, and the uniqueness of

solutions, in the presence of the cubic nonlinearity type. On the basis of the convergence of an
iterative scheme of the fractional steps type, a conceptual numerical algorithm, alg-frac_sec-ord-
varphi_PHT, is elaborated in order to approximate the solution of the nonlinear parabolic problem.
The advantage of such an approach is that the new method simplifies the numerical computations
due to its decoupling feature. An example of the numerical implementation of the principal step
in the conceptual algorithm is also reported. Some conclusions are given are also given as new
directions to extend the results and methods presented in the present paper.

Keywords: boundary value problems for nonlinear parabolic PDE; fractional steps method; convergence
of numerical scheme; numerical algorithm; phase-changes
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1. Introduction

On a bounded domain Ω ⊂ IRn, n ∈ {1, 2, 3}, with a C2 boundary ∂Ω and for a finite
time T > 0, we consider the following nonlinear second-order parabolic system with
respect to the unknown functions u(t, x) and ϕ(t, x):

p1

∂

∂t
u(t, x) + q1

∂

∂t
ϕ(t, x)− p2 ∆u(t, x) = p3 g1(t, x)

q2

∂

∂t
ϕ(t, x)− q3div

(
K
(
t, x, ϕ(t, x)

)
∇ϕ(t, x)

)
= q4

[
ϕ(t, x)− ϕ3(t, x)

]
+ p4 u(t, x) + q5 g2(t, x)

in Q, (1)

where:

• Q := (0, T]×Ω;
• u(t, x)—represents the reduced temperature distribution in Q, i.e., u(t, x) = θ(t, x)− θM,

with θ(t, x) representing the temperature of the material at (t, x) ∈ Q and θM repre-
senting the melting temperature (the temperature at which solid and liquid may co-exist
in equilibrium, separated by a planar interface—see ([1], Figure 1.1, p. 31));
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• ϕ(t, x)—is the phase function (the order parameter—as can be seen in ([1], Figure 1.2,
p. 35)) which is used to distinguish between the states (phases) of the material which
occupy the region Ω at every time t ∈ [0, T];

•
∂

∂s
u(s, ·) (us in short) is the partial derivative of u(s, ·) relative to s ∈ (0, T];

• p1 , p2 , p3 , p4 , q1 , q2 , q3 , q4 and q5 are positive values;
• p, q are given numbers which satisfy

q ≥ p ≥ 2; (2)

• K
(
s, y, ϕ(s, y)

)
—is the mobility function (attached to the solution ϕ(s, y), (s, y) ∈ Q,

of (1)2) (see [2,3] for more details);
• g1(t, x) ∈ Lp(Q), g2(t, x) ∈ Lq(Q) are given functions (can be also interpreted as

distributed controls). Let us remark that, according to (2), the term g1(t, x) in (1)1 could
have weaker regularity properties than g2(t, x) in (1)2 (see [1–11]).

Together with (1), we consider the non-homogeneous Cauchy–Neumann boundary
condition (unknown functions u(t, x)) and homogeneous Neumann boundary condition
(unknown functions ϕ(t, x)):

p2

∂

∂n
u(t, x) + p5 u(t, x) = g f r (t, x)

q3

∂

∂n
ϕ(t, x) = 0

on Σ, (3)

and initial conditionsu(0, x) = u0(x)

ϕ(0, x) = ϕ0(x)
on Ω, (4)

where Σ = (0, T]× ∂Ω, and:

• p5 > 0 is a physical parameter representing the heat transfer coefficient;

• g f r(t, x) ∈ W
1− 1

2p ,2− 1
p

p (Σ), p ≥ 2—is a given function: the temperature of the sur-
rounding at ∂Ω for each time t ∈ [0, T] (can also be interpreted as boundary control);

• u0, ϕ0 ∈W
2− 2

p
p (Ω), with p2

∂
∂ν u0 + p5 u0 = g f r(0, x) and q3

∂
∂ν ϕ0 = 0;

• n = n(x) has the same meaning as in [1,2,10–13].

2. Well-Posedness of Solutions to the Nonlinear Second-Order System (1) + (3) + (4)

Following the same reasoning as in Miranville and Moroşanu [1], the phase-field
transition system (1) + (3) + (4) can be written suitably in the following form

p1

∂

∂t
u(t, x)− p2 ∆u(t, x) = −q1

∂

∂t
ϕ(t, x) + p3 g1(t, x) in Q

p2

∂

∂n
u(t, x) + p5 u(t, x) = g f r(t, x) in Σ

u(0, x) = u0(x) on Ω,

(5)



q2

∂

∂t
ϕ(t, x)− q3div

(
K
(
t, x, ϕ(t, x)

)
∇ϕ(t, x)

)
= q4

[
ϕ(t, x)− ϕ3(t, x)

]
+ p4 u(t, x) + q5 g2(t, x) in Q

q3

∂

∂n
ϕ(t, x) = 0 in Σ

ϕ(0, x) = ϕ0(x) on Ω.

(6)
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Within the framework of this section, we will approach the nonlinear parabolic system
(5) and (6) in the spirit given by Hadamard’s well-posedness conditions (see ([10], p. 46)).
Consequently, our main result in studying problems (5) and (6) is the following

Theorem 1. Problems (5) and (6) have a unique solution (u, ϕ) ∈ W2,1
p (Q)×W2,1

ν (Q), where
ν = min{q, µ}. In addition, the pair function (u, ϕ) satisfies

‖u‖W2,1
p (Q)

+ ‖ϕ‖W2,1
ν (Q)

≤ C
[
1 + ‖u0‖

W
2− 2

p
p (Ω)

+ ‖ϕ0‖
2− 1

q

W
2− 2

q
q (Ω)

+ ‖g f r‖
W

2− 1
p ,1− 1

2p
p (Σ)

+ ‖g1‖Lp(Q)
+ ‖g2‖Lq(Q)

] (7)

where the constant C depends on |Ω| (the measure of Ω), T, n, p, q, and physical parameters.
Moreover, given any number N > 0, if (u1, ϕ1), (u2, ϕ2) are solutions of (5) and (6) corre-

sponding to the data (g1
1
, g1

2
, g1

f r
), (g2

1
, g2

2
, g2

f r
) ∈ Lp(Q)× Lq(Q)×W

2− 1
p ,1− 1

2p
p (Σ), respectively,

for the same initial conditions, such that ‖ϕ1‖Lν(Q), ‖ϕ2‖Lν(Q) ≤ N, then the estimate below holds

‖u1 − u2‖W2,1
p (Q)

+ ‖ϕ1 − ϕ2‖W2,1
ν (Q)

≤ C

(
‖g1

1
− g2

1
‖Lp(Q) + ‖g1

2
− g2

2
‖Lq(Q) + ‖g1

f r
− g2

f r
‖

W
2− 1

p ,1− 1
2p

p (Σ)

)
(8)

where C > 0 depends on |Ω|, T, n, N, p, q, and the physical parameters.

An Auxiliary Nonlinear Second-Order Boundary Value Problem

Before starting the proof of Theorem 1, we recall a result that concerns the existence
and the uniqueness of the solution to an auxiliary nonlinear parabolic equation derived
from (6). So, we consider the nonlinear second-order boundary value problem

q2

∂

∂t
ϕ(t, x)− q3div

(
K
(
t, x, ϕ(t, x)

)
∇ϕ(t, x)

)
= q4

[
ϕ(t, x)− ϕ3(t, x)

]
+ ḡ2(t, x) in Q

q3

∂

∂n
ϕ(t, x) = 0 in Σ

ϕ(0, x) = ϕ0(x) on Ω.

(9)

Definition 1. Any solution ϕ(t, x) of the problem (9) is called the classical solution if it is
continuous in Q̄, if it has continuous derivatives ϕt(t, x), ϕx(t, x), ϕxx(t, x) in Q, if it satisfies the
Equation (9)1 at all points (t, x) ∈ Q and satisfies the conditions (9)2 and (9)3 on the lateral surface
Σ of the cylinder Q and for t = 0, respectively.

The main results regarding the existence, uniqueness, and regularity of the solutions
to problem (9) are as follows

Theorem 2. Suppose that ϕ(t, x) ∈ C1,2(Q) is a classical solution of problem (9) and for positive
numbers M, M0, m1, M1, M2, M3, M4, and M5, one has

I1. |ϕ(t, x)| < M for any (t, x) ∈ Q and for any z(t, x), the map K(t, x, z) is continuous,
differentiable in x, its x-derivatives are measurably bounded, and satisfies relation (6) in [2] and

0 < Kmin ≤ K
(
t, x, ϕ(t, x)

)
< Kmax, f or (t, x) ∈ Q, (10)
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n

∑
i=1

[
|ai(t, x, ϕ(t, x), z(t, x))|+

∣∣∣∣ ∂

∂ϕ
ai(t, x, ϕ(t, x), z(t, x))

∣∣∣∣](1+|z|)
+

n

∑
i,j=1

∣∣∣∣∣ ∂

∂xj
ai(t, x, ϕ(t, x), z(t, x))

∣∣∣∣∣+|ϕ(t, x)|≤M0(1+|z|)2.

(11)

I2. For any sufficiently small ε > 0, the functions ϕ(t, x) and K(t, x, ϕ(t, x)) satisfy the relations

‖ϕ‖Ls(Q)
≤ M2 , ‖K(t, x, ϕ(t, x))Uxi‖Lr(Q)

< M3 , i = 1, ..., n,
where

r =
{

max{p, 4} p 6= 4
4 + ε p = 4,

s =
{

max{p, 2} p 6= 2
2 + ε p = 2.

Then, ∀ ḡ2 ∈ Lp(Q), ϕ0 ∈ W
2− 2

p
∞ (Ω), with p 6= 3

2 , there exists a unique solution
ϕ ∈W1,2

p (Q) to (9) and satisfies

‖ϕ‖W1,2
p (Q)

≤ C
{

1 + ‖ϕ0‖
W

2− 2
p

∞ (Ω)
+ ‖ϕ0‖

3p−2
p

L3p−2(Ω)
+ ‖ḡ2‖

3p−2
p

L3p−2(Q)

}
, (12)

where C > 0 does not depend on ϕ and ḡ2 .

If ϕ1, ϕ2 are solutions to (9) corresponding to ϕ1
0, ϕ2

0 ∈ W
2− 2

p
∞ (Ω), ḡ1

2
and ḡ2

2
, respectively,

such that
‖ϕ1‖W1,2

p (Q)
, ‖ϕ2‖W1,2

p (Q)
≤ M4, (13)

then, the following holds

max
(t,x)∈Q

|ϕ1 − ϕ2| ≤ C1eCTmax
{

max
(t,x)∈Ω

|ϕ1
0 − ϕ2

0|, max
(t,x)∈Q

|ḡ1
2
− ḡ2

2
|
}

, (14)

where C1 > 0 and C > 0 do not depend on
{

ϕ1, ḡ1
2
, ϕ1

0,
}

and
{

ϕ2, ḡ2
2
, ϕ2

0

}
. In particular,

the uniqueness of the solution to (9) holds.

As far as the techniques used in the paper are concerned, it should be noted that we
derive the a priori estimates in Lp(Q). Moreover, the basic tools in our approach are:

• The Leray–Schauder degree theory (see ([1], p. 221) and reference therein);
• The Lp-theory of the linear and quasi-linear parabolic equations (see [1] and the

reference therein);
• Green’s first identity

−
∫
Ω

y divz dx =
∫
Ω

∇y · z dx−
∫

∂Ω

y
∂

∂n
z dγ,

−
∫
Ω

y∆z dx =
∫
Ω

∇y · ∇z dx−
∫

∂Ω

y
∂

∂n
z dγ,

(15)

for any scalar-valued function y and z, a continuously differentiable vector field in
n-dimensional space;
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• The Lions and Peetre embedding Theorem ([1], p. 14) to ensure the existence of a
continuous embedding W1,2

p (Q) ⊂ Lµ(Q), p ≥ 2, where the number µ is defined
as follows

µ =


any positive number ≥ 3p if

1
p
− 2

n + 2
≤ 0,

p (n + 2)
n + 2− 2p

if
1
p
− 2

n + 2
> 0.

(16)

For a given positive integer k and 1 ≤ p ≤ ∞, we denote by Wk,2k
p (Q) the Sobolev

space on Q:

Wk,2k
p (Q) =

{
y ∈ Lp(Q) :

∂i

∂ti
∂j

∂xj y ∈ Lp(Q), for 2i + j ≤ 2k
}

,

i.e., the spaces of functions whose t-derivatives and x-derivatives are up to the orders of
k and 2k, respectively, belonging to Lp(Q). Also, we will use the Sobolev spaces Wi

p(Ω),

W
i
2 ,i
p (Σ) with a non-integral i for the initial and boundary conditions, respectively (see ([1],

p. 14) and references therein).
Also, we shall use the set C1,2(D̄) (C1,2(D)) of all continuous functions in D̄ (in D)

having continuous derivatives ut, ux, uxx in D̄ (in D) (D = Q or D = Σ), as well as
the Sobolev spaces W`

p(Ω), W`,`/2
p (Σ) with non-integral ` for the initial and boundary

conditions, respectively (see [2] and references therein).
The results in Theorem 2 are established in [2], which corresponds to a more general

boundary condition. Here, we omit details of the proof.

Proof. Proof of the Theorem 1
We introduce the homotopy J : Lp(Q)× [0, 1]→ Lp(Q) as follows

J(v, λ) = u, ∀(v, λ) ∈ Lp(Q)× [0, 1], (17)

where u is the unique solution of the linear problem
p1

∂

∂t
u(t, x)− p2 ∆u(t, x) = λ

[
− q1

∂

∂t
ϕ(t, x) + p3 g1(t, x)

]
in Q

p2

∂

∂n
u(t, x) + p5 u(t, x) = λg f r(t, x) in Σ

u(0, x) = λu0(x) on Ω,

(18)

with ϕ representing the unique solution of the nonlinear parabolic boundary value problem

q2

∂

∂t
ϕ(t, x)− q3div

(
K
(
t, x, ϕ(t, x)

)
∇ϕ(t, x)

)
= q4

[
ϕ(t, x)− ϕ3(t, x)

]
+ p4 v(t, x) + q5 g2(t, x) in Q

q3

∂

∂n
ϕ(t, x) = 0 in Σ

ϕ(0, x) = ϕ0(x) on Ω,

(19)

Since p ≤ q (see (2)), then ḡ2 = p4 v(t, x) + q5 g2(t, x) ∈ Lp(Q). Using Theorem 2,

we see that there exists a unique solution ϕ ∈ W2,1
p (Q) of (19) and thus −q1

∂

∂t
ϕ(t, x) +

p3 g1(t, x) ∈ Lp(Q). The Lp-theory guarantees that the linear parabolic Equation (18) has a
unique solution u ∈W2,1

p (Q). Hence, the mapping H introduced in (17) is well defined.
Next, following the same reasoning as in ([10], p. 53) we obtain (7) and (8).
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The uniqueness of the solution {u, ϕ} follows from (8) by taking g1
1
= g2

1
, g1

2
= g2

2
,

g1
f r
= g2

f r
and so the proof of Theorem 1 is finished.

3. Approximating Scheme of Fractional Steps Type: The Phase-Field Transition System

The purpose of this section is to use the fractional steps method in order to approximate
the unique solution of the nonlinear second-order parabolic systems (5) and (6), extending
the result already studied in [2]. Namely, for every ε > 0, let

Qε
i = [iε, (i + 1)ε]×Ω, Σε

i = [iε, (i + 1)ε]× ∂Ω,

for i = 0, 1, · · · , Mε − 1, with Mε =
[

T
ε

]
. Suitably, we associate the following numerical

scheme with problems (5) and (6):

p1

∂

∂t
uε(t, x) + q1

∂

∂t
ϕε(t, x) = p2 ∆uε(t, x) + p3 g1(t, x) in Qε

i

p2

∂

∂n
uε(t, x) + p5 uε(t, x) = g f r(t, x) on Σε

i

uε
+
(iε, x) = uε

−(iε, x), uε(0, x) = u0(x) on Ω,

(20)



q2

∂

∂t
ϕε(t, x)− q3div

(
K
(
t, x, ϕε(t, x)

)
∇ϕε(t, x)

)
= q4 ϕε(t, x) + p4 uε(t, x) + q5 g2(t, x) in Qε

i

q3

∂

∂n
ϕε(t, x) = 0 in Σε

i

ϕε(iε, x) = z(ε, ϕε
−(iε, x)) on Ω,

(21)

where z(ε, ϕε
−(iε, x)) is the solution of the Cauchy problem:


z′(s) + q4 z3(s) = 0 s ∈ [0, ε]

z(0) = ϕε
−(iε, x) on Ω

ϕε
−(0, x) = ϕ0(x) on Ω

(22)

for i = 0, 1, · · · , Mε − 1, where ϕε
− stands for the left-hand limit of ϕε.

For a detailed discussion regarding the importance of the above numerical scheme,
we direct the reader to the works [1,10–12,14].

The main question of the whole work is that of the convergence of ε → 0 of the se-
quence (uε, ϕε) of solutions to problems (20) and (21) to the solution (u, ϕ) of
problems (5) and (6) (see [13,15,16]).

For later use, we set

W = L2([0, T]; H1(Ω)) ∩W1,2([0, T]; (H1(Ω))′).
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Definition 2. By a weak solution to nonlinear systems (5) and (6), we refer to a pair of functions
u, ϕ ∈W, which satisfy (5) and (6) in the following sense:∫

Q

(
p1

∂

∂t
u + q1

∂

∂t
ϕ, φ1

)
dt dx + p2

∫
Q

∇u∇φ1 dt dx + p5

∫
Σ

uφ1 dt dγ

= p3

∫
Q

g1 φ1 dtdx +
∫
Σ

g f r φ1 dt dγ,

(23)

q1

∫
Q

(
∂

∂t
ϕ, φ2

)
dt dx + q3

∫
Q

K
(
t, x, ϕ

)
∇ϕ · ∇φ2 dt dx

= q4

∫
Q

(ϕ− ϕ3)φ2 dt dx + p4

∫
Q

uφ1 dt dx + q5

∫
Q

g2 φ2 dtdx,

∀φ1, φ2 ∈ L2([0, T]; H1(Ω)),

(24)

and u(0, x) = u0(x), ϕ(0, x) = ϕ0(x) on Ω.

Definition 3. By a weak solution to nonlinear systems (20) and (21), we refer to a pair of functions
uε, ϕε ∈W which satisfy (20) and (21) in the following sense:∫

Q

(
p1

∂

∂t
uε + q1

∂

∂t
ϕε, φ1

)
dt dx + p2

∫
Q

∇uε∇φ1 dt dx + p5

∫
Σ

uεφ1 dt dγ

= p3

∫
Q

g1 φ1 dtdx +
∫
Σ

g f r φ1 dt dγ,

(25)

q1

∫
Q

(
∂

∂t
ϕε, φ2

)
dt dx + q3

∫
Q

K
(
t, x, ϕε

)
∇ϕε · ∇φ2 dt dx

= q4

∫
Q

ϕεφ2 dt dx + p4

∫
Q

uεφ1 dt dx + q5

∫
Q

g2 φ2 dtdx,

∀φ1, φ2 ∈ L2([0, T]; H1(Ω)),

(26)

and uε
−(0, x) = u0(x), ϕε

−(0, x) = ϕ0(x) on Ω.

In (23)–(26), we denoted by the same symbol
∫
Q

the duality between

L2([0, T]; H1(Ω)) and L2([0, T]; (H1(Ω))′).

3.1. Convergence of the Fractional Steps Scheme (20) and (21)

The purpose of this subsection is to prove the convergence of the solution to the numerical
schemes (20) and (21) associated with the phase-field transition systems (5) and (6). Therefore,
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Theorem 3. Assume that u0, ϕ0 ∈ W
2− 2

p
p (Ω), with p2

∂
∂ν u0 + p5 u0 = g f r(0, x), q3

∂
∂ν ϕ0 = 0

on ∂Ω and g f r (s, x) ∈ W
1− 1

2p ,2− 1
p

p (Σ). Let (uε, ϕε) be the solution of the approximating scheme
(20) and (21). As ε→ 0, one has

(uε(s), ϕε(s))→ (u∗(s), ϕ∗(s)) strongly in L2(Ω) for any s ∈ (0, T], (27)

where u∗, ϕ∗ ∈ W1,2([0, T]; L2(Ω)) ∩ L2([0, T]; H2(Ω)) is the weak solution of the phase-field
transition systems (5) and (6).

The following lemmas (proven for the first time in the work [10]) which involve the
Cauchy problem (22) are very useful in the proof of the main result of Theorem 3. Here, we
reproduce them as well as sketch out the proof when pertinent.

Lemma 1. Assume that ϕε
−(iε, x) ∈ L∞(Ω), i = 0, 1, ..., Mε − 1. Then, ϕε(iε, x) ∈ L∞(Ω) and

‖ϕε(iε, x)‖2
L2(Ω) ≤ ‖ϕε

−(iε, x)‖2
L2(Ω). (28)

Proof. We write (22)1 in the form
(

1
z2

)′
= q4 and, following the same reasoning as in [1],

we obtain
z2(ε, ϕε

−(iε, x)) ≤ ϕε
−(iε, x)2, a.e x ∈ Ω. (29)

Owing to (21)3 and (29), it is easy to conclude the inequality complete in (28).

Lemma 2. For i = 0, 1, ..., Mε − 1, the estimate below holds

‖∇ϕε(iε, x)‖L2(Ω) ≤ ‖∇ϕε
−(iε, x)‖L2(Ω). (30)

Lemma 3. The following estimate holds

‖z(ε, x)− ϕε
−(iε, x)‖L2(Ω) ≤ εL (31)

where L > 0 depends on |Ω|, ‖Uε
−‖L∞(Ω) and p2 .

Proof of Theorem 3. Following the same steps as in [10], we obtain the solution to prob-
lem (21) as ϕε ∈W1,2

p (Qε
i ) ∩ L∞(Qε

i ), ∀i ∈ {0, 1, ..., Mε − 1}.

Then, we give a priori estimates in Qε
i , ∀i ∈ {0, 1, ..., Mε − 1}. Multiplying (20)1 by

p4

q1

uε, (21)1 by ϕε
t using the integration by parts, Green’s formula, and the relations (25)

and (26), we obtain

p4

q1

p1

2
d
dt

∫
Ω

|uε|2dx + p4

∫
Ω

uε ϕε
tdx +

p4

q1

p2

∫
Ω

|∇uε|2dx +
p4

q1

p5

∫
∂Ω

|uε|2dγ

=
p4

q1

p3

∫
Ω

g1 uε dx +
p4

q1

∫
∂Ω

g f r uε dγ,

(32)

q2

∫
Ω

|ϕε
t |2dx +

q3

2

∫
Ω

K(t, x, ϕε)
d
dt
|∇ϕε|2dx

=
q4

2
d
dt

∫
Ω

|ϕε|2dx + p4

∫
Ω

uε ϕε
tdx + q5

∫
Ω

g2 ϕε
t dx.

(33)
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Using Hölder’s inequality for the right terms
p4

q1

p3

∫
Ω

g1 uε dx,
p4

q1

∫
∂Ω

g f r uε dγ and q5

∫
Ω

g2 ϕε
t dx,

we have
p4

q1

p3

∫
Ω

g1 uε dx ≤ 1
2

∫
Ω

|uε|2 dx +
p4

q1

p3

2

∫
Ω

|g1 |
2 dx,

p4

q1

∫
∂Ω

g f r uε dγ ≤ p4

q1

p5

∫
∂Ω

|uε|2dγ +
p4

q1

1
p5

∫
∂Ω

|g f r |
2(t, x)dγ,

q5

∫
Ω

g2 ϕε
t dx ≤ q2

2

∫
Ω

|ϕε
t |2 dx +

q5

2q2

∫
Ω

|g2 |2 dx.

Adding (32) and (33) and making use of the last inequality, we obtain:

p4

q1

p1

2
d
dt

∫
Ω

|uε|2dx +
p4

q1

p2

∫
Ω

|∇uε|2dx +
q2

2

∫
Ω

|ϕε
t |2 dx +

q3

2
Kmin

d
dt

∫
Ω

|∇ϕε|2dx

≤ q4

2
d
dt

∫
Ω

|ϕε|2dx +
1
2

∫
Ω

|uε|2 dx

+
p4

q1

p3

2

∫
Ω

|g1 |
2 dx +

q5

2q1

∫
Ω

|g2 |2 dx +
p4

q1

1
p5

∫
∂Ω

|g f r |
2(t, x)dγ,

(34)

where the inequality (10) has also been used.

Now, multiplying (21)1 by
2q4

q2

ϕε as shown above, we obtain

q4

d
dt

∫
Ω

|ϕε|2dx +
2q4

q2

q3

∫
Ω

K(t, x, ϕε)|∇ϕε|2dx

=
2q4

q2

q4

∫
Ω

|ϕε|2dx +
2q4

q2

p4

∫
Ω

uε ϕεdx +
2q4

q2

q5

∫
Ω

g2 ϕε dx.

(35)

Again, using Hölder’s inequality for the right terms
∫
Ω

uε ϕεdx and
∫
Ω

g2 ϕε dx, we have

2q4

q2

p4

∫
Ω

uε ϕεdx ≤ 2q4

2q2

p4

∫
Ω

|uε|2 dx +
2q4

2q2

p4

∫
Ω

|ϕε|2 dx,

2q4

q2

q5

∫
Ω

g2 ϕε dx ≤ 2q4

2q2

q5

∫
Ω

|ϕε|2 dx +
2q4

2q2

q5

∫
Ω

|g2 |2 dx,

and then, from (35), we obtain

q4

d
dt

∫
Ω

|ϕε|2dx +
2q4

q2

q3 Kmin

∫
Ω

|∇ϕε|2dx

≤ C(q2 , q3 , q4 , p4 , q5)

[ ∫
Ω

|uε|2dx +
∫
Ω

|ϕε|2dx +
∫
Ω

|g2 |2dx

]
,

(36)

where the inequality (10) has also been used.
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Adding (34) and (36), we obtain

∂

∂t

[
p4

q1

p1

2

∫
Ω

|uε|2dx +
q4

2

∫
Ω

|ϕε|2dx +
q3

2
Kmin

∫
Ω

|∇ϕε|2dx

]

+
q1

2

∫
Ω

|ϕε
t |2dx +

p4

q1

p2

∫
Ω

|∇uε|2dx +
2q4

q2

q3 Kmin

∫
Ω

|∇ϕε|2dx

≤ C(p1 , p2 , p3 , p4 , p5 , q1 , q2 , q3 , q4 , q5)

[ ∫
Ω

|uε|2dx +
∫
Ω

|ϕε|2dx

+
∫
Ω

|g1 |
2 dx +

∫
Ω

|g2 |2dx +
∫

∂Ω

|g f r |
2(t, x)dγ

]
.

Integrating the preceding on Qε
i , i = 0, 1, 2, ..., Mε − 1 (i.e., on [iε, (i + 1)ε],

i = 0, 1, 2, ..., Mε − 1) and summing the inequalities obtained, we derive (see ([10], p. 102),
for example)

p4

q1

p1

2
‖uε
−(T, x)‖2

L2(Ω) +
q4

2
‖ϕε
−(T, x)‖2

L2(Ω) +
q3

2
Kmin‖∇ϕε

−(T, x)‖2
L2(Ω)

+

T∫
0

[
q1

2
‖ϕε

t‖2
L2(Ω) +

p4

q1

p2‖∇uε‖2
L2(Ω) +

2q4

q2

q3 Kmin‖∇ϕε‖2
L2(Ω)

]
dt

≤ p4

q1

p1

2
‖u0‖2

L2(Ω) +
q4

2
‖ϕ0‖2

L2(Ω) +
p2

2
‖∇U0‖2

L2(Ω) +
q3

2
Kmin‖∇ϕ0‖2

L2(Ω)

+ C(p1 , p2 , p3 , p4 , p5 , q1 , q2 , q3 , q4 , q5)

{ T∫
0

[
‖uε‖2

L2(Ω) + ‖ϕε‖2
L2(Ω)

]
dt

+
∫
Ω

|g1 |
2 dx +

∫
Ω

|g2 |2dx +
∫

∂Ω

|g f r |
2(t, x)dγ

}
.

where the inequalities (28) and (30) have also been used.
Applying Gronwall inequality to the above inequality, we finally deduce

T∫
0

{
‖ϕε

t‖2
L2(Ω) + ‖∇uε‖2

L2(Ω) + ‖∇ϕε‖2
L2(Ω)

}
dt ≤ C, (37)

where C > 0 is independent of ε and Mε.
Owing to (20)3, (21)3 and (31), we obtain

Mε−1

∑
i=0
‖uε(iε, x)− uε

−(iε, x)‖L2(Ω) ≤ TL = C1, (38)
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Mε−1

∑
i=0
‖ϕε(iε, x)− ϕε

−(iε, x)‖L2(Γ) ≤ C2, (39)

where C1 > 0, C2 > 0 are independent of Mε and ε. Summing (38) and (39), we obtain

T
V1
0

uε+
T

V2
0

ϕε+

T∫
0

[
‖ϕε

t‖2
L2(Ω)+‖∇uε‖2

L2(Ω)+‖∇ϕε‖2
L2(Ω

]
ds ≤ C, (40)

where the positive constant C is independent on Mε and ε, while
T

V1
0

uε,
T

V2
0

ϕε, stand for the

variation of uε : [0, T]→ L2(Ω) and ϕε : [0, T]→ L2(Ω), respectively.
Now, multiplying (20)1 by uε

t , integrating over [iε, (i + 1)ε], i = 0, 1, · · · , Mε − 1,
and involving Cauchy–Schwartz’s inequalities, Hölder’s inequality, Cauchy’s inequality,
Gronwall–Bellman’s inequality, as well as Green’s formula, we finally obtain the estimate:

p1

2

t∫
0

∫
Ω

(uε
t)

2dxds +
p2

2

∫
Ω

|∇uε|2dx +
p2 p5

4

∫
∂Ω

(uε)2dγ ≤ C, (41)

for all ε > 0, where the constant C > 0 does not depend on Mε and ε.
Combining (40) with (41), we find that

T
V1
0

uε+
T

V2
0

ϕε+

T∫
0

[
‖uε

t‖2
L2(Ω) + ‖ϕε

t‖2
L2(Ω)+‖∇uε‖2

L2(Ω)+‖∇ϕε‖2
L2(Ω

]
ds ≤ C. (42)

Since the injection of L2(Ω) into H−1(Ω) is compact and {uε
s(s)}, {ϕε

s(s)} are bounded in
L2(Ω) ∀s ∈ [0, T], we conclude that there exists a bounded variation function:
u∗(s) ∈ BV([0, T]; H−1(Ω)), ϕ∗(s) ∈ BV([0, T]; H−1(Ω)), respectively, and the subse-
quences uε(s), ϕε(s) (see [10]) such that

uε(s)→ u∗(s) strongly in H−1(Ω) ∀s ∈ [0, T], (43)

ϕε(s)→ ϕ∗(s) strongly in H−1(Ω) ∀s ∈ [0, T]. (44)

Furthermore, from (40), we deduce that{
uε → u∗ weakly in L2(0, T; H1(Ω)),

ϕε → ϕ∗ weakly in L2(0, T; H1(Ω)).
(45)

By the well-known embeddings H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω), standard interpolation
inequalities (see ([10], p. 17)) yield that ∀` > 0, ∃C(`) > 0 such that{

‖uε(s)− u∗(s)‖L2(Ω) ≤ `‖uε(s)− u∗(s)‖H1(Ω) + C(`)‖uε(s)− u∗(s)‖H−1(Ω),

‖ϕε(s)− ϕ∗(s)‖L2(Ω) ≤ `‖ϕε(s)− ϕ∗(s)‖H1(Ω) + C(`)‖ϕε(s)− ϕ∗(s)‖H−1(Ω),
(46)

∀ε > 0 and ∀s ∈ [0, T], where C(`)→ 0 as `→ 0.
Finally, relations (43)–(46) permit us to conclude that the assertion performed in (27)

holds true, ending the proof of Theorem 3.
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Corollary 1. Assume that u0, ϕ0 ∈ W
2− 2

p
p (Ω) with p2

∂
∂ν u0(x) + p5 u0(x) = g f r (0, x),

q3
∂

∂ν ϕ0(x) = 0 on ∂Ω and g f r ∈ W
1− 1

2p ,2− 1
p

p (Σ). Then, u?, ϕ∗ ∈ W is a weak solution of
the nonlinear second-order parabolic system (1) + (3) + (4).

The general framework of the numerical algorithm to compute the approximate
solution of the problem (1) + (3) + (4) via the fractional steps scheme may be demonstrated
as follows:

Begin alg-frac_sec-ord-varphi_PHT

i := 0 → u0 from (20)3 and ϕ0 from (22)3;

For i := 0 to Mε − 1 do

Compute z(ε, ·) from (22);

ϕε(iε, ·) := z(ε, ·);
Compute (uε((i + 1)ε, ·), ϕε((i + 1)ε, ·)) solving the linear system
(20)1−2 + (21)1−2;

End-for;

End.

3.2. Example of Numerical Implementation to alg-frac_sec-ord-varphi_PHT

Here, we consider a particular case of parameters p1 , p2 , p3 , p4 , q1 , q2 , q3 , q4 and q5 in
(1) + (3), namely:

p1 = ρV, ρ—the density, V—the casting speed;

p2 = k, k—the thermal conductivity;

p3 = 0;

p4 =
m[S]E

2σ
TE, (see [11]);

p5 = h, h—the heat transfer coefficient;

q1 =
`

2
, `—the latent heat;

q2 = αξ, α—the relaxation time, ξ—the measure of the interface thickness;

q3 = 1, K(t, x, ϕ(t, x)) = ξ;

q4 =
1

2ξ
;

q5 = 0;

g f r (t, x) = w1(t, x) (t, x) ∈ Q.

Correspondingly, the following nonlinear parabolic system
ρV

∂

∂t
u +

`

2
∂

∂t
ϕ = k∆u

in Q,

αξ
∂

∂t
ϕ = ξ∆ϕ +

1
2ξ

(ϕ− ϕ3) + s
ξ
u

(47)

with the non-homogeneous Cauchy–Neumann boundary conditions
k

∂

∂ν
u + hu = w1(t, x)

on Σ=(0, T]×∂Ω,

ξ
∂

∂ν
ϕ = 0

(48)
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and with the initial conditions (4), is obtained. (47) + (48) + (4) represents the mathematical
model called the phase field transition system, introduced by Caginalp (see [5]) to model
the transition between the solid and liquid phase in the melting/solidification process to a
matter occupying a region Ω (see [1,4,6–11,17–22]). A finite element method (fem) (see [23])
is used to construct the numerical model (as can be seen in ([11], relation (4.5))) and an
industrial implementation of (1) + (3) + (4), in this particular case, is presented in [11].

4. Conclusions

The main problem studied in this paper is a nonlinear second-order parabolic system (1),
(3), and (4), with respect to the unknown functions u(t, x) and ϕ(t, x), emphasizing that the
principal part is in divergence form for the unknown function ϕ(t, x), (t, x) ∈ Q. Provided
that the initial and boundary data meet appropriate regularity as well as compatibility
conditions, the well posedness of a classical solution to the nonlinear problem is proven
in this new formulation (Theorem 1). Precisely, the Leray–Schauder principle as well as
the Lp theory of the linear and quasi-linear parabolic equations are involved to prove the
qualitative properties of the solution (u(t, x), ϕ(t, x)). Moreover, the a priori estimates are
made in Lp(Q) which allow one to derive the regularity properties of higher order, namely(

u(t, x), ϕ(t, x)
)
∈ W1,2

p (Q)×W1,2
ν (Q), ν = min{q, µ} (see (2) and (16)). Let us remark

that, due to the presence of the terms K(t, x, ϕ(t, x)), the nonlinear operator J (see (17))
does not represent the gradient of the energy functional. Therefore, the new proposed
second-order nonlinear system (1) + (3) + (4) cannot be obtained from the minimization of
any energy cost functional, i.e., (1) is not a variational PDE model.

Next, an iterative scheme of the fractional steps type is introduced to approximate
problems (5) and (6). The convergence result is established for the proposed numerical
scheme, and a conceptual numerical algorithm, alg-frac_sec-ord-varphi_PHT, is formu-
lated in the end. An example of the numerical implementation of the principal step in the
conceptual algorithm alg-frac_sec-ord-varphi_PHT, that is:

Compute (uε((i + 1)ε, ·), ϕε((i + 1)ε, ·)) solving the linear system (20)1−2 + (21)1−2,
is reported.

The qualitative results obtained here can later be involved in the quantitative ap-
proaches of the mathematical model (1) + (3) + (4) as well as in the study of distributed
and/or boundary nonlinear optimal control problems governed by such a nonlinear prob-
lem. The numerical implementation of the conceptual algorithm, alg-frac_sec-ord-varphi_PHT,
as well as various simulations regarding the physical phenomena described by then nonlin-
ear parabolic problem (1), especially that corresponding to the different choice of mobility
functions K(t, x, ϕ(t, x)) (see [3]), representing a matter for further investigation.
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