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1. Introduction

In 1921, Bergman introduced the concept of the Bergman kernel function when he
studied the orthogonal expansion on the domain of the complex plane. It is well known that
there exists a unique Bergman kernel function for any bounded domain in C". But for
which domains can the Bergman kernel function be calculated explicitly? This is a natural
question. The variety of domains for which an explicit expression for the Bergman kernel
function can be calculated is not large. However, Bergman kernel functions can be explicitly

lclrl]Jedcall(tfgSr calculated for some special domains. For example, Loo-keng Hua obtained Bergman kernel
Citation: Jiang, Z.-J. Multiplication functions with explicit formulas for four types of irreducible symmetric classical domains
Operators on Weighted Zygmund in [1]. In this paper, we will use the first irreducible symmetric classical domain usually
Spaces of the First Cartan Domain. called the first Cartan domain. This domain is defined by
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and Feyzi Basar where Z is the conjugate of the matrix Z, ZT is the transpose of Z, and m, n are positive

integers.

Let BN = {z € CVN : |z| < 1} be the open unit ball of CN. When N = 1, BV is the open
unit disk denoted by D. Since R;(1, N) = BN, %;(m,n) can be regarded as a generalization
of BN. For the sake of convenience, R; (m, n) is written by $;.

Let H(R;) be the set of all holomorphic functions on #;. For a > 0, the weighted-type

space HP (R]) on R consists of all f € H(R|) such that
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Ifa = 0, then Hy’(R;) and Hy}(R;) are denoted by H* (%) and H’ (%), respectively.
The weighted-type spaces on the unit disk and the unit ball are frequently discussed in the
literature, see [2-5].

Let H(BY) be the space of all holomorphic functions on BN. The weighted Zygmund
space on BN denoted by Z*(BN) consists of all f € H(BN) such that

s(f) = sup (1 - [z[*)*|R?f(2)] < oo,

zeBN

where Rf is the radial derivative

and R2f(z) = R(Rf(z)). It is well known that s(f) is a seminorm of Z*(BV). For each
f € 2%BN), we define £l z«@ny = |f(O)] +5(f). Then, || - || zo(gny is @ norm on Z*(BN),
and Z%(BN) is a Banach space with this norm. We also usually use this space defined on
the unit disk (see [6]). For composition and product-type operators on or between the

weighted Zygmund spaces, see, for example, refs. [7-9] and the references therein.
For f € H(R]), we define

oz11 * 9z 1 0zZum

Vf(Z):(af(Z) If(2) . af(Z)),

and

We say that f € H(R;) is in the weighted Zygmund space Z*(R;), if

s1(f) = ngg [det(I — ZZ1)]*|R*f(2)] < co.

If « =1, Z%(Ry) is called the Zygmund space denoted by Z(R). Z*(R;) is a Banach
space with the norm

£l 2y = [FO)] +s1(f)-

On Z*(R) we also can define the following quantity:

s2(f) = sup [det(I — ZZT)]*|VRf(2)|.
ZeR;

The quantity s,(f) is a seminorm on Z*(R;), and

1fll2,ze3) = [£(O)] +s2(f)

is a norm of Z*(R;). From the proof of Theorem 3.1 in [10], we see that these two norms
are equivalent. Therefore, we no longer need to distinguish them, uniformly denoted by
[ fl ze(w,)- The little weighted Zygmund space on %, denoted by Z§(R;) consists of all
f € H(Rp) such that

lim [det(I—2zZ")]"|R*f(2)| = 0.

Z~>3§R1

It is not difficult to see that Z{ (3]) is a closed subspace of Z*(¥;).
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Let X be a function space on #; and ¢ a function defined on ;. The function ¢ is
called a multiplier on X, if ¢ - f € X for all f € X. The operator

My:f—=9-f

is usually called a multiplication operator on X. Generally speaking, there may exist some
function f € X such that ¢ - f does not belong to X. Now, we will explain this phenomenon.
To this end, we consider the Bloch space B(DD?), which consists of all f € H(ID?) such that

sup [(1- [P35 @) + (1= [2P) 5L 2) ] < e,

zeD?

where D? = {z = (z1,22) : z1 € D,zp € D}. On D? define the function ¢(z) = z;. If we

choose the function . .

=1 I
f(z1,22) N T

then f belongs to B(ID?). But, it follows from a direct calculation that i - f does not belong
to B(D?). This shows that ¢(z) = z; is not a multiplier on B(D?).

Multipliers and multiplication operators on function spaces have been studied for a long
time. For example, Taylor started the study of the multipliers in [11] in 1966. Stegenga studied
the multipliers of the Dirichlet space in [12] in 1980. Now, multipliers and multiplication
operators on holomorphic function spaces of the unit disk DD and the unit ball BN have
been studied (see, [13-16]). In addition, there is a great interest in some related operators
for multiplication operators such as weighted composition operators, see, [17-20]. Recently,
Su et al. in [21] obtained the necessary condition and sufficient condition for the boundedness
and compactness of the composition operators from u-Bloch space to v-Bloch space on the
first Hua domain. Su et al. in [22] gave the necessary condition and sufficient condition for the
boundedness and compactness of the composition operators from p-Bloch space to g-Bloch
space on the first Cartan-Hartogs domain. The author characterized the bounded and compact
weighted composition operators on the weighted Bers-type spaces of the Hua domains in [23].
It must be mentioned that these domains are defined by the first Cartan domain. On the other
hand, we do not find any result about the multiplication operators that are defined on weighted
Zygmund spaces of the first Cartan domain. Therefore, motivated by the above-mentioned
studies and facts, the natural tendency is to extend the related studies to the first Cartan
domain. For this purpose, we study just multiplication operators that are defined on weighted
Zygmund spaces of the first Cartan domain in this paper. We obtain some necessary conditions
and sufficient conditions for the boundedness and compactness of the multiplication operators.

i=1j=
positive constants are denoted by C, and they may vary from place to place.

m n
We write |Z]2 = ¥ \z,-]-|2 for Z = (zij)mxn € C™*". Throughout the paper, real
1

2. Some Elementary Lemmas

First, we obtain the following result from a direct calculation.
Lemma 1. Let ¢y € H(R}). Then for each f € H(R;) and Z € R, the following statement holds.
RA(Myf)(Z) = f(Z)RP(Z) + 2RF(Z)RY(Z) + REf(Z)(2Z).

To arrive at the point evaluation estimate for the functions in Z%(R;), we need the
following result (see [22]).

Lemma 2. Let Z € R}. Then there exist two unitary matrices U and V such that
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A4 O - 0 O -0
0 A, --- 0 O -0
: : - : : -0
o 0 --- A, O -0

wherel > A1 > Ay > -+ > Ay > 0and )\%,. ..,Afn are eigenvalues onZT.
From the calculations, we obtain the following result.

Lemma 3. (1) If0 < ma <1, then

/1 Aqdt 1
< .
0o (1—Aqt)me — 1 —ma

(b) Ifma =1, then

L Aqdt 1
=In .
/0 (1 —Aqt)me 1-X

(c) Ifma > 1, then

/1 Aqpdt 1 1
0 (1 — /\1t)m0‘ ~ma—1 (1 — Al)mzx—l'

Lemmad4. (1) If0 < ma < 1, then there exists a positive constant C independent of f € Z*(R;)
and Z € R; such that

IRF(Z)] < ClIfll 2oy

(b) If ma =1, then there exists a positive constant C independent of f € Z*(Ry) and Z € R

such that
2e

IRF(2)| < Cllllzemn In G —Z77my

(c) Ifma > 1, then there exists a positive constant C independent of f € Z*(R;) and Z € R;

such that
1

|§Rf(Z)| < CHf”Z“(S?:,) [det(l — ZZT)]’””‘A.

Proof. We prove all three statements simultaneously. If Z = 0, then the lemma obviously
holds. Now, assume that Z = (Zi]‘)mxn # 0. It follows from Lemma 2 that there exist
two unitary matrices U and V such that

AM 0 - 0 0 0
0 A, --- 0 O 0
Z=U L . . V, )
: : - : : 0
0 O A Aﬁl 0 0

where1l > A1 > Ap > -+
we have

n > 0and /\%,..., )\%1 are eigenvalues of ZZT. From (1),

> A

11273 0 0
22 ...

1—pzzrou| o MR ’

0

0 e 1—12A2
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Lett € [0,1]. Since Ay > Ay > --- > Ay, >0, foreachi € {1,2,...,m} we have
1—2A7 = (1—tA)(14+tA) > 1 —tA; > 1 —tAq.

From this, we have

[det(I —?2Z")]" = ﬁ(l — A2 > (1 — tAq)"™. )
i=1

In particular, from (2) we have

-7y > %(1 A2 > %det([ _ 777, 3)
From the facts
A2 0 0
zzT=u 0 A% 0 g
0 0 A2,

and |Z|? = tr(ZZT), we obtain
m
Z2 =y 2 <mid,
i=1
which shows
|Z| < V/mA;. @)

Then, from Lemma 3 and (2)-(4), it follows that

g of
-1/} &l azl, (12)) d”au()’

| [ 15 S

u=1v=

<[] 2 3 ol

u=1v=

azl]

BZUBZW )} dt + O) ‘

-(t2)| }dt+‘a \

1 |Z|dt
S/o [det(I —2ZZT)]

Z|d d
-/ T 2 T e + | 52-0) ®

<[ a Cﬁgmdm] 112+

(s + Dl zemy- 0<ma<1
\/>||fHZ (Rp) 1n1 A’ ma =1

( + Dl zewp W’ ma > 1

(1 ma )||f||ZA Rr)s 0<ma<1
\F”fHZ”‘(?R)an ma =1

1
(2 4+ 1)27% 1 1l za gy ) idet(—zzrypm1r M > 1

; ||f||za<m + \gij(m\

IN

IA
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Then, from (5) and the fact

) < L[

E)zl] !
it follows that
(1 + 1) mn | 20m,), 0<ma<l
1Rf(z)| < Vmmn| f] ze(r;) In m, ma — 1 ©)
(et + 12" | f | 2o vy ez ™o > 1

From (6), the desired result follows. The proof is complete. [

In order to prove Lemma 6, we need the following result.

Lemma5. (1) If0 < ma <2, then

1,1
/ / Mdsdt
0 Jo (1—Aqts)me =

where

B 1 11 R T 1 11 1
C—max{l_m“/O ?[1—(1—1?) ]dt,/o ?lnl—tdt'moc—l ; ?[(1_t)m“71—1]dt}.

(b) Ifma =2, then

/1 /1 Mdsdt 1
o Jo (1*/\11’5)"”"_ 1*/\1.

(c) Ifma > 2,then

/ / Aqpdsdt 1
< .
(1 —Aqts)me = (1 — Aq)ma—2

Proof. (a). We divide into three cases to prove the statement (a).

Case 1. Assume that 0 < ma < 1. Since the limit

_ _ N\1-ma
lim 1-a-H=

t—0+ t

exists, we see that
11
/ —[1—(1—8)mdt
0

is a definite integral. From this, it follows that C; = 01 11— (1 — t)t="*]dt is a positive
constant. Then, we have

Mdsdt Aqtdsdt 1 11 _—
// l—Altsm"‘_/O / 1—)\1tsm”‘_l—ma/0 t[l_(l_}\t) ]dt

/O - ntar =g

- 1—m¢x
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Case 2. Assume that max = 1. Let x = ﬁ We have

to  Inx 2 Inx 't Iny
/O?ln—l_tdt /1 7x(x_l)dx_/17x(x_1)dx+/2 o= hth

Since the limit

lim 71119(
xo1+ x(x — 1)

exists, Iy is a definite integral. On the other hand, since

implies that Inx < x? for sufficiently large x,

Nf—=
—_

Inx x
7
=T X1 (1)) 7

for sufficiently large x. From (7), we obtain that I is convergent. So, Cp := fol In 1= dt is finite.
Then, we have

11\ dsdt 11 (1 tA dsdt 11 1
_[1 = [ 2 7dt</ Tt oar
/o/o 1—sth; /o t/o 1—sth; /o [ B PRl A

Case 3. Assume that 1 < ma < 2. Let x = ﬁ Then, we see that

11 1 oo yma—l
/0 Fla s pmt — Udt= /1 PTEE R

is convergent. Write C3 = —L 01 1 i timﬂfl — 1]. Therefore, we have

/ / _ Mqdsdt _/ / tAdsdt 1 1 1[ 1 —1)at
(1 —stA)m o (1—stA)me  ma—1 Jo t (1 — Aqgt)ma—l

RN YIS S
oc—l 0o tH(1—¢)me-l

1] dt = Cs

Combining the above three cases, we complete the proof of (a).
(b). From the calculations, it follows that

/ / A]dsdt / / Aqtdsdt —In 1
1*/\11’5 0 1*)\1f$ 1—A¢

(c). Since

M < 1
(1= Aqts)me = (1 — Aq)ma—2(1 —¢t)2

foralls,t € [0,1], we have

/ / Apdsdt // dsdt 1
(1 — Aqts) m”‘_ 1—)\1 yma—2 (1—1)2 (1 —Aq)ma=2"
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Lemma 6. (1) If0 < ma < 2, then there exists a positive constant C independent of f € Z*(R;)
and Z € Ry such that

F(D)] < Clfllzemy)-
(b) If ma = 2, then there exists a positive constant C independent of f € Z*(R;) and Z € R
such that
F2)] < Clf im0 g
= (R0) ™ det(1 — ZZT)

(c) Ifma > 2, then there exists a positive constant C independent of f € Z*(R;) and Z € R;
such that

A(@)| < Cll 2w o) =gz

Proof. We prove all three statements simultaneously. Similar to the proof of Lemma 4, for
s, t € [0,1] we have

[det(I —s2ZZ")]" = [J(1 = s*PA2)* > (1 —stAq)™. 8)
i=1

From (3), (4), (8) and Lemma 5, for each f € Z*(R;) and Z € R, we have

£(2)| = ’f(0)+/01%8?f(tz)dt‘ < |f(0)|+‘/01%/01 (17, VRf(517))dsdt]
0)| +(/01%/01|tZ||V§Rf(stZ)|dsdt

11 |Z]dsdt
= < +/ / [det(I sthZZT] )Hsza (%r)

Aqpdsdt

< (1o vin [ [ 2R W,

(1 + VmO)|| fll zx(wy) 0<ma<2
< VmIn | fllzery). mo =2

(1+ \/ﬁ)WHfHZR(%,)f mu > 2

(1+ VmO)||fll ze (), 0<ma<2
< IVl fllzerp In gorizzmy/ mu =2

-2 1
(14 /m)2me Hf”Z“(%R[)W, me > 2,

where C is the constant in (a) of Lemma 5. The proof is complete. []

Remark 1. In Lemmas 4 and 6, we note the presence of the parameter m which is necessary
and cannot be avoided. This maybe is the biggest difference from the corresponding results on
Z%(BN) ([24]). Unfortunately, we do not find an effective method to avoid it. However, it is
shown that Lemmas 4 and 6 can be regarded as the generalizations of the corresponding results
on Z(BN).

Replacing R2f by Rf in the definitions of the spaces Z*(R|) and Z%(Ry), respectively, we
obtain the weighted Bloch space and the little weighted Bloch space on R, denoted by B*(R;) and
BE&(Ry), respectively. BY(R) is usually called the Bloch space, denoted by B(R;).

Let Z € R, 0< Ay <Ay <o <Ay < land Az,...,)xfn be the eigenvalues onZT.
Then from the proof of Lemma 4, we see that
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m
det(1—2Z") =TT(1 - A},
j=1

which shows that
det(I —2ZT) < 1. )
Proposition 1. If0 < ma < 1, then f € Z*(R;) implies f € HY (R1) N B*(Ry).
Proof. Let f € Z*(R;). From (a) in Lemma 4, there exists a positive constant C such that
IRF(Z)] < ClIfll zemy) (10)
forall Z € R;. By (9) and (10),
[det(I — ZZT)*|RF(Z)| < Cllfllz0n,

for all Z € Rj, which shows that f € B*(R;). On other hand, from (a) in Lemma 6, there
exists a positive constant C such that

IF(Z)] < Clifll 2y (11)
forall Z € ;. By (9) and (11),

[det(I = ZZT))*|£(Z)| < Cllf | zo(n,)

for all Z € R, which shows that f € Hy*(R;). Therefore, we prove that f € H?(R;) N
B*(R). The proof is complete. [

In order to characterize the compactness, we need the following result. Since the proof
is similar to that of Proposition 3.11 in [25], we do not provide proof anymore.

Lemma 7. Let ¢ € H(Rp). Then the bounded operator My on Z*(Ry) is compact if and only if
for every bounded sequence { fy} in Z*(Ry) such that fy — 0 uniformly on every compact subset
of 1 as k — oo, it follows that

B (| My fill 22 () = O-

In the case of several complex variables, Loo-keng Hua found an inequality (usually
called the Hua’s inequality) in 1955. In [22], the authors obtained a generalization of the
Hua'’s inequality on the first Cartan-Hartogs domain:

Yi(N,m,m;K) = {W € CV,Z € R;(m,n) : [W[* < det(I — 2ZT)}.
Setting W; = 0 and W, = 0 in Theorem 1 in [22], we obtain the following inequality.
Lemma 8. If A, B € Ry, then
det(1 — AAT)det(I — BBT) < |det(1 — ABT)|.

Let S € R; and

511 S12 * Sim
gT — | Sz S22 -+ Som
Snl Sn2 " Snm

On R we define the function

Ag(Z) = det(I — z8T).
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If we write
Z11 212 "t Zln
Z Z PEEErY Z
7 — 21 Z22 2n c R,
Zml  Zm2  *° Zmn
then
n n n
1= % smzie  — X Skezik 0 — L SkmZlk
k=1 k=1 k=1
n n n
— 2 SkmZak 1= X Skpzok 0 — X SkmZ2k
AS(Z) = k=1 k=1 k=1
n n n
— X SkZmk  — X SkZmk 01— X SkmZmk
= k=1 k=1
For the sake of convenience, write
0As(Z)
Agii(Z) = —2—~
S,l]( ) azi]'
and
Asiio(Z) = PAs(2)
P9 aZl'jaqu ’

From the derivation rule of determinant functions, we obtain the following result.

Lemma 9. For each Z € R}, we have

n n n n
1— Y sz — X Skzik - — L SkjZik ccc — L SkmZik
k=1 k=1 k=1 k=1
Asij(Z) = =51 —5j2 s ~Sjm
n n n n
— L SKZmk  — X Sk2Zmk 0 — X SkiZmk 01— X SkmZmk
k=1 k=1 k= k=1
and
n n n n
1— Y sz — X Skwzie - — L SkZik o — L SkmZlk
k=1 k=1 k=1 k=1
—Sq1 —Sq2 ~Sqq T —Sqm
Asjijpg(Z) = : : :
—Sj 52 —Sjj —Sjm
n n n n
— L SKZmk  — X Sk2Zmk  c — X SkiZmk 1= L SkmZmk
k=1 k=1 k=1 k=1

Next, the following result holds.

Lemma 10. There exists a positive constant C independent of Z € R such that

m n
Y 2 |Asip(Z)] <C

i,p=1j,49=1
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Proof. SinceZ, S € R;, wehave I — ZZT > 0and I — SST > 0. Then, foreach1 <i < m,
it follows that ;

|Z,’j|2 >0, 1- Z ISl‘]‘|2 > 0.
1 j=1

1—

n
]:

So, we have |zij| < 1land |sl-]-| <lforl<i<mandl <j<mn. Letay,ai, ..., amn
denote the elements of the determinant in Ag ;; ,,(Z). From Lemma 9, we see that |a;;| <

n+1forl <i<mand1l <;j< n. With this and the definition of determinant, we obtain

|Asll]’pq<z)| = | Z (_l)T(jljZ"'jﬂl)aljlazjz .o amjrn|
jljZ"'jm
< Y lallagy] - lamg, | (12)
]1]2]m

< nl(n+1)",

where 7(j1j2 - - - jm) denotes the inverse ordinal of the arrangement jjjp - - -j,. Let C =
n!(n+ 1)”‘2 m?n?. Then, from (12) the desired result follows. The proof is complete. [J

We can similarly prove the next two results. Therefore, the proofs are omitted.

Lemma 11. There exists a positive constant C independent of Z € 1 such that

i i |As,ii(Z)] < C.

i=1j=1
Lemma 12. There exists a positive constant C independent of Z € Ry such that
|det(1 — 25T)| < C.

Let S be a fixed matrix in ;. If « = 1, we define

- 2e
Z)=detI-SS)In———F——, ZeRy,
f5(2) = det( )ndet(I—ZST) €%
and if & # 1, we define
det(I — SST)]"
gs(2) = ML ey,

[det(I — Z8T)]
Next, we prove that fs € Z(R;) and g5 € Z%(Rp).

Lemma 13. (a) The function fg belongs to Z(R;). Moreover, there exists a positive constant C
such that

sup || fsllzw,) < C. (13)
SeRp

(b)  The function gg belongs to Z*(R). Moreover, there exists a positive constant C such that

sup [|gs| ze () < C. (14)
SeR;

Proof. (a). From a direct calculation, we have

ofs 2) = - det(I — SST)
aZij B det(I — ZS_T)

Asii(Z). (15)



Axioms 2023, 12,1131

12 of 21

From (15), we obtain

~ det(I—SST) & &
Rfs(Z) = det(1—25T) l;]; zijAs,ij(Z). (16)
From (16), it is easy to see that
oNfs(Z)  det(I— S§T) oL .
azkl - [det([ . ZS_T)] AS kl( ) lzzlj;l ZZ]AS,Z](Z) (17)
det(I — SST) 1 &4 &
- m [z;]; ZijAS,ij,kl(Z) + As,kl(z)] .

Then, from (17) and |z;j| < 1 for each i and j, we have

det ST m n m n
|VRfs(Z)| < —'TZ Y ) [Asu(2)] ). ) |Asi(2)] (18)
[det(I — 28T)]? = (= i=1j=1
det(I — SST) &, &
+ det(I = z3T) 1k2:1112:1 UAS,I-]-,H(Z)’ + ‘As,kl(z)ﬂ‘
From (18) and Lemmas 10 and 11, we have
det(I — ZZ")|VRfs(Z)| < C. (19)

It is easy to see that |fs(0)| = 1. From this and (19), it follows that fs € Z(R;) and
(13) holds.

The statement (b) and (14) can be similarly proven, and the details are omitted. The
proof is complete. [

Remark 2. Since det(I — SST) converges to zero as S — R, we see that {fs} and {gs}
uniformly converge to zero on any compact subset of Ry as S — oNR;.

3. Boundedness and Compactness of My on Z*(R;)

We begin to study the boundedness and compactness of the multiplication operators
on Z*(¥). We have the following result about the boundedness.

Theorem 1. Let « > 0 and ¢ € H(R;). Then the following statements hold.

(a) For0<ma <1,ifp € Z*(RNy), then the operator My is bounded on Z*(Ry).
(b) Forma =1,ifp € Z*(R;) and

- 2e
M, := sup [det(I — ZZ")]"|RP(Z)|In ———=—~ < oo,
then the operator My, is bounded on Z*(Ry).
(c) Forl<ma<2ifype Z%RN)and
- [Ry(2)]
Vo 1= 288 (1~ 22Tyt =
then the operator My is bounded on Z*(%y).
(d) Forma =2,ifp € H®(Ry),
M3 := sup Ry(Z)] < oo,

zew, det(1 = ZZT)]1==
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and
My = ZSSSCIE)I [det(I — 2ZT)]"|R*p(2)| lndet(IEeZZT) < oo,
then the operator My is bounded on Z*(Ry).
(e) Forma >2,ifp € H®(R),
2

Ms = sup o s <
and

Mo s OO

zew, det(I = ZZT)meet
then the operator My is bounded on Z*(Ry).
Proof. We prove the statement (a). For 0 < ma < 1 and ¢ € Z*(R;), it follows from
Proposition 1 that ¢ € HP(R;) N B*(RN;). Then, for f € Z%(R;), it follows from (a) in
Lemmas 4 and 6 that

s1(Myf) = sup [det(I — ZZT)]“‘%z(wa)(Z)]

ZeRy
= sup [det(1 = ZZ")|*|F(Z)R*Y(Z) + 2Rf(Z)RP(Z) + R*f(Z)p(2)]
< sup [det(I —zZT)]" (|f(Z)3%21/J(Z)} +2|RF(Z)RY(Z)| + |R*f(Z)y(Z) !) (20)

< Cllfllzerp 9l zewy) + CllFll za@p @l Bewy) + 1 zerp 19 e (7))
= (Cllllzecmy) + ClIPlsecry) + 19l ) 1] 220

From (20) and the basic fact [f(0)[ < || f[| z«(x,), we have

IMyfll 2,y < (1900 + Cllpllzecry) + Clpllss oy + 19l ) Il zemy. @)

It follows from (21) that the operator My is bounded on Z%(R;).
Now, we prove the statement (b). From (b) in Lemma 4 and (a) in Lemma 6, we have

si(Myf) = sup [det(1 — ZZT)]"|R*(Myf)(2)]

< sup [det(1 = 2Z1)]*([f(2)R(2)| + 2RF2)R(2)| + [RF(2)9(2)])

T 2
< Y llzemy 12wy + € sup RY(2)][det(T = 227) 0 qor= 2 1l 2y (22)

+ 9l za@p 1 f1l 2 )
= (ClPlzory) + OV + 1920 ) ) 11| 22 -

From (22) and the assumption, it follows that the operator My, is bounded on Z*(R;).
Next, we prove the statement (c). From (c) in Lemma 4 and (a) in Lemma 6, we have
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s1(Myf) < sup [det(I = 2Z")]* (|f(2)R29(2)| +2|Rf(2)R(2)| + |[R2F(2)$(2)|)

ZeR;
IRy (2)|
< ® ® = ®
< ClIYllzerpllfll zew)) +CZSIEJ£I [det(l — zZT)ma1 Il zew)) (23)

+ CllYll za ) 1 £l 2 )
= (CUPNzxry) + CMa+ ] 25y ) 171 25y

From (23) and the assumption, it follows that the operator My is bounded on Z*(%;).
We prove the statement (d). From (c) in Lemma 4 and (b) in Lemma 6, it follows that

s:(Myf) < sup [det(I - 2Z")]*(|f(2)R29(Z)| +2\RF(Z)R(2)| + [R2F(2)$(2)|)

Z€3R1
7 2
: B DI R T T 75T (9
< CZSIGJQIT?I [det(l z7 )} R (Z)[In det(T—ZZT) £l = @) ”
[Ry(2)]
TC 5P ter(r— zzny 1z T 1l 11120

= (CMy+ CMs + 9l ) 11125y

From (24) and the assumption, it follows that the operator My, is bounded on Z*(%;).
Finally, we prove the statement (e). From (c) in Lemmas 4 and 6, we have

s1(Myf) < sup [det(I = 2Z")]* (|f(2)R29(Z)| +2|Rf(Z)R(2)| + [R2F(2)$(2)|)

ZeR]
R2y(2)]
< CZSIGJS)I?) [det(I — ZZT)]m,X,,X,Z HfHZ“(SR[) (25)
I
Ry(Z
+C sup o e Wz + 1wy 12y
1

= (CMs + CMe + 9 llny) ) 11125y

From (25) and the assumption, it follows that the operator My is bounded on Z*(%;).
The proof is complete. [

Next, we consider the compactness of the operator My on Z*(R;).

Theorem 2. Let « > 0, ¢ € H(Ry) and the operator My be bounded on Z*(Ry). Then the
following statements hold.

(@) For0<ma <1,ifp € HY(Ry) NBG(Ry) N Z§(RN1), then the operator My is compact on
Z%(Ry).

(b) Forma =1,ifp € HY(Ry) N Z5(Ry) N B*(N;) and

2e

. 5T\ e
Zl—lfz?s%l [det(I—2Z")]"|Rp(Z)|In det(1— Z27) 0, (26)
then the operator My is compact on Z*(Ry).
(c) Forl<ma<2ifpc HP(Rp)NZ5(Ry) NBY(N;) and
R o

I !
7-50%, [det(I — ZZT)]ma—a—T

then the operator My is compact on Z%(Ry).
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(d) Forma =2,ifp € HY(Ry) N B*(Ry),

Ry(2)|  _
A Tet(l — zZTy e @8
and
- _ 5 T\]¥ 02 2e _
Jim [det(1 — ZZT)]*|R2p(Z)| In =77 = (29)
then the operator My is compact on Z*(Ry).
(e) Forma >2,ifp € HPY(Rp) N BY(Rp) N Z*(RNy),
. (R (2)| _
A0 Ter(T = zz Tyt = % (30)
and
w2l an

li =
7-5%, [det(I — ZZT)Jma—1
then the operator My is compact on Z*(Ry).

Proof. We first prove the statement (a). Let { f¢} be a bounded sequence in Z*(R;) and
fx — 0 uniformly on any compact subset of §; as k — oo. To prove that the bounded
operator My is compact on Z%(R;), by Lemma 7 we only need to prove that

Bim [|Myfill 2y = 0.

Since { i} is bounded, we assume that sup;y || f || z«(5,) < M, where M is a positive
number. From (a) in Lemmas 4 and 6, it follows that

sup |fi(Z)| £ CiM and sup |Rfi(Z)| < CoM (32)
ZeR] ZeR

for all k € N. Since ¢ € H(Ry) N Bi(R;) N Z§(Ry), for arbitrary e > 0 there exists an
o > 0suchthaton K = {Z € R; : dist(Z,9R]) < o} it follows that

[Y(z)| <e and [det(I—ZZ")]*|Ryp(Z)| <e (33)
for j =1, 2. Then, from (32) and (33), it follows that

s1(Myfy) = sup [det(I - ZZ")]"|R*(Myfi)(Z))|

ZeR
= ngg [det(I — ZZ")]" | f(Z)R*P(Z) + 2Rfi(Z)RY(Z) + p(Z)R i (Z)]
< (sup+ sup )[det(I—ZZ")]"|f(Z)R*Y(Z) + 2R fi (Z)Ry(Z) + Y(Z)R*f(2Z)| (34)

ZeK  ZeR\K

< CyMsup [det(I — 2ZT)]*|R*p(Z)| + 2CaM sup [det(I — 2ZT)]*|Ry(Z)|
ZeK ZeK

+ Msup [¢(Z)| + [l zer,y) sup [fk(Z2)] +2[¢llge(w,) sup |Rfx(Z)]
ZeK ZeR\K ZeR\K

+ 19l g,y sup | R2f(Z)]
ZG%[\K

< (CIM+2GM + M)e + [l zo(r,) sup [f(Z)]+2[[9llpn,) sup [Rfiu(Z)]
ZG?RI\K ZeR I\K

Wl sup [R2fi(2)].

ZE?R[\K
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It is obvious to see that { f } converges to zero uniformly on any compact subset of $;
as k — co implies that {|Rf;|} and {|R2f;|} also perform the same convergence as i — co.
Since R \ K is a compact subset of R and the obvious fact |[¢(0) fx(0)| — 0 as k — oo, it
follows from (34) that

Jim || My fi 2,y =0,

which shows that the operator My, is compact on Z*(R).

Now, we prove the statement (b). Assume that {f; } is a sequence in Z*(%;) such that
sup;ey |l fill ze(w,) < M and f; — 0 uniformly on any compact subset of R as i — co. Then
by Lemma 7 we only need to prove that

llggOHMtpfinw(%,) =0.

First, since the sequence {f;} is bounded, by (a) in Lemma 6 there exists a positive
constant C such that sup,, e, fi(Z)] < C for all i € N. From the conditions, we see that
for arbitrary ¢ > 0 there exists an ¢ > 0 such thaton K = {Z € R; : dist(Z,0R;) < o} it
follows that

9(2)] <e, (35)
(det(I — ZZT)*|R2p(Z)| < &, (36)
and
_ o 2
[det(I — ZZT)]*|Ry(Z)| In WeZZT) <e (37)

For above ¢ and o, by using (35)—(37), (b) in Lemma 4 and (a) in Lemma 6, we have

s1(Myf;) = sup [det(I - 2Z")]"[R2(Myf,)(2)]

ZeR

= sup [det(I — ZZT)]*|f((Z)R*Y(Z) + 2Rf;(Z)Ry(Z) + p(Z)R*f:(Z))|

ZeR]

< (sup+ sup )[det(I—ZZ")]*|fi(Z)R2¢(Z) +2RF(Z)RY(Z) + p(Z)R2f;(Z)|

ZekK

< ésup
ZeK

ZE?RI\K
2e

det(I —ZZT) (58)

[det(I — Z2ZT)]"|R?y(Z)| + CM sup [det(I — ZZT)]*|Ry(Z)| In
ZeK

+ Msup [p(Z)| + |9 zew,) sup [fi(Z)] +2/[¢llgw,) sup |Rfi(Z)]
ZeK ZeR\K ZeR\K

+9llb=ry sup [R2Fi(Z)]

ZG%[\K

< (CHCM+M)e+[¢llzery sup |fi(2)]+20¢llpw,y sup [RAZ)]

ZER\K ZeR\K

+llb=ry sup [R2F(Z)]-

ZG%[\K

It is obvious to see that { f; } converges to zero uniformly on any compact subset of R;
as i — oo implies that {|Rf;|} and {|R?f;|} also perform the same convergence as i — co.
From (38), the compactness of R \ K, and the obvious fact [(0)f;(0)] — 0asi — oo, it
follows that

lim [Myfill za @) =0,

which shows that the operator My, is compact on Z%(R;).
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s1(Myfi) = sup
ZeR]

= Ssup
ZeR]

Next, we prove the statement (c). Assume that { fi } is a sequence in Z*(R;) such that
supyey || fkllze () < M and fy — 0 uniformly on any compact subset of | as k — co.
Then by Lemma 7 we only need to prove that

Lim [|My fill 2« ;) = O-

Since {fi} is bounded in Z*(R;), by (a) in Lemma 6 there exists a positive constant
Csuch that sup, .y [fx(Z)| < C forall k € N. From (c) in Lemma 4, it follows that there

exists a positive constant C such that

~

C
R = tqer=zzmypeT

Since ¢ € H®(R1) N Z§(RN;) and the assumption (27) holds, for arbitrary ¢ > 0 there
exists an ¢ > 0 such thaton K = {Z € R; : dist(Z,9R|) < ¢} it follows that

[9(Z)] <e [det(I—ZZ")]*|R%p(2)| <e, (39)

and

Ry (2)]

[det(1 — zzT)pra—w1 < © “0)

For above ¢ and 7, by using (39), (40), (c) in Lemma 4 and (a) in Lemma 6, we have
[det(I — ZZT)]"|R*(My fi) (2)|

[det(I - ZZT)|*|f(Z)R*¢(Z) + 2Rf(Z)RY(Z) + p(Z)R* fi(Z)]

< (sup+ sup )[det(I—ZZ")]"|f(Z)R*Y(Z) + 2RA(Z)RP(Z) + p(Z)R*fi(2)]
ZeK  ZeR\K

STNTY o2 ~ |§Rlp(z)|
S C;‘éﬁ [det(l —-ZZ )] |§R ¢(2)| + C;LGIE [det(I _ ZZT)]mtxﬂxfl (41)

+ Msup [p(Z)| + [Yllzer,) sup [fe(Z2)]+2[1¢ll e, sup |[RA(Z)]
ZekK ZeR\K ZeR\K

+ 1yl

oy sup R f(2)]
ZG?RI\K

<(CH+C+Met [llzepmy sup /(2] +20lsn,) sup [RA(2)]

+ 1yl

ZE%I\K ZE%I\K

le(ry) sup | R2fi(2)].
ZE?RI\K

Since {f;} converges to zero uniformly on any compact subset of R; as k — oo
implies that {|Rf;|} and {|R?f;|} also perform the same convergence as k — co. From (41),
the compactness of R; \ K, and the obvious fact |¢(0) f(0)| — 0 as k — oo, it follows that

Jim [|My fill 2 ;) = 0,
which shows that the operator My, is compact on Z%(R).
We prove the statement (d). Assume that {f;} is a sequence in Z*(R;) such that

supyey | fill ze(r,) < M and f; — 0 uniformly on any compact subset of % as k — 0.
Then by Lemma 7 we only need to prove that

li M ” =0.
Lim [|My fill za ()
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s1(Myfi) = sup
ZeR

= sup
Z€§R1

Since { f¢} is bounded in Z*(R;), by (b) in Lemma 6 there exists a positive constant C
such that

2e

fi(Z)] < Cln det(I — 2ZT)

(42)
forall Z € ®; and k € N. From (c) in Lemma 4, it follows that there exists a positive
constant C such that

~

C
Rf(2)| € ————== 43
RN < qor—zzm )
forall Z € Ry and k € N. Since p € Hi®(R;) and the assumptions (28) and (29) hold, for
arbitrary ¢ > 0 there exists an ¢ > 0 such that on K = {Z € R; : dist(Z,0%R;) < o} it
follows that

lp(2)| < [det(?e_lpéZ;T')]l“ <e, (44)

and

2e

det(I — zZT)]*|R2yp(Z)|In deil =227

< e (45)
For above ¢ and 7, by using (42)-(45), (c) in Lemma 4 and (b) in Lemma 6, we have
[det(I — ZZ")]*|R*(Myf)(Z)]

[det(I = ZZ1)|*|f(Z)R*¢(Z) + 2Rfi(Z)RY(Z) + p(Z)R* fi(Z)]

< (sup+ sup )[det(I—ZZ")|"|f(Z)R*Y(Z) + 2Rfi(Z)RY(Z) + Y(Z)R2f(Z)]
ZeK  ZeR\K

< CMsup|det(I — ZZT))*|R*p(Z)|In

2 .6 [Ry(Z)]
ZeK det(I — ZZT) +2M ?ég [det(I — ZZT)]1-« (46)

+Msup [$(Z2) + [9llze(ry) sup |felZ)+2[Wlpery) sup [Rfi(2)]
ZekK ZeR\K ZeR\K

+ 9l

o(ry) sup | R*fi(2)]

ZE%[\K

< (C+2CM+M)e+ (Yl zery) sup |S(Z)+29llgeiw,) sup [RA(Z)]

+ 1yl

ZGSRI\K ZGSRI\K

o) sup |R2f(2)].
ZG?RI\K

Since {f;} converges to zero uniformly on any compact subset of ; as k — oo
implies that {|Rf|} and {|R?f;|} also perform the same convergence as k — co. From (46),
the compactness of R; \ K, and the obvious fact |¢(0) f(0)| — 0 as k — oo, it follows that

Lim [|My fill 2 () = O,
which shows that the operator My is compact on Z%(R).
Finally, we prove the statement (e). Assume that { f; } is a sequence in Z*(R;) such that

supycy | fill ze(r,) < M and fy — 0 uniformly on any compact subset of % as k — 0.
Then by Lemma 7 we only need to prove that

li M ” =0.
Lim [|My fill za (y)
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s1(Myfi) = sup
zZeR]

= sup
ZeR]

Since { f¢} is bounded in Z*(R;), by (c) in Lemma 6 there exists a positive constant C
such that

CM
2) < Gerr—zzTym

(47)

forall Z € ®; and k € N. From (c) in Lemma 4, it follows that there exists a positive
constant C such that
CM

|§Rfk(z)‘ < [det(I _ ZZT)]mzx—l (48)

forall Z € Ry and k € N. Since p € H®(R;) and the assumptions (30) and (31) hold, for
arbitrary ¢ > 0 there exists an ¢ > 0 such that on K = {Z € R; : dist(Z,0%R;) < o} it
follows that

[R2y(2)]|
W)(Z)‘ <& [det(l _ ZZT)]mvcfoﬁZ <& (49)

and

Ry (Z)]
[det(l — zZT)pree T = & (50)

For above ¢ and #, by using (47)-(50), (c) in Lemmas 4 and 6, we have
[det(I —ZZ")]"|R*(My fi) (2)|

[det(I - ZZ)|*|f(Z)R*¢(Z) + 2Rf(Z)RY(Z) + p(Z)R* fi(Z)]

< (sup+ sup )[det(I—ZZ")|"|f(Z)R*Y(2) +2Rfi(Z)RY(Z) + ()R f(2)]
ZeK  ZeR\K

<CM

Ry (2)] ~ R (2)]
S et(1 — 7z ma—a=2 T 2CMSUP o 77T e (51)

+M§u§|¢(Z)I+II¢|lza(m,) sup |fi(Z)] +2[9llpxw,) sup [Rfi(Z)]
S

ZG%[\K ZG%[\K

1l b=ry) sup [R2fi(2)]

ZG?RI\K

< (C+2CM+ M)e+ 19l zeny) sup [fi(Z)]+209llpe(ry) sup [RA(Z)]

ZE?RI\K ZE%I\K

+¢laer,) sup |R2f(Z)].

ZeR\K

Since {f;} converges to zero uniformly on any compact subset of | as k — oo
implies that {|Rf;|} and {|R2f;|} also perform the same convergence as k — co. From (51),
the compactness of R \ K, and the obvious fact |((0) fx(0)| — 0 as k — oo, it follows that

Lim [|My fiell 22 ) = O,

which shows that the operator My, is compact on Z*(R;). The proof is complete. [

We have the following necessary conditions for the compactness of My on Z*(R;),
which can be easily obtained by using the functions fs and gs.

Theorem 3. Let « > 0and ¢ € H(R;). Then the following statements hold.
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(a) For a =1, if the operator My is compact on Z(Ry), then

lim det(I — SST)|RZMy f<(S)| = 0.
sim, et( )| R*Myfs(S)|

(b)  Fora # 1, if the operator My is compact on Z(Rp), then

lim_[det(I — SST)]*|R*Mygs(S)| = 0.

4. Conclusions

In this paper, the author obtains some sulfficient conditions and necessary conditions of
the boundedness and compactness for the multiplication operators on weighted Zygmund
spaces of the first Cartan domain. The author still has not obtained the necessary and
sufficient conditions for bounded and compact multiplication operators in this space. In
addition to multiplication operators, one can study other operators in this space, such as
composition operators and weighted composition operators.
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