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Abstract: The Cascade Correlation learning algorithm is a special supervised learning algorithm
for artificial neural network architecture. The optimization algorithm in the traditional neural
network has the disadvantages of a single optimization goal, slow convergence speed, and can easily
fall into local area, which cannot fully meet the key elements in the cascade correlation learning
algorithm. In comparison, the group intelligence optimization algorithm can take into account these
key elements in the optimization process at the same time, and obtain better optimization results.
In this paper, we propose the single-objective optimization algorithm jDE-B and the multi-objective
optimization algorithm MOEA-T, and improve the network expansion mode in the learning process
of Cascade Correlation neural networks. We investigate the effect of applying the group intelligent
optimization algorithm in the Cascade Correlation learning algorithm. Experimental results show
that our improved algorithm is able to enhance the ability of the Cascade Correlation neural network
to fit problems, reduce the number of hidden units and the depth of the network, and optimize the
network structure.

Keywords: cascade correlation; neural network; evolutionary algorithm; constructive neural network

MSC: 65K05; 74P10; 90C29

1. Introduction

With the development of neural networks, the design structure of neural networks
is becoming more and more complex. According to the different adaptive algorithms [1]
proposed by the researchers for neural network structure optimization, they can be divided
into three categories: constructive algorithm [2–5], pruning algorithm [6–8] and hybrid
algorithm [9–11]. The Cascade Correlation neural network (CCNN) is a new artificial
neural network architecture and supervised learning algorithm that was proposed by Scott
E. Fahlman and Christian Lebiere in 1991 [12]. It can be classified as one of the constructive
algorithms. The Cascade Correlation learning algorithm starts with a minimal network,
then trains one by one and adds new hidden units to create a multi-layer structured
neural network. Once a trained hidden unit is fixed to the network, its input weights are
frozen. Then the network continues to train and add hidden units. Compared with existing
algorithms, the cascade correlation architecture has several advantages: (1) It learns quickly,
and the network determines its own size and topology. (2) Even when the training set
changes, it retains the constructed structure and does not need to back propagate the error
signal through the network [13].

Many different types of Cascade Correlation learning algorithms have been developed
in the literature [14,15]. There are two key ideas behind the design of the algorithms: The
first is the cascaded architecture, the network adds new hidden units one by one. The
unit’s input-side weights are frozen. The second is the learning algorithm, which can
create and install new hidden units. For each new hidden unit, the Cascade Correlation
learning algorithm attempts to maximize the correlation between the output of the new
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unit and the residual signal of the output unit, which is different from the idea of back-
propagation. The major challenge of the Cascade Correlation learning algorithm is how to
add appropriate hidden units, which mainly lies in the optimization method of hidden unit
weight, the optimization target of the hidden unit, and the selection of the hidden unit’s
activation function.

The first problem is that the optimization method of hidden unit weight does not
have enough global search capability. In the Cascade Correlation learning algorithm, the
current network state will determine the optimization direction of the subsequent network.
Therefore, early optimization is very important and will affect the global optimization
process. The new hidden unit optimization target is always complex, and the traditional
neural network optimization method will often fall into the local area. So the pool of
candidate unit strategy is adopted in the Cascade Correlation learning algorithm. There
are multiple candidate units in the candidate pool, each with the same link as well as the
training target, but with different weights of random initial weights. Each unit did not
interact with others during the training, and the candidate unit with the best correlation
score was selected as the new hidden unit. Although this mechanism can reduce the
probability of adding useless units to the neural network, it is still insufficient. We can try
to change the optimization method of the hidden unit weight by using the group intelligent
optimization method. The possibility of finding the global optimal solution is relatively
high by using the group intelligent optimization method. This is because the number of
variables in the early optimization stage of the Cascade Correlation neural network is small.
which will add a currently optimal unit to the network [16]. The Cascade Correlation
neural network will install the current optimal hidden unit according to the global optimal
solution during training.

Group intelligent optimization algorithm is one of the optimization fields which
has attracted much attention in recent years. It simulates various group behaviors of
social animals and uses the information interaction and cooperation among individuals
in the group to achieve the purpose of optimization. Compared with other types of
optimization methods, its implementation is relatively simple and more efficient. Group
intelligent optimization algorithms mostly do not rely on the gradient information of the
optimization function, so they will not have as many problems as the gradient-based
optimization algorithm.

In the past, some researchers have tried to use the group intelligence optimization
algorithm for the weight optimization of neural networks. In 2011, researcher proposed a
new algorithm based on combining a genetic algorithm and a BP neural network, namely
the GA-BP algorithm, to solve the defects of poor convergence and partial minima in the
BP Neural Network Model. The algorithm will be applied to the initial weights, structure
optimization, and learning rule optimization of the BP network. Compared with the
simple BP algorithm, the proposed algorithm greatly improves the convergence speed and
convergence accuracy, and achieves better results [17,18]. This shows that it is feasible to
apply the group intelligent optimization algorithm in neural networks.

However, the neural network structure becomes very complex and a large number
of parameters need to be optimized when the problem becomes more difficult. The group
intelligent optimization algorithm will encounter challenges posed by high-dimensionality,
which gives rise to many other problems. For example, the size of the search space increases
exponentially with the number of values, the computational cost of the group intelligent
optimization algorithm is too high, and the redundancy of high-dimensional features
is large.

Differential Evolution (DE) is an algorithm suitable for real number optimization
problems in group intelligent optimization. It was proposed in 1995 by Storn et al., and
originally conceived to solve the Chebyshev polynomial problem. Later, researchers found
that the differential evolution algorithm [19] is also an effective technique for solving com-
plex optimization problems. Differential evolution algorithms are more suitable for real
number optimization problems and can be used to optimize neural network weights. In
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addition, differential evolution algorithms also have many derived algorithms which adap-
tively adjust control parameters. In 2006, Janez Brest proposed the Adaptive Differential
Evolution Algorithm (jDE) [20], which assigns parameters to each member of the group in
iterations based on a greedy strategy. The jDE algorithm inherits the basic strategy of the
DE algorithm, but adopts an adaptive mechanism for two control parameters, the scaling
factor F and the crossover rate CR. Each individual has its own control parameter values, F
and CR.

However, the search efficiency of differential evolution algorithms decreases rapidly
when facing the ultra-high-dimensional real number optimization problem in complex neu-
ral networks. The Cascade Correlation neural network is more suitable to use group intelli-
gent optimization algorithms than general neural networks. Its network structure changes
from small to large during training, and it has fewer variables to optimize each time.

The second problem is the optimization target of the hidden unit is not enough to
guide the network optimization direction. In the Cascade Correlation learning algorithm,
the optimization goal of the hidden unit is the sum of the absolute value of the correlation
between the output of the new unit and the residual signals of all the output units. Thus,
the optimization direction of the hidden unit is for the error fluctuations of all the output
units. However, simple accumulation is not a good optimization target because there may
possibly be target conflicts. It may fail to fit the error fluctuations of other output units
in order to maximize the error fluctuation correlation of some output units. Therefore,
this paper proposes multi-objective optimization methods to overcome these problems.
Instead of adding only one hidden unit as a separate hidden layer at a time during the
Cascade Correlation neural network training, a hidden layer composed of multiple hidden
units is added. The optimized weights of the different hidden units for the output units
are inconsistent. Such a hidden layer composed of multiple hidden units can significantly
reduce the network loss value and ultimately reduce the network depth compared with the
hidden layer trained by the original traditional method. The optimization algorithm based
on group intelligence can deal well with the multi-objective optimization problem [21–24].

Finally, the activation function of the hidden unit, determines the upper limit of
the hidden unit fitting error fluctuations. The Cascade Correlation learning algorithm is
different from the back-propagation, the hidden unit input weights are no longer changed
after being fixed to the network. Therefore, the group intelligence optimization algorithm
can be used when training hidden units. The design of the activation function of the hidden
unit does not consider the differentiability. Appropriate activation function can reduce
the computational amount and strengthen the ability of fitting the error fluctuations to the
output unit, thus achieving the purpose of learning features [25].

In this paper, we present the improved Cascade Correlation neural network model
based on the single objective group intelligent optimization algorithm jDE-B and the im-
proved Cascade Correlation neural network model based on the multi-objective group
intelligent optimization algorithm MOEA-T. Compared with the original Cascade Correla-
tion neural network model, their final training results all reduce the required number of
hidden units. Among them, the former focuses on reducing the total number of hidden
units, while the latter focuses on reducing the network depth.

The ultimate goal of this study is to improve the ability of the Cascade Correlation
neural network fitting problems, reduce the required number of hidden units and network
depth, optimize the network structure, and explore the performance of the group intelligent
optimization algorithm in the cascaded neural network model when combined with the
correlated neural network algorithm.

The rest of this paper is organized as follows: Section 2 introduces the algorithm
background required for the improvement of the Cascade Correlation neural network
model. Section 3 introduces the specific algorithm process of improving the Cascade
Correlation neural network model based on single objective group intelligent optimization
algorithm. Section 4 introduces the specific algorithm process of improving the Cascade
Correlation neural network model based on multi-objective group intelligent optimization
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algorithm. Section 5 is about the experimental results and analysis. Section 6 is the
conclusion section.

2. Algorithm Background
2.1. Cascade Correlation Learning Algorithm

As shown in Figure 1, the Cascade Correlation learning algorithm starts with a min-
imal network, then trains one by one and adds new hidden units to create a multi-layer
structured neural network. When a hidden unit is added to the network, it is connected
to all units except the output unit. The hidden unit trains weights based on the sum of
the absolute value of the correlation between the output of the new unit and the residual
signals of all the output units, and then is connected to the output unit. The trained hidden
unit is fixed to the network as a separate hidden layer, and its input weight is frozen. Then
the network continues to train and add hidden units.
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Compared with the existing algorithms, the Cascade Correlation architecture has
several features: It learns quickly, allowing the network to reach some depth in a short
training time. The network determines its size, and does not need to back-propagate the
error signal through the network. An important point for the training of the Cascade
Correlation learning algorithm is whether the added hidden unit can effectively fit the error
fluctuations of the current output unit, and thus effectively reduce the loss value in the
following training.

The researchers propose many improvement strategies for the Cascade Correlation
learning algorithms. For example, the researchers improve the learning process of the Cas-
cade Correlation learning algorithms by changing the connection of the hidden units [26].
The researchers reduce the redundant hidden units and connection weights by changing the
calculation method of the hidden unit connection weights which improve the convergence
of the network [27].

The Cascade Correlation neural network can be applied to practical problems. On
the problem of river staging and river flow prediction, the Cascade Correlation neural
network is able to predict the river stage and river flow more accurately [28]. Similarly, the
Cascade Correlation neural network shows the advantage of a high prediction rate and fast
training speed in the prediction of surface water quality parameters [29]. Some researchers
also applied the Cascade Correlation neural network to stock prediction, which alleviates
training slow and overfitting problems [30].
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2.2. jDE Algorithm

DE algorithms are suitable for handling real number optimization problems and have
been successfully applied to solve real-life problems [31–33]. The jDE algorithm is a single-
objective optimization algorithm that inherits the basic strategy of the DE algorithm, but
employs adaptive mechanisms [34] for two control parameters, namely the scaling factor F
and the crossover rate CR. Each individual has its own control parameter values, F and CR.
The new control parameters Fu and Fl are added to indicate the upper and lower bounds
of F; the control parameters CRu and CRl represent the upper and lower bounds of CR.

The jDE algorithm is based on a greedy strategy that changes the control parameters
of each member of the population during iterations. Each member has a certain probability
of changing its own control parameters during iterations, affecting the offspring generated
by the current iteration. If the child is superior to the parent, the control parameters that
the members change during this iteration are retained. Otherwise, the members will turn
back the control parameters in this iteration.

The jDE algorithm is characterized by fast convergence and high accuracy, but can
easily fall into local conditions.

2.3. MOEA/D Algorithm

The MOEA/D algorithm is a decomposition-based multi-objective optimization algo-
rithm that transforms multi-objective optimization problems into a series of single-objective
optimization sub-problems based on evenly distributed weight vectors [35–38]. The algo-
rithm generates the corresponding number of individuals based on the number of weight
vectors, with each individual corresponding to an optimized sub-problem. The algorithm
then divides the population into several adjacent subsets based on the distance between
the weight vectors. We then use the corresponding adjacent subset information of each
individual to evolve new individuals according to the optimization sub-problem.

If each evolved new individual is not dominated by the EP archive individual in the
algorithm, the new individual is added to the EP archive, and the individual in the EP
archive that is dominated by the new individual is removed. The final algorithm takes
individuals from the EP archive as the optimization result.

The MOEA / D algorithm has great advantages in maintaining the distribution of
solutions due to the evenly distributed weight vector, and the optimization by analyzing
the information of adjacent problems can avoid falling into local optima.

3. Improved Cascade Correlation Neural Network Model Based on Single Objective
Group Intelligence Optimization Algorithm
3.1. jDE-B Algorithm

The jDE algorithm is suitable for real number optimization and fast convergence speed,
but it is easy to fall into local conditions. To address the problem of existing optimization
algorithms, this paper develops an improved population-based algorithm called jDE-B. The
jDE-B algorithm adds the mechanism of self-inspection jumping out of the local area on the
basis of the jDE algorithm, which strengthens the global search ability of the algorithm to
some extent. In this paper, the improved Cascade Correlation neural network model based
on a single objective group intelligent optimization algorithm uses the jDE-B algorithm
to train the hidden unit link weights. The optimization target of the hidden unit in the
Cascade Correlation neural network generally has more local extreme values, and the
network training process requires a jDE-B algorithm with a fast convergence rate and
strong global search ability.

According to the Algorithm 1 idea, the detailed procedures of jDE-B are as follows:
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Algorithm 1. the detailed procedures of jDE-B.

Require: Initialize the population P = {x1, x2, . . . , xNP}, NP is the number of individuals
Require: Initialize the individual control parameters Fi = 0.5; CRi = 0.9; (i ∈ {1,NP})
1: while stopping criteria 1 is not met do
2: for each x ∈ P do
3: Change the individual control parameters with a certain probability
4: Execute the jDE mutation strategy
5: Execute the jDE crossover strategy
6: Execute the jDE selection strategy
7: end for
8: if (epoch%100 ==0) then:
9: Check population P
10: end if
11: end while

(1) stopping criteria 1: Current iterations exceed the maximum specified value
(2) Change the individual control parameters with a certain probability: The biggest

difference between the jDE and the DE algorithms is that there are two adaptive
control parameters, namely, the scaling factor F and the crossover rate CR. Each
individual has its own control parameter values, F and CR. New control parameters
Fl and Fu, indicate the upper and lower bounds of F. New control parameters CRl and
CRu, indicate the upper and lower bounds of CR.

Fi,g+1 =

{
Fl + rand1 × Fu, if rand2 < τ1

Fi,g, otherwise
(1)

CRi,g+1 =

{
CRl + rand3 ×CRu, if rand4 < τ4

CRi,g, otherwise
(2)

In the g + 1 iteration, the F and CR of each individual will have a certain probability
of change according to the above formula. After experiencing the variation and crossover
strategy of DE, new attempt individuals are generated. Then, the adaptation value of the
original individual and the attempted individual is evaluated. If the adaptation value of
the attempted individual is better, the adopted F and CR will be inherited.

(3) jDE mutation strategy: A mutant vector
→
v i,g+1 will be generated through the jDE

mutation strategy.
→
v i,g+1 =

→
x r1,g + Fi ◦ (

→
x r2,g −

→
x r3,g) (3)

→
v i,g+1 represents the i-th individual’s mutant vector Generated at the g-th iteration. r1,

r2, r3 will be randomly selected from the set {1, 2, . . . , NP}, and r1 6= r2 6= r3. The strategy
will randomly select three individuals from the population, the latter two individuals
perform the difference calculation, then multiply the first individual’s Fi, and finally add to
the first individual to produce a mutant vector.

(4) jDE crossover strategy: The i-th individual in the population crosses with the mutant
vector resulting from the previous operation.

ui,j,g+1 =

{
vi,j,g+1, if rand(0, 1) ≤ CRi or j = jrand

xi,j,g+1, otherwise
(4)

→
u i,g+1 is the individual generated by crossing the i-th individual and the corresponding

mutant vector in the g-th iteration. The CRi represents the crossover rate of the i-th
individual, which is used to control the extent of exchanging genetic variables. Each
individual has a corresponding jrand, and the jrand will be randomly selected from the
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set {1, 2, . . . NP} to ensure that each individual has at least one genetic variable swapped.
During the crossover process, if the randomly generated value rand (0, 1) is less than the
crossover rate or the index of the current variable is equal to the jrand corresponding to the
current individual, the exchange genetic variable operation is performed, otherwise the
original genetic variable is retained.

(5) jDE selection strategy: In the g-th iteration, the trial individuals are produced after
experiencing mutation and crossover. The i-th trial individual will be compared with
the i-th individual of the original population, and those with better adaptive value
will be retained. If the individual adaptation value is better, the Fi and CRi will be
inherited, otherwise it will fall back to the Fi and CRi of the previous generation

→
x i,g+1 =


→
u i,g+1, if f(

→
u i,g+1) ≤ f(

→
x i,g)

→
x i,g, otherwise

(5)

(6) Check population P: If the number of similarities between the best individual and
the population individual is more than or equal to 50% (the difference between the
best individual value and the population individual value that is less than or equal to
EPS = 1 × 10−16 is similar), the population will retain the best individual and other
individuals will be reinitialized.

3.2. Improved Cascade Correlation Learning Algorithm Based on the jDE-B Algorithm

At the stage of training the cascade correlated neural network, this algorithm adopts
the jDE-B single-objective optimization algorithm to optimize the weight and activation
function parameters according to the sum of the absolute value of the correlation between
the hidden unit and the residual signals of all the output units.

S = ∑
oi

|∑
p
(Vp −V)(Ep,oi − Eoi)| (6)

Vp is the output of the p-th sample in the hidden unit, V is the output average of
all samples in the hidden unit, Ep,oi is the error value between the true value of the p-th
sample and the output of the i-th output unit, Eoi is the error mean of the true values of all
samples against the output of the i-th output unit.

Compared with the traditional neural network optimization algorithm, the group
intelligent optimization algorithm has a greater probability to find the global optimal
solution when the number of optimization variables required in the early stage of the
Cascade Correlation neural network is small. Since Cascade Correlation neural networks
will fix their input weights after adding hidden units, good global solutions reduce the
required number of final hidden units and the final network size.

In addition, training the hidden unit based on the jDE-B algorithm does not require
gradient information, so the activation function can be improved according to the actual
requirements. As for the search space of the jDE-B algorithm, the larger the search range,
the stronger the optimal solution fitting ability. Howerver, this has an upper limit, and
the final result is inadequate to some extent. The smaller the search space, the weaker the
optimal solution fitting ability, and the final number of hidden units will increase. The
termination condition of the CCNN-jDE-B algorithm is that the current iterations are over
the maximum iterations or the network loss value is less than the default error.

The specific CCNN-jDE-B algorithm process is shown in Figure 2.
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4. Improved Cascade Correlation Neural Network Model Based on Multi-Objective
Group Intelligence Optimization Algorithm
4.1. Limitations Analysis of Single-Objective Optimization of Cascade Correlation Neural Network

As shown in Figure 3, set n as the total number of training samples, hp as the output
value of the hidden unit for the p-th training sample, oi,p as the output value of the i-th
output unit for the p-th training sample, Ep,oi as the error value between the true value of
the p-th sample and the output of the i-th output unit, H = {h1, h2, . . . , hn} as the set of
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hidden unit’s output value for all samples, ESoi =
{

E1,oi , E2,oi , . . . , En,oi

}
as the set of the

i-th output unit’s error value for all samples.
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In the traditional Cascade Correlation learning algorithm, the optimization goal of the
hidden unit is S (Equation (6)). The value of S is maximized when the output fluctuations
of the hidden unit coincide with the error fluctuations of the output unit.

The weight w acts to zoom in or out hp. If w is negative, hp can be reversed to change
from negative to positive correlation. The bias b acts as floating the mean, ultimately
maximizing the sum of absolute correlations between H and all ESoi , providing appropriate
eigenvalues for the training of the following network. Howerver, the volatility of H may
not necessarily be close to all ESoi at the same time.

Assuming that the output fluctuations of the newly added hidden unit h are consistent
with the output unit o1, in other words, the output value of each sample can be converted:

w1 ∗ hp + b1 = Ep,o1 (7)

Only if the remaining ESoi is in a proportion to ESoi (Ep,o1 = Ep,oi ∗ ki+vi), the newly
added hidden unit may provide fully appropriate feature values for the remaining
output units:

w1 ∗ hp + b1 = Ep,oi ∗ ki + vi (8)

Both sides except k:
w1
ki
∗ hp +

b1− vi

ki
= Ep,oi (9)

Appropriate values for and are as follows:

wi =
w1
ki

, bi =
b1− vi

ki
(10)

Obviously, this condition is not easy to achieve, and it is obvious that a hidden
unit as a separate hidden layer to the network is limited. Therefore, the optimization
targets of the hidden unit may be in conflict. Therefore, we present the improved Cascade
Correlation neural network model based on a multi-objective group intelligent optimization
algorithm. Each layer of the network consists of multiple hidden units, which improves the
fitting ability of the problem for each layer. The multi-objective optimization method also
alleviates the conflict among the hidden units.

4.2. MOEA-T Algorithm

We develop a modified multi-objective optimization algorithm named MOEA-T based
on the idea of a cooperative multi-objective evolutionary algorithm with a propulsive pop-
ulation [39]. Because the general multi-objective optimization algorithm does not perform
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well in the improved Cascade Correlation neural network model, the final exploration
depth is not enough. Therefore, MOEA-T first decomposes the multi-objective optimization
problem into several single-object optimization problems based on several edge weights
and optimizes them by using the jDE-B algorithm. After optimization, the optimal individ-
uals will cover the individuals corresponding to the edge weights in the multi-objective
optimization problem population. Then we implement a multi-objective optimization
strategy for this population to evolve. Since the final required solution is mainly near
the edge, and considering the time complexity problem, the EP archiving mechanism of
MOEA/D was removed. The MOEA-T algorithm can explore sufficient depth in a short
time, but with insufficient uniformity performance.

According to the Algorithm 2 idea, the specific steps of MOEA-T are as follows:

Algorithm 2. the specific steps of MOEA-T.

Require: Based on the number of optimized targets m, dividing the segmentation number H of
per dimension, generate the uniformly distributed weight vector w, and the neighbor set Bi for
each weight vector
Require: Generate m populations for edge search based on the edge weight vector,
Pt = {P 1, P2, . . . , Pm}
Require: Generate population Pm for multi-objective optimization, Pm = {x 1, x2, . . . , xNP}, each
individual corresponds to a weight vector. The ideal point Z is determined from the optimal value
under the different targets of the population.
1: for each P ∈ Pt do
2: Population P was optimized with the jDE-B algorithm
3: The best individual in P cover the corresponding individual in Pm
4: end for
5: while stopping criteria 2 is not met do
6: for each i ∈ 1, 2, . . . , NP do
7: Neighbor were selected for evolution operations
8: Update ideal point Z
9: Update the neighbor
10: end for
11: end while

(1) stopping criteria 2: Current iterations exceed the maximum specified value
(2) Neighbors were selected for evolution operations: Two neighbors were randomly

selected from the neighbor set Bi of the i-th individual to perform genetic manipulation
with neighbors, yielding new trial individuals y1, y2, y3. The aggregation value
(Equation (6)) is calculated according to the weight vector corresponding to the i-th
individual, and the best aggregation value in the attempted individual is selected and
compared with the original individual, and replaced if better.

gte(x|λi, z∗) = max
1≤k≤m

{
λi

k|fk(x)− z∗k|
}

(11)

(3) Update ideal point Z: The evolved new individuals are compared with the ideal point
Z under different optimization targets, and the ideal point Z is updated if there are
better target values.

(4) Update the neighbor: Traverse the neighbor set Bi and calculate the aggregate value
of the i-th individual as well as the aggregate value of the neighbors based on the
corresponding weight vector of each neighbor. If the aggregation value of the i-th
individual is better, the neighbors are replaced and updated.

During the MOEA-T algorithm, the optimization objective of each propulsive pop-
ulation is a sub-objective of the multi-objective optimization problem. The optimization
result is mainly affected by the corresponding weight vector. The multi-objective optimiza-
tion population starts to initialize after the evolution of the propulsive population, and
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the optimal individuals in the propulsive populations are retained. Most of the optimal
individuals in the population are the marginal solutions, which will affect the optimization
direction and convergence speed of the remaining individuals. The final evolution results
of the population in the MOEA-T algorithm may not be as uniformly distributed as in the
MOEA/D algorithm. However, the MOEA-T algorithm can provide high-quality edge
solutions in a relatively short time.

4.3. Improved Cascade Correlation Learning Algorithm Based on the MOEA-T Algorithm

Since a hidden unit has a limited ability to fit output unit error correlation fluctuations,
its optimization objective may conflict after being decomposed, this algorithm attempts to
fit the error fluctuations required by the output unit in the training process with multiple
hidden units. The network is no longer a hidden layer with only one hidden unit each time,
but a hidden layer composed of multiple hidden units.

This algorithm adopts the MOEA-T multi-objective optimization algorithm in the
stage of network training of hidden units. The number of optimization targets is generally
determined by the number of output units, and several output units can also be artificially
divided as one target. The optimization objective is to maximize Si, and thus to adjust the
weight of the hidden units.

Soi = |∑
p
(Vp −V)(Ep,oi − Eoi)| (12)

Si = ∑
j

Soj (13)

Vp is the output of the p-th sample in the hidden unit, V is the output average of
all samples in the hidden unit, Ep,oi is the error value between the true value of the p-th
sample and the output of the i-th output unit, Eoi is the error mean of the true values
of all samples against the output of the i-th output unit, Soi is the absolute value of the
correlation between the output of the hidden unit and the residual signal of the i-th output
unit. Si is the optimization target. When an output unit acts as an optimization target,
the optimization target is the absolute value of the correlation between the output of the
hidden unit and the residual signal of the single output unit. When multiple output units
are divided into one optimization target, the optimization target is the sum of the absolute
values of the correlation between the output of the hidden unit and the divided output unit
residual signal.

After the training of the MOEA-T algorithm, we select several solutions from the
population as new hidden units to build them into new hidden layers. Specifically, the
individuals corresponding to the edge weight were preferentially selected as the new
hidden unit. Add a new hidden layer to the network, fix its input weight, and then connect
to the output unit. Then we adjust the trainable weight with the traditional neural network
training method to reduce the loss value. The termination condition of the CCNN-MOEA-T
algorithm is that the current iterations are over the maximum iterations or the network loss
value is less than the default error.

The specific algorithm process is shown in Figure 4.
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5. Experimental Selection

The experiment was divided mainly into four parts. The first part verifies the effective-
ness of the optimization algorithm strategy on the structure optimization of the Cascade
Correlation neural network model. The second part verifies the effect of the multi-objective
strategy on the deep optimization of the Cascaded Correlation neural network. The third
part verifies the generality of the improved cascade correlation neural network algorithm
proposed in this paper. The fourth part will try to reconstruct and optimize the fully
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connected layer of the classical image classification neural network model by using the
improved Cascade Correlation learning algorithm.

5.1. Two Spirals Classification Problem

The two spirals classification problem is a common benchmark in the data classification
problem. As shown in Figure 5, there are two concentric spirals. The network should
judge which spiral a given point belongs to. Traditional Cascade Correlation neural
network models perform better than other general neural network models on this problem.
This experiment will compare the CCNN-jDE-B algorithm with the standard Cascade
Correlation learning algorithm and the CCNN-CSA-DE algorithm [16], which also adopts
the population intelligence optimization strategy. Each algorithm will run 100 times on
this problem, with the stop condition to correctly classify all samples of the problem. The
average results of each algorithm on the problem are eventually shown.In addition to the
above algorithms, the CCG-DLNN algorithm [2], the Sibling/Descendant CCNN algorithm,
which adopts the cascade of correlated neural network learning strategy, and the GP-DLNN
algorithm [1] is also selected.
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The experimental results in Table 1 show that the CCNN-jDE-B algorithm has faster
convergence compared with other algorithms, and the final network structure is better. The
CCNN-jDE-B algorithm is compared with traditional correlated neural network models,
which proves that population intelligence optimization algorithms have significant results
for training hidden units in Cascade Correlation neural network models, at the cost of
possibly increased training time. The comparison of the CCNN-jDE-B algorithm and
the CCNN-CSADE algorithm demonstrates the superiority of the jDE-B algorithm search
strategy. As can be seen from Figure 6, the CCNN-jDE-B algorithm performs best depending
on whether the jDE-B algorithm can better generate hidden units. The jDE-B algorithm has
stronger global search ability and stability.

Table 1. The simulation results of each algorithm on the two spirals classification problem.

CCNN-
jDE-B CCNN CCNN-

CSA-DE
CCG-

DLNN
GP-

DLNN
Sibling/Descendant

CCNN

Hidden Units 8.92 15.2 12.9 22 70 14.6
Hidden Layers 8.92 15.2 12.9 2 3 7.3

Accuracy 100% 100% 100% 99.5% 92.23% 100%
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classification problem.

5.2. Four Spirals Classification Problem
5.2.1. Experimental Content

The four spirals classification problem is an upgraded version of the two spirals
classification problem. As shown in Figure 7, there are four concentric spirals. The network
should judge which spiral a given point belongs to. This problem tests the superiority of
the multi-objective strategy and the optimization of the neural network model layer of
the Cascade Correlation neural network. This experiment will run the standard Cascade
Correlation learning algorithm, the CCNN-jDE-B algorithm and the CCNN-MOEA-T
algorithm with different parameters. Each algorithm will run 25 times on this problem,
each run with a stop condition for correctly classifying all samples of the problem. The final
display is the average result of each algorithm on the problem and the loss value decrease
diagram after the number of network layers increases.
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As can be seen from Table 2, the final number of layers required for the improved
multi-objective strategy is much lower on the four spirals problem than that based on
the single-objective strategy. This shows that the correlation fluctuations fitted by the
multi-objective strategy in each layer are better than those trained by a single hidden unit,
but at the cost of generally a greater number of hidden units than a single target.

Table 2. The simulation results of each algorithm on the four spirals classification problem.

Algorithm Hidden Units Hidden Layers Accuracy

CCNN 39.5 39.5 100%
CCNN-jDE-B 27.52 27.52 100%

CCNN-MOEA-T

m = 4 36.8 9.2 100%
m = 8 62.72 7.84 100%

m = 12 92.16 7.68 100%
m = 16 122.24 7.64 100%

Sibling/Descendant
CCNN

λ = 1.0 39.2 28.2 100%
λ = 0.95 43.3 23.8 100%
λ = 0.9 39.9 21.2 100%
λ = 0.8 40.9 14.2 100%

As can be seen from Figure 8, when comparing the multi-objective strategy, the more
the number of hidden units is added in each layer, the faster the loss value of each layer
of the network decreases. However, as the number of hidden units increases each time,
this speed reaches an upper limit. That is to say, there is an upper limit on the correlation
fluctuations simulated by each layer of the strategy, which cannot be fully fitted within
one layer.
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5.2.2. Comparison of Single-Object Optimization and Multi-Objective Optimization of
Hidden Unit in Cascaded Correlation Neural Networks

When the network is in a certain training state, the errors required for different output
units are different or even opposite. It is clearly insufficient to fit multiple output unit
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error fluctuations by only one hidden unit. The multiple hidden units trained based on
the MOEAD-T algorithm have different weights than the output units. The ability of these
hidden units to combine into a hidden layer will be better than a hidden layer composed of
only one hidden unit.

The training process of the cascading correlated neural network in solving the four-
spiral classification problem is taken as an example. As shown in Figure 9, this is the error
fluctuation of the four output units when the Cascade Correlation neural network tries to
add the first hidden layer. P is the p-th sample, Ep,o1 is the error value of the p-th sample in
the first output unit, Ep,o2 is the error value of the p-th sample in the second output unit,
Ep,o3 is the error value of the p-th sample in the third output unit, Ep,o4 is the error value of
the p-th sample in the fourth output unit.
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Figure 9. The error fluctuations of output units during training.

When the jDE-B algorithm is adopted as the single-objective optimization method
to fit the error fluctuations required for the above output units, the results are shown in
Figure 10. P is the p-th sample, and S is the output value of the p-th sample in the hidden
unit. The sum of the absolute values of the correlation between the output of the hidden
unit and the residual signals of all the output units is S ≈ 65.72, and others So1 ≈ 30.92,
So2 ≈ 10.03, So3 ≈ 22.83, So4 ≈ 1.94.
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When the MOEA-T algorithm is adopted as a multi-objective optimization method
to fit the error fluctuations required by the above output units, the optimization target
number is four, each output unit is divided into an independent optimization target, and
finally four hidden units are added to a hidden layer. The results are shown in Figure 11,
h1,p is the p-th sample, P is the output value of the p-th sample in the first hidden unit, h2,p
is the output value of the p-th sample in the second hidden unit, h3,p is the output value
of the p-th sample in the third hidden unit, h4,p is the output value of the p-th sample in
the fourth hidden unit. During the first hidden unit, S ≈ 47.70, So1 ≈ 3.51, So2 ≈ 13.90,
So3 ≈ 9.95, So4 ≈ 20.34. During the second hidden unit, S ≈ 61.06, So1 ≈ 25.06, So2 ≈ 5.11,
So4 ≈ 2.37, So4 ≈ 5.46. During the third hidden unit, S ≈ 59.42, So1 ≈ 25.67, So2 ≈ 18.01,
So3 ≈ 11.70, So4 ≈ 4.04. During the fourth hidden unit, S ≈ 64.67, So1 ≈ 32.33, So2 ≈ 12.25,
So3 ≈ 17.72, So4 ≈ 2.37.
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The best value for the four optimization targets in all hidden units is So1 ≈ 32.33,
So2 ≈ 18.01, So3 ≈ 25.42, So4 ≈ 20.34. Simply connecting the hidden unit that con-
tributes the most to the output unit to the output unit is also far more than a single target,
S = So1 + So2 + So3 + So4 = 96.1 > 65.72.

Moreover, the hidden unit will adjust the weight according to the traditional neural
network optimization method, and make an appropriate contribution to the error reduction
of other output units. It can be seen that the hidden layer added by the multi-objective
optimization scheme can better fit the error fluctuation of the output unit and it can
effectively reduce the loss value of the network.

5.3. The UCI Database Experiments

Experiments in this section will verify the generality of the CCNN-jDE-B algorithm
and the CCNN-MOEA-T algorithm. The datasets used in the experiment are obtained
from the UCI database. Five classical datasets were selected in this experiment, namely,
Wine, Seeds, Balance Scale, Iris and Soybean. The datasets of Wine, record the chemical
composition analysis of some wines in the same region of Italy. The analysis of each
bottle shows they contain 13 ingredients, and these data can be divided into three wines.
The datasets of Seeds, with the information characteristics of seven wheat seeds, can be
classified into three wheat seeds. The datasets of the Balance Scale, with four kinds of Libra
placement information, respectively, the distance and weight of the left and right end, can
be divided into three kinds of placement results. The datasets of Iris, with the informative
characteristics of four iris species, can be divided into three species of iris. The datasets of
Soybean, with 35 kinds of soybean growth information characteristics, can be classified
into four kinds of diseased soybeans. Relevant information for each dataset is shown in
the Table 3. The experiment will perform ten cross-validations of each dataset using the
CCNN-jDE-B algorithm. The classification accuracy was used as the main evaluation index.

Table 3. Data and Characteristics.

Dataset Sample Size Characteristics Number Classification Number

Wine 178 13 3
Seeds 210 7 3

Balance Scale 625 4 3
Iris 150 4 3

Soybean 47 35 4

The results of each algorithm in this experiment are shown in the Tables 4 and 5.

Table 4. The simulation results of the CCNN-jDE-B algorithm.

Dataset Maximum
Accuracy

Minimum
Accuracy Average Accuracy Average Number

of Hidden Units
Average Number
of Hidden Layers

Wine 100% 98.31% 99.37% 1 1
Seeds 98.57% 93.33% 95.90% 4.9 4.9

Balance Scale 98.40% 95.84% 97.12% 8.08 8.08
Iris 100% 98.66% 99.95% 1 1

Soybean 100% 93.61% 99.23% 4.24 4.24

It can be seen from the experimental results in Figures 12 and 13. The CCNN-jDE-B
algorithm performs well on each datasets, and can build a better network m‘odel with high
accuracy. The CCNN-MOEA-T algorithm also performs well on each datasets, and can
build a shallow network model with high accuracy. However, when the number of training
samples is insufficient, the training of the network tends to cause overfitting. It performs
very well on the training set and performs relatively poorly on the test set. This is also
the reason why the CCNN-jDE-B algorithm and the CCNN-MOEA-T algorithm performs
differently on some datasets.
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Table 5. The simulation results of the CCNN-MOEA-T algorithm.

Dataset Maximum
Accuracy

Minimum
Accuracy Average Accuracy Average Number

of Hidden Units
Average Number
of Hidden Layers

Wine 100% 97.75% 99.29% 3 1
Seeds 99.52% 95.23% 97.22% 3.42 1.14

Balance Scale 96.80% 93.92% 95.31% 17.16 5.72
Iris 100% 98.00% 99.74% 3.42 1.14

Soybean 100% 93.61% 98.12% 10.96 2.74
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5.4. The CIFAR-10 Classification Problem

The CIFAR-10 dataset is divided into 10 species, each with 6000 images, and includes
a total of 60,000 32 × 32 color images. Among them, the datasets were divided into 50,000
training images and 10,000 test images. In this experiment, the LeNet-5 [40] network
and the AlexNet [41] network are pretrained. Then the connection layer is removed and
the convolutional layer is extracted as the input unit of the Cascade Correlation neural
network. Finally, the Cascade Correlation learning algorithm is used to construct a new
connection layer. The experiment will compare the results of the fully connected layer by
using different Cascade Correlation learning algorithms.

From the experimental results of the LeNet-5 network pretraining and reconstruction
in Table 6, we show that the LeNet-5 network model is limited by the network size and
has only achieved about 60% accuracy on the CIFAR-10 datasets. Image features of the
CIFAR-10 datasets are relatively complex. The training data are relatively insufficient.
The convolutional layer of the LeNet-5 network has a limited ability to extract picture
features. The convolutional layer is used to extract the picture features, and then the
Cascade Correlation learning algorithm is used to construct the connection layer. As can be
seen from Table 6, the constructed network structure is smaller than the original network
structure, but the accuracy is difficult to improve. As can be seen from Figure 14, the
loss value of each algorithm decreases at a different speed when the extracted features
are limited.

Table 6. The simulation results of the LeNet-5 pre-training and reconstruction on the CIFAR-10
classification.

LeNet-5 CCNN CCNN-jDE-B CCNN-MOEA-T

Number of hidden units in
the connection layer 204 40 15 70

Number of connected layers 2 40 15 7
Training set accuracy 60.3% 60.7% 60.9% 60.8%

Test set accuracy 58.1% 57.1% 57.8% 56.7%
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The experimental results of the AlexNet network pre-training and reconstruction in
Table 7 show that the network model is too large and overfitted on the training set of the
CIFAR-10 datasets. The image features of the CIFAR-10 datasets are more complex, while
the training data is relatively insufficient. Although the accuracy of the training set can
continue to improve with continued training, the accuracy of the test set will not. Therefore,
this experiment adopts the network model that achieves the highest accuracy in the test set
in the training process. The convolutional layer is used to extract the picture features, and
then the Cascade Correlation learning algorithm is used to construct the connection layer.
Finally, the constructed network structure is smaller than the original network structure,
but the accuracy is difficult to improve. As can be seen from Figure 15, the loss value of
each algorithm decreases at the same speed when the extracted features are sufficient.

Table 7. The simulation results of the AlexNet pre-training and reconstruction on the CIFAR-10
classification.

AlexNet CCNN CCNN-jDE-B CCNN-MOEA-T

Number of hidden units in
the connection layer 12,288 21 9 20

Number of connected layers 3 21 9 2
Training set accuracy 93.2% 99.9% 99.9% 99.7%

Test set accuracy 78.8% 77.4% 77.9% 76.7%
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Since the AlexNet network is prone to overfitting on the CIFAR-10 dataset, the fol-
lowing experiments adopt data augmentation methods. The training set pictures will
be randomly changed to enhance the image features. According to the training results,
although the overfitting phenomenon still appeared, the test set accuracy improved. This
experiment adopts the model that achieves the highest accuracy in the training set. The
convolutional layer is used to extract the picture features, and then the Cascade Correlation
learning algorithm is used to construct the connection layer. As can be seen from Table 8, the
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number of hidden units constructed in the current experiment is greatly reduced compared
with the previous experimental model.

Table 8. The simulation results of the AlexNet pre-training and reconstruction on the CIFAR-10
classification under data augmentation.

AlexNet CCNN CCNN-jDE-B CCNN-MOEA-T10

Number of hidden units in
the connection layer 12,288 5 2 10

Number of connected layers 3 5 2 1
Training set accuracy 100% 100% 100% 100%

Test set accuracy 85.6% 82.6% 83.1% 81.2%

6. Conclusions

In this paper, we propose the single-objective optimization algorithm jDE-B and the
multi-objective optimization algorithm MOEA-T, and improve the network expansion
mode in the learning process of the Cascade Correlation neural network. The improved
Cascade Correlation learning algorithm based on the jDE-B algorithm finds the global
optimal solution with greater probability in the hidden unit training stage. Since the
Cascade Correlation neural networks will fix their input weights after adding hidden units,
good global solutions reduce the number of hidden units, reducing the final network size.
The modified Cascade Correlation learning algorithm based on the MOEA-T algorithm
uses multiple hidden units to fit the error fluctuations required for the output units during
training. The network is no longer a hidden layer with only one hidden unit each time, but
a hidden layer composed of multiple hidden units. Compared with the single-objective
optimization scheme, it can better fit the error fluctuations of the output units, effectively
reduce the loss value of the network, and reduce the final network depth. Furthermore,
the shortcomings of single-objective schemes are analyzed through comparison with multi-
objective schemes and validated by experiments. Finally, our future research may be to
refer to other effective strategies to improve the Cascade Correlation neural network for
solving decision-making problems.
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