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Abstract: Market segmentation is one of the key marketing activities to target the potential market
for a product, which allows the firm to have a better understanding of their customers. This paper
considers an optimal control problem to determine the dynamic price and advertising policies of a
new product introduction in a segment-specific market incorporating advertising-based goodwill.
Under differentiated advertising and single-channel advertising, advertising efforts increase the stock
of goodwill in each segment. Single-channel advertising starts in all segments with a fixed segment
spectrum, while the differentiated advertising process deals with each segment independently. The
explicit optimal dynamic advertising effort and price strategies are obtained by applying Pontryagin’s
maximum principle, and local stability of equilibria have also been examined. The effectiveness of
the proposed method is validated through numerical examples, and a local sensitivity analysis is
performed to find the sensitive parameters that can affect the optimal values of price and advertising
effort rates.

Keywords: optimal control problem; maximum-principle; stability; local sensitivity; goodwill;
market-segmentation; advertising
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1. Introduction

The early stages of market penetration are important to a product’s future dissemi-
nation; therefore, introducing a new product into the market carries a significant degree
of risk for the company. Many marketing efforts are focused on advertising methods that
aid in the introduction of new products and have a positive effect on the diffusion curve.
When launching a new product to the market, a company must identify the specific market
segments that are more likely to acquire the product. They may differ in their needs,
resources, locations, and buying attitudes. Customers in today’s international marketplaces
are multicultural, with a wide range of tastes, needs, and desires. Despite the significant
efforts put forth in creativity and advertising planning, meeting the demands of each client
by treating them equally remains incredibly difficult and unpredictable. As a result, firms
need to achieve this aim by dividing a particular market into distinct groups, and marketing
strategies are designed accordingly. This necessitates the segmentation of markets into
several market segments made up of clients with identical demand characteristics.

Market segmentation [1] is the process of partitioning the whole market into distinct
consumer subgroups that behave in similar ways or have similar product needs. Market
segmentation can be done in many ways using different segmentation variables to find the
best way to view the market structure. The major variables—such as geographic (countries,
nations, regions, cities, states, and neighborhoods), demographic (gender, age, income,
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education, family size, and occupation), psychographic (personality, social class, life style,
and value), and behavioral (user states, usage rate, purchase occasion, and attitude towards
product)—are some useful segmentation characteristics or attributes. If each consumer
segment is fairly homogenous in its unique requirement, it is likely to respond similarly to
a given marketing strategy and assist firms in better understanding and satisfying their
customers. After market segmentation, firms identify various segments and develop a
marketing mix strategy for each segment. Simultaneously, business establishments follow
mass market advertising strategies that reach diverse segments with a fixed spectrum, as
well as segment-specific advertising strategies.

It is a well-known fact that market segmentation is an integral part of marketing theory
and practice, as well as a vital aspect of a company’s success in the current era. It has a
huge impact on customer demand and reminds us of the importance of using a variety
of advertising media channels to target consumers with varying media preferences [2].
Even though many researchers [1–6] have emphasized the need of market segmentation in
marketing literature, only a few mathematical models in advertising-based goodwill deal
with market segmentation [7–11]. Little and Lodish [7] investigated the stochastic model
in a segmented market that included the concept of multiple media selection in a discrete
time horizon. Seidmann et al. [8] addressed interfaces between sales and advertising
dynamics in a distributed sales-advertising model, where the system constitutes population
distribution over a parameter space. With Nerlove and Arrow’s [12] linear goodwill
dynamics, Buratto et al. [9,11] incorporate some market segmentation ideas into advertising
models when addressing the introduction of a new product and an advertising channel
selection problem in a segmented market.

Jha et al. [13] explored the optimal advertising effectiveness rate in a segmented market
by incorporating market segmentation into a diffusion model that considered advertising
for a product. Favaretto and Viscolani [10] explored an optimal control model relying on
advertising and production for a seasonal product using Nerlove–Arrow’s linear goodwill
dynamics in a segmented market. Mehta et al. [14] used an innovation diffusion model
to determine the optimal promotion efforts to make when a new product is launched in a
segmented market with changing market size. The authors assumed that the market size
was dynamic, as well as that the market was segmented. Ma and Jiang [15] proposed an
advertising model in which they have investigated a single-parameter sales promotion
strategy, and they analyzed the stability of their proposed model. Chaudhary et al. [16]
have addressed the optimal control problem to determine the optimal promotional policies
of a diffusion model in a segmented market and to analyze the stability of their model
under the assumption that the new product’s additional demand improves the brand image
of the firm in the form of goodwill.

In the marketing literature dealing with goodwill formulation, models based on the
Nerlove–Arrow model’s dynamics are extremely common. In line with the researchers [9–12,17]
in marketing literature involving advertising goodwill accumulation in a segmented envi-
ronment, our advertising-based goodwill model also relies on the framework of Nerlove–
Arrow’s model. Firms advertise their products in both national and local regional languages
in order to reach a vast customer base, especially in culturally diverse countries, where
each region is influenced by a defined spectrum of national language. We widen the scope
of goodwill formulation in this work by considering a differentiated and a single-channel
advertising strategy simultaneously in a segmented market, with the objective of maxi-
mizing its profit. Price and advertising-based goodwill are expected to drive the sales rate
function. We investigate a linear sales rate function that drops in price, while increasing
in goodwill stock. We have assumed that the firm/company has defined its target market
as a segmented market and has decided to create distinct and single-channel advertising
campaigns for each segment at the same time in order to maximize profits. The optimal
dynamic price and advertising policies are developed using an optimal control theory
technique. Vast literature [18–24] exists in marketing on dynamic advertising and pricing
policies for sales and advertising models using an optimal control theoretic approach.
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The aim of this study is to examine the impact of advertising-based goodwill on the
sales of a new product and fill the gap by determining the differentiated and single-channel
advertising strategies in a segmented market. This paper provides an optimal advertising
policy, which advocates for firms to begin with a heavy advertising effort in order to
give momentum to the goodwill evolution process. The differentiated and single-channel
advertising efforts are gradually diminished, and perhaps no advertising efforts should be
utilized at a terminal interval of time. This outcome is caused by word-of-mouth impact;
advertising efforts are used to build an initial stock of goodwill for the product, but as the
word-of-mouth increases, advertising efforts decrease.

The rest of the paper is structured as follows. In Section 2, a mathematical optimal
control model is developed for the evolution of advertising-based goodwill and formulated
as an optimum control problem under the premise that differentiated and single-channel
advertising processes occur simultaneously. Applying Pontryagin’s maximum principle
in Section 3 yields the dynamic advertising and pricing plan for each segment. Section 4
contains numerical examples and a local sensitivity analysis. The paper concludes in
Section 5.

2. Model Formulation

We consider a monopolist firm that needs to define its targeted and defined market
in a segmented population of consumers and plan the differentiated and single-channel
advertising strategies simultaneously, with the objective to maximize its total profit. We
assume that advertising begins simultaneously, and there are enough products to meet
the demand in each segment. The differentiated advertising process can reach each seg-
ment selectively, and the single-channel advertising process has an effectiveness segment
spectrum that is distributed over the set of segments (that reaches with a fixed spectrum in
each segment). Here, we assume that the whole market is divided into N market segments,
N is a discrete variable, and each segment is specified by the geographic segmentation
attributes (countries, nations, regions, cities, states, etc.) as discussed by Kotler [1]. Let
[0, T] be the planning period of the differentiated and single-channel advertising efforts
for the new product introduction. Let yi(t) be the stock of the product’s goodwill level
at time t ∈ [0, T] for the ith segment, and wi(t) and w(t) are the differentiated and single-
channel advertising effectiveness effort rates at time t that influence the goodwill of the
product. We use Nerlove and Arrow’s [11] definition of “goodwill” to describe a variable
that sums the effects of current and previous advertising or promotions on sales and, as
a result, its current and future net revenues. While goodwill deteriorates naturally, it can
be increased through advertising efforts. Under the combined effects of differentiated and
single-channel advertising, the evolution of goodwill can be expressed as:

dyi(t)
dt

= (wi(t) + αiw(t))− δi yi(t), yi(0) = yi0 i = 1, 2, . . . , N (1)

Single-channel advertising’s segment-effectiveness varies depending on the market
segment, and different market segments require different levels of advertising effort rate.
Here αi > 0; ∑i αi = 1, ∀i = 1 . . . N, is the single channel’s spectrum; δi > 0 represents the
rate of goodwill depreciation for the ith segment; the left-hand side of Equation (1) shows
the change in goodwill. The first term describes the level of goodwill increase due to joint
advertising efforts using differentiated and single-channel advertising, while the second
term shows that it depreciates over time at rate δi due to consumers drifting away to other
brands, new brands, etc.

To formulate an optimal control model for a monopolistic firm, suppose that the sales
rate depends on the price pi(t) and the stock of goodwill yi(t), so that the sales rate function
for the ith segment presented in Pan and Li [25] is adopted as:

dsi
dt

= ai − a1i pi(t) + a2iyi(t) (2)
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where ai > 0 represents the initial market size (market potential), and a1i > 0 and a2i > 0
represent the customer pricing and goodwill sensitivity for the ith segment, respectively.
Equation (2) states that the sales rate will be positive for given values of ai, a1i, and a2i if
the combined impact of the market potential and goodwill, ai + a2iyi(t), is greater than the
impact of the price, a1i pi(t). The sales rates decrease with the price but increase with the
goodwill of the product. Let ci(t) be the per unit sales production cost, and for simplicity,
ci(t) = ci is a constant for each segment. The amount of money spent on differentiated
and single-channel advertising determines how well the company meets its sales or profit
goals. As a result, we can express the optimal control policy of identifying the optimal
differentiated and single-channel advertising effort rates (wi(t), w(t)) for the new product
as follows:

Max J =
∫ T

0
e−rt

(
∑N

i=1

[
(pi(t)− ci)

.
si(t)− φi(wi(t))

]
− ϕ(w(t))

)
dt (3)

subjected to state Equation (1), where φi(wi(t)) denotes the cost of differentiated advertising,
ϕ(w(t)) the cost of single-channel advertising, and r the rate of profit discounting.

The differentiated and single-channel advertising efforts are expensive, and we as-
sume that both advertising effort cost functions are quadratic, φi(wi) = ki

2 w2
i (t) and

ϕ(w(t)) = k
2 w2(t), where κi > 0 and κ > 0 are constants and denote the magnitude of

the advertising effort rates per unit of time towards the ith segment and single-channel
advertising, respectively. This is a very common assumption in the literature, as discussed
in Teng and Thompson [20], Ouardighi and Pasin [26], and Chaudhary et al. [16], where
the advertising cost is quadratic. Combining the objective function Equation (3), state
Equation (1), and sales rate function (2), the optimization problem can be defined as an
optimal control problem:

Max J =
∫ T

0 e−rt
(

∑N
i=1

[
(pi(t)− ci)

.
si(t)− ki

2 w2
i (t)

]
− k

2 w2(t)
)

dt
dyi(t)

dt = (wi(t) + αiw(t))− δiyi(t), yi(0) = yi0 i = 1, 2, . . . , N

}
(4)

In the model described by expression (4), the control variables are advertising ef-
fort rates wi(t), w(t), and price pi(t), and stock of goodwill for each segment yi(t) are
state variables.

3. Optimal Policy and Local Stability Analysis

First, we use the maximum principle in its current value formulation to determine the
optimal policies for pricing and advertising. Then, we derive the local stability analysis of
the state–costate phase plane.

3.1. Optimal Dynamic Strategy for Finite Time Horizon

To obtain the dynamic advertising and pricing strategy, we solve Equation (4), which
is the optimal control problem, using Pontryagin’s maximum principle as stated in Sethi
and Thompson [19]. The Hamiltonian function is defined as:

H(yi, wi, w, pi, λi) = ∑N
i=1

[
(pi − ci) (ai − a1i pi + a2iyi)−

ki
2

w2
i

]
− k

2
w2 + ∑N

i=1 λi(wi + αiw− δiyi) (5)

where λi represent the adjoint variables. The instantaneous profit rate is represented
by the Hamiltonian function in Equation (5), that is the sum of two parts. First part,

∑N
i=1

[
(pi − ci) (ai − a1i pi + a2iyi)− ki

2 w2
i

]
, represents current profit and second part,

∑N
i=1 λi(wi + αiw− δiyi), which consists of adjoint variables, represents future profit. We

are primarily interested in the shape of optimal solutions in the interior of control. If
w∗i (t) > 0, w∗(t) > 0 and p∗i (t) exist and are optimal solutions to Equation (4), the Maxi-
mum Principle defined by Sethi and Thompson [19] and Seierstad and Sydsaeter [27] pro-
vides the required optimality conditions. For w∗i (t), w∗(t), p∗i (t) with the corresponding
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optimal state trajectory y∗i (t), there exist continuous and piecewise continuously differen-
tiable functions λi(t) for all tε[0, T], such that:

∂H
∂w∗i

= 0 ∀ i ε N,
∂H
∂w∗

= 0,
∂H
∂p∗i

= 0 ∀ i ε N (6)

The terminal conditions of the state variables yi(T) are not restricted. The adjoint
variables λi satisfy the following differential equation:

d
dt

λi = rλi −
∂H
∂yi

, ∀ i ε N (7)

with the transversality conditions λi(T) = 0.
Since ki, k, and a1i are parameters, and all are positive constant, for the optimal control

problem (4), the following sufficient conditions hold:

∂2H
∂w2

i
= −ki < 0,

∂2H
∂w2 = −k < 0,

∂2H
∂p2

i
= −2a1i < 0 (8)

∂2H
∂w2

i

∂2H
∂w2 −

(
∂2H
∂wwi

)2

> 0 (9)

∂2H
∂w2

i

∂2H
∂p2

i
−
(

∂2H
∂wi pi

)2

> 0 (10)

∂2H
∂p2

i

∂2H
∂w2 −

(
∂2H
∂wpi

)2

> 0 (11)

Hence, the Hamiltonian is a concave function in wi, pi, and w for each of the segments,
and the maximization yield is a unique control variable.

Solving differential Equation (7) for the adjoint variable, we have (See Appendix A):

λi(t) =
a2i ci

(ηi − 1) (r + δi)

(
1− e−(r+δi)(T−t)

)
(12)

The adjoint variables λi(t) represent the marginal value (shadow price) of the goodwill
level yi(t) and determine the shadow price of an additional unit of the goodwill along the
optimal trajectory. According to the optimality conditions in (6), as discussed in Seierstad
and Sydsaeter [27], one can obtain the optimal advertising efforts rate w∗i (t), w(t), and
price strategy p∗i (t) as (See Appendix A):

w∗i =
a2i ci

ki (ηi − 1) (r + δi)

(
1− e−(r+δi)(T−t)

)
(13)

w∗(t) =
1
k

(
N

∑
i=1

[
αi a2i ci

(ηi − 1) (r + δi)

(
1− e−(r+δi)(T−t)

)])
(14)

p∗i =
ci ηi

(ηi − 1)
(15)

where ηi = −
∂

.
si

∂pi.
si
pi

is the demand elasticity with respect to price. The results of Equation (15)

are generalisations of the myopically optimal price rule for a monopolist, as used in the
price literature [28]; ηi > 1. The optimal pricing policy p∗i is the usual price formula for
the monopolist. From the above expressions (13) and (14), we see that the optimal value
of advertising efforts decreases over time interval [0, T]. We perceive that the advertising
effort for all the segments decreases as time passes by. Moreover, near the end of the
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planning period, it is optimal to advertise at low levels. This result is due to the goodwill
effect of the product; advertising efforts are used to enhance and generate the goodwill, but
as the goodwill of the product gains impulsion, the advertising need is less near the end of
the planning period, T.

For the optimal control policy, the optimal goodwill trajectory using optimal values of
the differentiated advertising effort rates w∗i (t) and the single-channel advertising effort
w∗i (t) rate from Equations (13) and (14) for each segment are given by:

y∗i (t) = yi0 e−δit +
∫ t

0
(w∗i (t) + αi w∗(t))e−δi(t−τ)dτ ∀i (16)

If yi(0) = 0, then the following result is obtained:

yi
∗(t) =

∫ t

0
(w∗i (t) + αi w∗(t))e−δi(t−τ)dτ ∀i (17)

3.2. Optimal Dynamic Strategy for Infinite Time Horizon

For infinite horizon problems, the objective functional is given by

Max J =
∫ ∞

0
e−rt

(
∑N

i=1

[
(pi(t)− ci)

.
si(t)−

ki
2

w2
i (t)

]
− k

2
w2(t)

)
dt (18)

The function f (wi.w, pi, yi) =
(

∑N
i=1

[
(pi(t)− ci) (ai − a1i pi(t) + a2iyi(t))− ki

2 w2
i (t)

]
−

k
2 w2(t)) is regarded as being bounded for any solution to Equation (1). Then, the integral
in Equation (18) converges for all admissible pairs. The infinite horizon problem discussed
in Equations (1) and (2), along with objective function, which is defined by Equation (18),
provide the optimal solution of the given system. The Pontryagin Maximum Principle’s
optimality conditions for finite-horizon, apart from the transversality condition, carry over
to the infinite-horizon problem by taking the limit for T → ∞ [27]. With the current-value
adjoint variable, the Hamiltonian function given in Equation (5) satisfies the first order
differential equation for each segment:

d
dt

λi = rλi −
∂H
∂yi

, ∀ i ε N (19)

and the condition of transversality:

lim
T→∞

e−rTλi(T) = 0 (20)

Equation (19) represents the equilibrium relation for goodwill investment. It states that
the marginal opportunity cost λi(ρi + δi)dt of investment in goodwill should be equal to
the marginal profit (pi − ci)a2i from the increased goodwill and the capital gain

.
λi [11]. We

use
.

yi = 0,
.

λi = 0, Hwi = 0, and Hw = 0 to obtain the optimal long-run equilibrium [19]
or turnpike

(
yi, wi, w, λi

)
of the Hamiltonian system and equilibrium control. We have:

λi =
cia2i

(ηi − 1)( r + δ _)
(21)

wi =
1
ki

cia2i
(ηi − 1)(r + δ)

(22)

w =
1
k

N

∑
i=1

αi cia2i
(ηi − 1)(r + δ)

(23)

yi =
1
δi

(
1
ki

cia2i
(ηi − 1)(r + δ)

+
αi
k

N

∑
i=1

αi cia2i
(ηi − 1)(r + δ)

)
(24)
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The property of yi indicates that the optimal policy is to go to yi as quickly as possible.
For yi(0) > yi, the optimal control is w∗i (t) = 0, w∗(t) = 0, untill the stock of goodwill
has depreciated to yi, at which time the control switches to wi = 1

ki

cia2i
(ηi−1)(r+δ)

, w =
1
k ∑N

i=1
αi cia2i

(ηi−1)(r+δ)
and remains at this level to maintain the level of goodwill yi, i.e., the

optimal policy is to be advertised at a low rate initially and gradually increase advertising to
the turnpike level wi, w. For yi(0) < yi, it is optimal to jump to yi immediately by using the
appropriate impluse at time t = 0 and then set wi =

1
ki

cia2i
(ηi−1)(r+δ)

, w = 1
k ∑N

i=1
αi cia2i

(ηi−1)(r+δ)

for t > 0, i.e., the optimal policy is to advertise most heavily initially and gradually decease
advertising to the turnpike level wi, w as yi approaches yi. Figure 1 depicts the graph of
the optimal policy for two initial conditions.
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Figure 1. Optimal advertising effort policy for two initial conditions.

3.3. Local Stability Analysis in the State–Costate-Phase Plane

An equilibrium for a state–costate system defined by
.
y(t) =

.
λi(t) = 0 plays an

important role in the determination of the optimal policy. In this section, we discuss the
local stability analysis of the nontrivial equilibrium point E∗

(
y∗i , λ∗i

)
to show how small

changes in sales and goodwill values affect the local profit and stabilization. Now, we turn
to determining the optimal trajectories in the (yi, λi)-phase diagram. By using condition
(6), we obtain the following system of differential equations:

dyi
dt

=

(
1
ki

λi(t) +
αi
k

N

∑
i=1

αiλi(t)

)
− δiyi(t) (25)

dλi
dt

= (r + δi)λi −
Cia2i
ηi − 1

(26)

The Jacobian matrix of system Equations (25) and (26) can be determined as:

∂
.

yi
∂yi

= −δi < 0,
∂

.
yi

∂λi
=

(
1
ki

+
α2

i
k

)
> 0,

∂
.

λi
∂yi

= 0,
∂

.
λi

∂λi
= (r + δi) > 0 (27)

Hence, the determinant of the Jacobian ∂
.

yi
∂yi

∂
.

λi
∂λi
− ∂

.
yi

∂λi

∂
.

λi
∂yi

< 0, therefore, the equilibrium
point

(
y∞

i , λ∞
i
)

is a saddle point, where λ∞
i = cia2i

(ηi−1)( r+δ _) and

y∞
i =

1
δi

(
1
ki

cia2i
(ηi − 1)(r + δ)

+
αi
k

N

∑
i=1

αi cia2i
(ηi − 1)(r + δ)

)
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Since no diagonal entries change signs in the Jacobian matrix, and the Jacobian does
not vanish, according to Gale and Nikaido [29], the equilibrium point is unique. If the
goodwill of the product yi is already high, then the shadow price λi is comparatively low,
whereas in the case of a low level of goodwill, an additional unit of goodwill is worth much
more. As time tends to infinity, both the goodwill yi and the shadow price λi approach their
equilibrium values. The shadow price is a monotonically decreasing function over the finite
planning period and does not depend on the stock of product goodwill (Huang et al. [23]).

The model is solved numerically in the next section with the help of an example, and
a local sensitivity analysis is performed to see how the parameters and coefficient affect the
optimal pricing and advertising effort values.

4. Numerical Illustration and Sensitivity Analysis
4.1. Numerical Illustrations

To illustrate the solution procedure and theoretical results, numerical examples and a
sensitivity analysis are presented. Furthermore, key parameters’ sensitivity is analyzed.
Firms advertised their products or services in national, as well as regional, languages
to make people aware and influence maximum customers in multicultural and diverse
countries, where the national language influences all regions within a fixed spectrum. We
suppose that the time horizon is divided into 10 equal time periods. We have assumed the
number of market segments are 3 (i.e., N = 3), the discount rate r = 0.1, and k = 3. The rest
of the parameters used throughout the solution of the numerical examples are presented in
Table 1.

Table 1. Parameters used in numerical examples.

Segment ai ai a1i a2i ci δi ηi ki

S1 1660 0.30 2.5 2.2 20 0.01 2 1.5
S2 1670 0.32 2.3 2.3 21 0.01 3 1.6
S3 1670 0.28 2.4 2.2 23 0.01 2 1.5

By using the expressions (13), (14) for w∗i (t), w∗(t), expression (15) for p∗i , expression (17)
for y∗i (t), and values of the parameters given in Table 1, the optimal value of the objective
function is 494,740 units. The graphs of the adjoint variables, optimal advertising efforts
rates, goodwill evolution, and profit function over time are shown in Figures 2–5.
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The above Figure 2 depicts that the graph of the adjoint decreasing functions λi(t) for
each segment is positive, but the decreasing function that demonstrates the future benefit
of having one more unit of goodwill is always positive. Figure 3 demonstrates the graph
of the optimal differentiated w∗i (t) and mass promotion effort rates w∗(t) in each segment.
Initially, the promotional effort rates displayed in Figure 3 are at a maximum level and
decrease over time for all segments. As the goodwill level of the product gains momentum
and approaches the end of planning period, then the decision maker should reduce the
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promotional effort level. Figure 4 shows the stock of goodwill of the product y∗i (t) for each
segment. As shown in Figure 4, it is observed that the level of goodwill starts from the
initial value and then increases in a concave curve pattern as time increases. The reason
for this concave pattern is that growth rate of the goodwill of the product is proportional
to the promotional effort rates. As the optimal promotional effort policy shows, initially
we use the maximum promotional effort rates to stimulate the stock of goodwill. Figure 5
shows the (y1, y2, y3)-phase diagram.

The local stability analysis for the system is obtained for the numerical values men-
tioned in Table 1. The equilibrium point obtained is E∗(29,857.21, 17,124.84, 33,644.51),
which is locally unstable, as the eigenvalues are λ1 = −δi , λ2 = r + δi, which shows
that the trajectories are attracting corresponding to the negative eigenvalue, but repulsive
corresponding to the positive eigenvalue.

4.2. Local Sensitivity Analysis

In this sub-section, we have discussed the local sensitivity analysis for the proposed
model to evaluate the important parameters whose variation can change the dynamics
of the advertising and pricing of the system. Table 2 shows the effects of changing these
parameters on optimal control, followed by the bar graph in Figure 6 visualization of
Table 2.

Table 2. Sensitivity Index.

Parameters p1 p2 p3 w1 w2 w3 w

c1 1 0 0 1 0 0 0.3504
c2 0 1 0 0 1 0 0.2735
c3 0 0 0.9565 0 0 1 0.3761
η1 −1 0 0 −1 0 0 −0.3504
η2 0 −0.5 0 0 −1 0 −0.2735
η3 0 0 −1 0 0 −1 −0.3761
a21 0 0 0 1 0 0 0.3504
a22 0 0 0 0 1 0 0.2735
a23 0 0 0 0 0 1 0.3761
δ1 0 0 0 0.0645 0 0 0.0236
δ2 0 0 0 0 0.0673 0 0.0184
δ3 0 0 0 0 0 0.0655 0.0253
α1 0 0 0 0.3504 0 0 0.3504
α2 0 0 0 0 0.2735 0 0.2735
α3 0 0 0 0 0 0.3761 0.3761
k1 0 0 0 −1 0 0 0
k2 0 0 0 0 −1 0 0
k3 0 0 0 0 0 −1 0

The above Table 2 shows a clear picture and helps in the identification of the important
parameters that would have an important impact. We can observe that there is a rise in
the differentiated/single advertising effort rates with an increase in the production cost
per unit item, which means a positive correlation exists between both of them, and it is
obvious that the increase in production cost requires more advertisement effort. However,
a negative correlation exists between the elasticity of the demand with respect to the price
with the advertisement effort. The reason is that the high demand elasticity with respect to
the price would require less advertising effort for all segments. Further, the coefficient of
the goodwill, in contrast, shows a positive correlation with the advertising effort rates. The
reason is that as we introduce a new product into the market, due to the lack of knowledge
of it among people, the requirement of advertisement has to be in excess so that the goodwill
of the product can be enhanced. Finally, the table also shows that an increase/decrease in
the discount rate also leads to an increase/decrease in the advertisement effort. This is due
to the fact that the hike in the discount rate reduces the profit. Hence, the advertising effort
should be more so that the profit can be compensated.
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5. Conclusions

The level of interest in market segmentation is one of the most visible advancements
in marketing. Market segmentation is inarguably a crucial topic in marketing theory and
practice, and the purpose of businesses is to use it in advertising campaigns to throw a
spotlight on new products to gain a competitive advantage over their competitors. The
goal of segmenting a market is to drive advertising campaigns to a subset of customers
who might be interested in purchasing the product. In this paper, we discuss the concept of
a differentiated and single-channel advertising process for the formulation of goodwill for
the introduction of a new product in a segmented market under the assumption that the
stock of goodwill evolves through the combination of differentiated and single-channel
advertising strategies. Because the purchasing power of consumers in each sector varies,
businesses can charge higher prices to those willing and able to pay more, while charging
less to others whose demand is price-elastic. This suggests incorporating different prices
for each segment size in the model. By applying Pontryagin’s maximum principle, we
established a complete analysis of the optimal price and advertising effort policies. We
found that the price policy follows the myopically optimal price rule for a monopolist, as
is common in the price literature, and the advertising effort decreases as time goes by for
all the segments. Our findings imply that most advertising effort is concentrated at the
start of the planning phase for new product introduction, and that advertising at low levels
near the end of the planning period is optimal. This is due to the product’s goodwill effect;
advertising efforts are used to develop goodwill, but as the product’s goodwill grows, there
is less need for advertising near the conclusion of the planning period, T, or no advertising
may ever be needed near the end. This assumption, we believe, is perfectly valid in the
context of launching a new product.

To demonstrate the model’s and solution procedure’s effectiveness, numerical exam-
ples are presented. A sensitivity analysis of parameters is also performed. The current
optimal control model can be extended in a competitive context for further research. An-
other direction for future research is to incorporate factors, such as price and quality, in the
formulation of goodwill with a differentiated and single-channel advertising strategy in a
segmented market. It is of great interest to figure out optimal control policies and what the
best control rules are for a model with two or more generations of products on the market.
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Appendix A

A. Proof of Equations (12)–(15):

Referring to Equation (6), the first order conditions with respect to wi, w, and pi are:

∂H
∂w∗i

= 0 ∀ i ε N,
∂H
∂w∗

= 0,
∂H
∂p∗i

= 0 ∀ i ε N (A1)

From the above conditions we have:

wi(t) =
1
ki

λi(t), when
∂H
∂w∗i

= 0 ∀ i ε N (A2)

w(t) =
1
k ∑N

i=1 αiλi(t), when
∂H
∂w∗

= 0 (A3)

p∗i (t) =
1

1 + a1i
(ai + a1ici + a2iyi(t)), when

∂H
∂p∗i

= 0 ∀ i ε N (A4)

Elasticity of demand with respect to price:

ηi = −
∂

.
si

∂pi
.
si
pi

(A5)

Then, optimal pricing becomes:

p∗i =
ci ηi

(ηi − 1)
(A6)

From Equation (7), the adjoint variables λi(t) satisfy the following differential equation:

d
dt

λi(t) = (r + δi)λi(t)− (pi − ci)a2i, λi(T) = 0 (A7)

Using optimal pricing (A6), we have:

d
dt

λi(t) = (r + δi)λi(t)−
cia2i

(ηi − 1)
, λi(T) = 0 (A8)

Now, solving the above differential Equation (A8), we have:

λi(t) =
cia2i

(ηi − 1)(r + δi)

[
1− e−(r+δi)(T−t)

]
(A9)
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From Equations (A2) and (A3), we have:

w∗i (t) =
cia2i

(ηi − 1)(r + δi)ki

[
1− e−(r+δi)(T−t)

]
(A10)

w(t) =
1
k ∑M

i=1

(
αicia2i

(ηi − 1)(r + δi)

[
1− e−(r+δi)(T−t)

])
(A11)

which completes the proofs.
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