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Abstract: We present a new family of s-fold symmetrical bi-univalent functions in the open unit disc
in this work. We provide estimates for the first two Taylor–Maclaurin series coefficients for these
functions. Furthermore, we define the Salagean differential operator and discuss various applications
of our main findings using it. A few new and well-known corollaries are studied in order to show the
connection between recent and earlier work.
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1. Introduction

Let Ω represents the collection of all analytical functions z with the series representation

z(τ) = τ +
∞

∑
n=2

αnτn, (1)

which are analytic in E = {τ : |τ| < 1}. The class S ⊂ Ω we mean the set of all univalent
functions. The inverse function (z−1) of a univalent function z ∈ S be presented as:

τ = z−1(z(τ)), τ ∈ E

and
η = z(z−1(η)), r0(z) ≥ 1

4
, |η| < r0(z),

where

g1(η) = z−1(η) = η − α2η2 + (2α2
2 − α3)η

3 − (5α3
2 − 5α2α3 + α4)η

4 + ... . (2)

We speak z a bi-univalent function in E if each of the two functions z and z−1 are
univalent in E. The class of all bi-univalent functions is symbolized by Σ. Here are very few
examples of bi-univalent functions that are drawn from Srivastava et al. [1] first research.

h1(τ) =
τ

1− τ
, h2(τ) = − log(1− τ), h3(τ) =

1
2

log
(

1 + τ

1− τ

)
, τ ∈ E.
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The famous Koebe function

k(τ) =
τ

(1− τ)2 , τ ∈ E,

is not in the class Σ.
The question of establishing bounds on the coefficients has always been a significant

one in geometric function theory. The size of their coefficients can influence a number
of features of analytical functions, including univalency, rate of growth, and distortion.
Several researchers used various methods to address the aforementioned issues. Just like
for univalent functions, determining coefficient estimates for bi-univalent functions has
drawn a lot of interest recently. Lewin [2], while studying a subclass of Σ, shown that the
bound on the second coefficient of the functions falling under the class Σ is less than one
half (i.e., |α2| < 1.5). Lewin’s result was improved by Brannan and Clunie [3], where they
shown that |α2| ≤

√
2 and then by Netanyahu [4] to |α2| ≤ 4

3 which is an even greater
improvement. In 1984, Tan [5] derived certain initial coefficient estimates for the class Σ,
while Brannan and Taha [6] addressed several intriguing characteristics of subfamilies of Σ.
In general, over the past few years, mathematicians have been interested in discovering
the initial coefficient bounds for functions belonging to Σ. Remarkably, in [1] as well as the
references referred therein such as [7–12]. reinvigorate the study of coefficient problems
pertaining to bi-univalent functions. Many researchers find bounds for |α2| and |α3|, that
is for the first and second coefficient in Taylor (Maclatuin) series for diverse subclasses of
bi-univalent functions, see [1] including [13–17].

However, such general coefficient estimation concerns were taken into account by nu-
merous writers in some particular bi-univalent functions subclasses by using the expansions
of the Lucas, Chebyshev, Legendrae, Horadam, Fibonacci, and Gegenbauer polynomials
expansions (see, for example, [18–23]). For specific special subfamilies of Σ connected to
any of the preceding polynomials, impressive results on initial coefficient estimates were de-
veloped in [24–27]. However for each of the listed below coefficients, |αn|, (n ∈ N\{1, 2, 3},
N := 1, 2, 3, . . .), the coefficient problem is remains a question.

A domain D is referred to as s-fold symmetric if a rotation of the domain D about the
origin with an angle of 2π

s maps D on itself. An analytical function z in a domain E is said
to be s-fold symmetric if

z
(

e
2πi

s τ
)
= e

2πi
s z(τ).

where s is a positive integer. For every z ∈ S , the function

h(τ) = s
√
z(τs), (3)

is univalent and maps a region with s-fold symmetry onto the unit disc. We use Ss to
represent the family of s-fold symmetrical univalent functions in E.

Obviously
S1 = S .

A series expansion for z ∈ Ss is provided by

z(τ) = τ +
∞

∑
k=1

αsk+1τsk+1. (4)

In 2014, Srivastava et al. [28], investigated the natural extension of Ss and presented
Σs a set of symmetric s-fold bi-univalent functions. The following is the series expansion
for g(η) = z−1(η)
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g(η) = z−1(η) = η − αs+1ηs+1 +
{
(s + 1)α2

s+1 − α2s+1

}
η2s+1

−
{

1
2
(s + 1)(3s + 2)α3

s+1 − (3s + 2)αs+1α2s+1 + α3s+1

}
η3s+1. (5)

For s = 1, the Equations (2) and (5) become equal. Some functions in the family Σs are
given as follows:

ζ1(τ) =

(
τs

1− τs

)s
, ζ2(τ) = [log(1− τs)]

−1
s ,

ζ3(τ) = log

√
1 + τs

1− τs , τ ∈ E

and their corresponding inverse functions are

ζ−1
1 (τ) =

(
ηs

1 + ηs

) 1
s
, ζ−1

2 (τ) =

(
e2ηs − 1
e2ηs

+ 1

) 1
s

,

ζ−3
3 (τ) =

(
eηs − 1

eηs

) 1
s

.

The study of the family Σs has recently gained relevance due to the research [29,30]
which become base for a significant number of articles on subclasses of Σs. In a brand
new subclass of Σs Srivastava et al. [31] investigated initial coefficient estimations of the
Taylor–Maclaurin series expansion. Moreover Sakar and Tasar [32] presented subclasses of
Σs and developed initial coefficient bounds for the functions included in these families (see
also [33–35]). The following articles [36–42]. revealed intriguing findings about the initial
coefficient estimations for specific subfamilies of Σs.

In this part of the article, we presented a few novel subclasses of s–fold symmetric
bi-univalent functions and derived initial coefficient bounds |αs+1| and |α2s+1|. We have
taken motivation from the earlier works of Ma and Minda [40] and Tang et al. [41].

We will assume the following values during this whole paper

τ, η ∈ E, z−1 = g, s ∈ N, 0 < κ ≤ 1, 0 ≤ β < 1, 0 ≤ γ ≤ 1, 0 ≤ ξ < 1 and 0 ≤ $ < 1.

1.1. The Class SΣs(κ, γ, $, ξ)

Definition 1. A function z ∈ Σs, is seen as being a member of the class SΣs(κ, γ, $, ξ) if the
criteria listed below are satisfied:∣∣∣∣∣arg

(
1− γ

1− $

(
τz′(τ)
z(τ)

− $

)
+

γ

1− ξ

(
1− ξ +

τz′′(τ)
z′(τ)

))∣∣∣∣∣ < κπ

2
(6)

and ∣∣∣∣∣arg

(
1− γ

1− $

(
ηg
′
(η)

g(η)
− $

)
+

γ

1− ξ

(
1− ξ +

ηg
′′
(η)

g′(η)

))∣∣∣∣∣ < κπ

2
. (7)

Remark 1. By taking the different values of the parameter γ, $, ξ, s we can obtain some known
subclasses of analytic bi-univalent functions.

(1): SΣ1(κ, γ, 0, 0) = SΣ(κ, γ) introduced by Ali et al. [43].
(2): SΣs(κ, 0, 0, 0) = SΣs(κ) introduced by Altinkaya and Yalcinn [44].
(3): SΣ1(κ, 0, 0, 0) = SΣ(κ) introduced by Brannan and Taha [24].
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1.2. The Class SΣs(β, γ, $, ξ)

Definition 2. A function z ∈ Σs, is seen as being a member of the class SΣs(β, γ, $, ξ) if the
criteria listed below are satisfied:

Re

(
1− γ

1− $

(
τz′(τ)
z(τ)

− $

)
+

γ

1− ξ

(
1− ξ +

τz′′(τ)
z′(τ)

))
> β (8)

and

Re

(
1− γ

1− $

(
ηg
′
(η)

g(η)
− $

)
+

γ

1− ξ

(
1− ξ +

ηg
′′
(η)

g′(η)

))
> β. (9)

Remark 2. By taking different values of the parameter γ, $, ξ, s, we can obtain some known
subclasses of analytic bi-univalent functions.

(1): SΣ1(β, γ, 0, 0) = SΣ(β, γ) introduced by Ali et al. [43].
(2): SΣs(β, 0, 0, 0) = SΣs(β) introduced by Altinkaya and Yalcinn [44].
(3): SΣ1(β, 0, 0, 0) = SΣ(β) introduced by Brannan and Taha [24].
Given below are a few preliminary findings that will be used to produce the main findings.

Lemma 1 ([45]). Let p ∈ P, where P is the Caratheodary class of analytic functions p in
E satisfying

Re(p(τ)) > 0

and
p(τ) = 1 + c1τ + c2τ2 + . . . ,

then
|cn| ≤ 2, n ∈ N.

In Section 2, for functions from the classes SΣs(κ, γ, $, ξ) and SΣs(β, γ, $, ξ), we estab-
lish constraints on the first two coefficients in the Taylor–Maclaurin expansion. We also
highlight noteworthy cases of our key findings and discuss significant linkages to earlier
findings. We investigate the Salagean differential operator in Section 3 and provide two
new classes of s–fold symmetric bi-univalent functions. For functions belonging to the
classes SΣs(κ, γ, $, ξ, p) and SΣs(κ, γ, $, ξ, p), we find bounds on |αs+1| and |α2s+1| in the
Taylor–Maclaurin expansion.

2. Main Results

Theorem 1. If z belongs to the class SΣs(κ, γ, $, ξ) and has the series representation described
in (4), then

|αs+1| ≤
2κ(1− $)(1− ξ)√

s2T1(s, $, ξ, γ)[2κ(1− $)(1− ξ)− (κ − 1)T1(s, $, ξ, γ)]

and

|α2s+1| ≤
κ(1− $)(1− ξ)

s{(1− γ)(1− ξ) + γ(1− $)(1 + 2s)} +
2κ2(1− $)2(1− ξ)2(1 + s)

s2{T1(s, $, ξ, γ)}2 ,

where
T1(s, $, ξ, γ) = {(1− γ)(1− ξ) + γ(1 + s)(1− $)}. (10)

Proof. If we assume that z ∈ SΣs(κ, γ, $, ξ), then

1− γ

1− $

(
τz′(τ)
z(τ)

− $

)
+

γ

1− ξ

(
1− ξ +

τz′′(τ)
z′(τ)

)
= [p(τ)]κ (11)
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moreover , we have for its inverse map g = z−1

1− γ

1− $

(
ηg
′
(η)

g(η)
− $

)
+

γ

1− ξ

(
1− ξ +

ηg
′′
(η)

g′(η)

)
= [q(η)]κ , (12)

where p and q are expressed in the following series:

p(τ) = 1 + psτs + p2sτ2s + ... (13)

and
q(η) = 1 + qsηs + q2sη2s + .... (14)

So, by analysing the coefficients in (11) and (12) we acquire

s
(

1− γ

1− $
+

γ(1 + s)
1− ξ

)
αs+1 = κps, (15)

 2s
(

1−γ
1−$ + γ(1+2s)

1−ξ

)
α2s+1

−s
(

1−γ
1−$ + γ(1+s)2

1−ξ

)
α2

s+1

 = κp2s +
κ(κ − 1)

2
p2

s , (16)

−s
(

1− γ

1− $
+

γ(1 + s)
1− ξ

)
αs+1 = κqs, (17)

 s
(
(1−γ)(1+2s)

1−$ + γ(1+s)(1+3s)
1−ξ

)
α2

s+1

−2s
(

1−γ
1−$ + γ(1+2s)

1−ξ

)
α2s+1

 = κq2s +
κ(κ − 1)

2
q2

s . (18)

From (15) and (17) we obtain
ps = −qs, (19)

and

2s
(

1− γ

1− $
+

γ(1 + s)
1− ξ

)2

α2
s+1 = κ2(p2

s + q2
s ). (20)

Furthermore, form (16), (18), and (20) we have(
2s2(1− γ)

1− $
+

2γs2(1 + s)
1− ξ

)
α2

s+1

= κ(p2s + q2s) +
κ(κ − 1)

2
(p2

s + q2
s )

=

{
κ(p2s + q2s) +

s2(κ − 1)
κ

{
1− γ

1− $
+

γ(1 + s)
1− ξ

}2

α2
s+1

}
.

Therefore we have

α2
s+1 =

κ2(1− $)2(1− ξ)2(p2s + q2s)

s2T1(s, $, ξ, γ)[2κ(1− $)(1− ξ)− (κ − 1)T1(s, $, ξ, γ)]
, (21)

where
T1(s, $, ξ, γ) = {(1− γ)(1− ξ) + γ(1 + s)(1− $)}. (22)

Lemma 1 in conjuction with Equation (21) produces

|αs+1| ≤
2κ(1− $)(1− ξ)√

s2T1(s, $, ξ, γ)[2κ(1− $)(1− ξ)− (κ − 1)T1(s, $, ξ, γ)]
.
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Next, by subtracting (18) from (16), we can determine the bound on |α2s+1|, that is
4s
(

1−γ
1−$ + γ(1+2s)

1−ξ

)
α2s+1

−2s(1 + s)
(

1−γ
1−$ + γ(1+2s)

1−ξ

)
α2

s+1

 = κ(p2s − q2s) +
κ(κ − 1)

2
(p2

s − q2
s ). (23)

After that, taking into account (19) and (20), and using the Lemma 1, on (23) for p2s,
q2s, ps and qs we have

|α2s+1| ≤
κ(1− $)(1− ξ)

s{(1− γ)(1− ξ) + γ(1− $)(1 + 2s)} +
2κ2(1− $)2(1− ξ)2(1 + s)

s2{T1(s, $, ξ, γ)}2 .

As a result, the Theorem 1 proof is achieved.

For s = 1, in Theorem 1, the additional corollary for the new class SΣ(κ, γ, $, ξ) is
as follows:

Corollary 1. If z belongs to the class SΣ(κ, γ, $, ξ) and has the series representation described
in (4), then

|α2| ≤
2κ(1− $)(1− ξ)√

s2T2($, ξ, γ)[2κ(1− $)(1− ξ)− (κ − 1)T2($, ξ, γ)]

and

|α3| ≤
κ(1− $)(1− ξ)

{(1− γ)(1− ξ) + 3γ(1− $)} +
4κ2(1− $)2(1− ξ)2

{T2($, ξ, γ)}2 ,

where
T2($, ξ, γ) = {(1− γ)(1− ξ) + 2γ(1− $)}.

For $ = 0, in Theorem 1, we have the following new corollary for the new class
SΣs(κ, γ, ξ).

Corollary 2. If z belongs to the class SΣs(κ, γ, ξ) and has the series representation described
in (4), then

|αs+1| ≤
2κ(1− ξ)√

s2T3(s, ξ, γ)[2κ(1− ξ)− (κ − 1)T3(s, ξ, γ)]

and

|α2s+1| ≤
κ(1− ξ)

s{(1− γ)(1− ξ) + γ(1 + 2s)} +
2κ2(1− ξ)2(1 + s)

s2{T3(s, ξ, γ)}2 ,

where
T3(s, ξ, γ) = {(1− γ)(1− ξ) + γ(1 + s)}.

For ξ = 0, in Theorem 1, we acquire at the new class SΣs(κ, γ, $), and a corollary
listed below.

Corollary 3. If z belongs to the class SΣs(κ, γ, $) and has the series representation described
in (4), then

|αs+1| ≤
2κ(1− $)√

s2T4(s, $, γ)[2κ(1− $)− (κ − 1)T4(s, $, γ)]

and

|α2s+1| ≤
κ(1− $)(1− ξ)

s{(1− γ) + γ(1− $)(1 + 2s)} +
2κ2(1− $)2(1− ξ)2(1 + s)

s2{T4(s, $, γ)}2 ,
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where
T4(s, $, γ) = {(1− γ) + γ(1 + s)(1− $)}.

The following new corollary for the new class SΣs(κ, γ) exists for $ = 0, and ξ = 0, in
Theorem 1.

Corollary 4. If z belongs to the class SΣs(κ, γ) and has the series representation described
in (4), then

|αs+1| ≤
2κ√

2s2κ{(1− γ) + γ(1 + s)} − s2(κ − 1){(1− γ) + γ(1 + s)}2
,

and

|α2s+1| ≤
κ

s{(1− γ) + γ(1 + 2s)} +
2κ2(1− $)2(1− ξ)2(1 + s)

s2{(1− γ) + γ(1 + s)}2 .

For $ = 0, s = 1 and ξ = 0, in Theorem 1, then we have the result as demonstrated by
Ali et al. in [43].

Corollary 5 ([43]). If z belongs to the class SΣ(κ, γ) and has the series representation described
in (4), then

|α2| ≤
2κ√

(1 + γ)[2κ − (κ − 1)(1 + γ)]

and

|α3| ≤
κ

{1 + 2γ} +
4κ2(1− $)2(1− ξ)2

{1 + γ}2 .

For γ = 0, $ = 0, and ξ = 0, in Theorem 1, then we have the result as demonstrated by
Altinkaya and Yalcinn in [44].

Corollary 6 ([44]). If z belongs to the class SΣs(κ) and has the series representation described
in (4), then

|αs+1| ≤
2κ

s
√
κ + 1)

and

|α2s+1| ≤
κ
s
+

2κ2(1 + s)
s2 .

For γ = 0, s = 1, $ = 0, and ξ = 0, in Theorem 1, then we have the result as demonstrated
by Murugusundaramoorthy in [46].

Corollary 7 ([46]). If z belongs to the class SΣ(κ) and has the series representation described
in (4), then

|α2| ≤
2κ√
κ + 1

and
|α3| ≤ 4κ2 +κ.

Theorem 2. If z belongs to the class SΣs(β, γ, $, ξ) and has the series representation described
in (4), then

|αs+1| ≤

√
2(1− β)(1− ξ)(1− $)

s2T1(s, $, ξ, γ)
,
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and

|α2s+1| ≤
(1− ξ)(1− $)(1− β)

s[(1− ξ)(1− γ) + γ(1− $)(1 + 2s)]
+

2(1 + s)(1− β)2(1− ξ)2(1− $)2

s2[T1(s, $, ξ, γ)]2
,

where T1(s, $, ξ, γ) is given by (10).

Proof. Let z ∈ SΣs(β, γ, $, ξ), then

1− γ

1− $

(
τz′(τ)
z(τ)

− $

)
+

γ

1− ξ

(
1− ξ +

τz′′(τ)
z′(τ)

)
= β + (1− β)p(τ) (24)

moreover , we have for its inverse map g = z−1

1− γ

1− $

(
ηg
′
(η)

g(η)
− $

)
+

γ

1− ξ

(
1− ξ +

ηg
′′
(η)

g′(η)

)
= β + (1− β)q(η), (25)

where the expressions for p and q are given in (13) and (14). The coefficients are now
equalised in (24) and (25), we arrive at

s
(

1− γ

1− $
+

γ(1 + s)
1− ξ

)
αs+1 = (1− β)ps, (26)

 2s
(

1−γ
1−$ + γ(1+2s)

1−ξ

)
α2s+1

−s
(

1−γ
1−$ + γ(1+s)2

1−ξ

)
α2

s+1

 = (1− β)p2s, (27)

−s
(

1− γ

1− $
+

γ(1 + s)
1− ξ

)
αs+1 = (1− β)qs, (28)

 s
(
(1−γ)(1+2s)

1−$ + γ(1+s)(1+3s)
1−ξ

)
α2

s+1

−2s
(

1−γ
1−$ + γ(1+2s)

1−ξ

)
α2s+1

 = (1− β)q2s. (29)

From (26) and (28) we obtain
ps = −qs, (30)

Adding (27) and (29), we have{
2s2(1− γ)

1− $
+

2γs2(1 + s)
1− ξ

}
α2

s+1 = (1− β)(p2s + q2s), (31)

therefore we have

α2
s+1 =

(1− β)(1− ξ)(1− $)(p2s + q2s)

2s2[(1− γ)(1− ξ) + γ(1 + s)(1− $)]
. (32)

Equation (32) in conjunction with Lemma 1 yields

|αs+1| ≤

√
2(1− β)(1− ξ)(1− $)

s2[(1− γ)(1− ξ) + γ(1 + s)(1− $)]
.

Next, by subtracting (29) from (27), we can determine the bound on |α2s+1|, that is 4s
(

1−γ
1−$ + γ(1+2s)

1−ξ

)
α2s+1

−2s(1 + s)
(

1−γ
1−$ + γ(1+2s)

1−ξ

)
α2

s+1

 = (1− β)(p2s − q2s),
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4s
(

1− γ

1− $
+

γ(1 + 2s)
1− ξ

)
α2s+1

= (1− β)(p2s − q2s) + 2s(1 + s)
(

1− γ

1− $
+

γ(1 + 2s)
1− ξ

)
α2

s+1, (33)

After that, taking into account (30) and (31), and using the Lemma 1, on (23) for p2s,
q2s, ps and qs, we arrive at

|α2s+1| ≤
(1− ξ)(1− $)(1− β)

s[(1− ξ)(1− γ) + γ(1− $)(1 + 2s)]
+

2(1 + s)(1− β)2(1− ξ)2(1− $)2

s2[T1(s, $, ξ, γ)]2
,

As a result, the Theorem 2 proof is achieved.

For s = 1, in Theorem 2, the subsequent new corollary of new class SΣ(β, γ, $, ξ)
is produced.

Corollary 8. If z belongs to the class SΣ(β, γ, $, ξ) and has the series representation described
in (4), then

|αs+1| ≤

√
2(1− β)(1− ξ)(1− $)

(1− ξ)(1− γ) + 2γ(1− $)
,

and

|α2s+1| ≤
(1− ξ)(1− $)(1− β)

[(1− ξ)(1− γ) + 3γ(1− $)]
+

4(1− β)2(1− ξ)2(1− $)2

[(1− ξ)(1− γ) + 2γ(1− $)]2
.

For $ = 0, in Theorem 2, the subsequent new corollary for a class SΣs(β, γ, $, ξ) is produced.

Corollary 9. If z belongs to the class SΣs(β, γ, ξ) and has the series representation described
in (4), then

|αs+1| ≤

√
2(1− β)(1− ξ)

s2[(1− γ)(1− ξ) + γ(1 + s)]
,

and

|α2s+1| ≤
(1− ξ)(1− β)

s[(1− ξ)(1− γ) + γ(1 + 2s)]
+

2(1 + s)(1− β)2(1− ξ)2

s2[(1− ξ)(1− γ) + γ(1 + s)]2
.

For ξ = 0, in Theorem 2, the subsequent new corollary for a class SΣs(β, γ, $) is produced.

Corollary 10. If z belongs to the class SΣs(β, γ, $) and has the series representation described
in (4), then

|αs+1| ≤

√
2(1− β)(1− $)

s2[(1− γ) + γ(1 + s)(1− $)]
,

and

|α2s+1| ≤
(1− $)(1− β)

s[(1− γ) + γ(1− $)(1 + 2s)]
+

2(1 + s)(1− β)2(1− $)2

s2[(1− γ) + γ(1− $)(1 + s)]2
.

For $ = 0, and ξ = 0, in Theorem 2, the subsequent new corollary for a class SΣs(β, γ)
is produced.

Corollary 11. If z belongs to the class SΣs(β, γ) and has the series representation described
in (4), then

|αs+1| ≤

√
2(1− β)

s2[(1− γ) + γ(1 + s)]
,
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and

|α2s+1| ≤
(1− β)

s[(1− γ) + γ(1 + 2s)]
+

2(1 + s)(1− β)2

s2[(1− γ) + γ(1 + s)]2
.

For $ = 0, s = 1 and ξ = 0, in Theorem 2, the subsequent known result is achieved that was
proved by Ali et al. in [43].

Corollary 12 ([43]). If z belongs to the class SΣ(β, γ) and has the series representation described
in (4), then

|α2| ≤

√
2(1− β)

(1 + γ
,

and

|α3| ≤
(1− β)

(1 + 2γ)
+

4(1− β)2

(1 + γ)2 .

For $ = 0, ξ = 0, and γ = 0, in Theorem 2, then we have following known result proved by
Altinkaya and Yalcinn [44].

Corollary 13 ([44]). If z belongs to the class SΣs(β) and has the series representation described
in (4), then

|αs+1| ≤
√

2(1− β)

s
,

and

|α2s+1| ≤
(1− β)

s
+

2(1 + s)(1− β)2

s2 .

For $ = 0, ξ = 0, s = 1 and γ = 0, in Theorem 2, then the subsequent known result is
achieved that was proved by Murugusundaramoorthy in [46].

Corollary 14 ([46]). If z belongs to the class SΣ(β) and has the series representation described
in (4), then

|α2| ≤
√

2(1− β),

and
|α3| ≤ 4(1− β)2 + (1− β).

3. Applications of Salagean Differential Operator

In 1983, Salagean [47] defined the differential operator know as Salagean differential
operator for analytic functions. By extending this idea, we define the Salagean differential
operator for symmetric functions and discuss some of its applications for our main results.

Definition 3. For p ∈ N, the Salagean differential operator for z ∈ Σs given in (4) is defined by

S0z(τ) = z(τ), S1z(τ) = τz′(τ), . . . ,

Spz(τ) = τ
(

Sp−1z(τ)
)′

=

(
τ +

∞

∑
n=1

[sn + 1]pαsn+1τsn+1

)
,

= τ +
∞

∑
n=1

[sn + 1]pαsn+1τsn+1. (34)

Remark 3. For s = 1, we have the Salagean differential operator for analytic functions proved
in [47].

3.1. The Class SΣs(κ, γ, $, ξ, p)

Definition 4. A function z ∈ Σs is referred to as belonging to class SΣs(κ, γ, $, ξ, p) if the
following criteria are met:
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∣∣∣∣arg
(

1− γ

1− $

(
Spz(τ)

z(τ)
− $

)
+

γ

1− ξ

(
1− ξ +

Sp+1z(τ)

Spz(τ)

))∣∣∣∣ < κπ

2

and

Re
(

1− γ

1− $

(
τSpg(η)

g(η)
− $

)
+

γ

1− ξ

(
1− ξ +

Sp+1g(η)
Spg(η)

))
<

κπ

2
.

3.2. The Class SΣs(β, γ, $, ξ, p)

Definition 5. A function z ∈ Σs is referred to as belonging to class SΣs(β, γ, $, ξ, p) if the
following criteria are met:

Re
(

1− γ

1− $

(
Spz(τ)

z(τ)
− $

)
+

γ

1− ξ

(
1− ξ +

Sp+1z(τ)

Spz(τ)

))
> β

and ∣∣∣∣arg
(

1− γ

1− $

(
Spg(η)

g(η)
− $

)
+

γ

1− ξ

(
1− ξ +

Sp+1g(η)
Spg(η)

))∣∣∣∣ > β.

Theorem 3. Let z given by (4) be in the class SΣs(κ, γ, $, ξ, p), then

|αs+1| ≤
2κ√

[κ(Q1(γ, $, s, p) +κQ2(γ, $, s, p))− (κ − 1)(Q3(γ, $, s, p))]

and

|α2s+1| ≤
4κ

Q4(γ, $, s, p)
+

4κ2Q5(γ, $, s, p)
Q4(γ, $, s, p)Q3(γ, $, s, p)

,

where,

Q1(γ, $, s, p) =
1− γ

1− $

{
(s + 1)

(
[1 + 2s]p − 1

)
− 2
(
[1 + s]p − 1

)}
, (35)

Q2(γ, $, s, p) =
γ

1− ξ

(
2s(s + 1)

(
[1 + 2s]p

)
− 2s[1 + s]2p

)
, (36)

Q3(γ, $, s, p) =

((
1− γ

1− $

)(
[s + 1]p − 1

)
+

γs([1 + s]p)
1− ξ

)2

, (37)

Q4(γ, $, s, p) =

(
2
(

1− γ

1− $

)(
[1 + 2s]p − 1

)
+

4γs([1 + 2s]p

1− ξ

)
, (38)

Q5(γ, $, s, p) =

(
1− γ

1− $
(s + 1)

(
[1 + 2s]p − 1

)
− 2γs(s + 1)(1 + 2s)p

1− ξ

)
. (39)

Proof. Let z ∈ SΣs(κ, γ, $, ξ, p), then

1− γ

1− $

(
Spz(τ)

z(τ)
− $

)
+

γ

1− ξ

(
1− ξ +

Sp+1z(τ)

Spz(τ)

)
= [p(τ)]κ (40)

moreover , we have for its inverse map g = z−1

1− γ

1− $

(
Spg(η)

g(η)
− $

)
+

γ

1− ξ

(
1− ξ +

Sp+1g(η)
Spg(η)

)
= [q(η)]κ , (41)
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where the expressions for p(τ) and q(η) are given in (13) and (14). The coefficients are now
equalised in (40) and (41) we arrive at((

1− γ

1− $

)(
[s + 1]p − 1

)
+

γs([1 + s]p)
1− ξ

)
αs+1 = κrs, (42)


((

1−γ
1−$

)(
[2s + 1]p − 1

)
+ 2γs[1+2s]p

1−ξ

)
α2s+1

−
(

1−γ
1−$

(
[s + 1]p − 1

)
+ γs([1+s]2p

1−ξ

)
α2

s+1

 = κr2s +
κ(κ − 1)

2
r2

s , (43)

−
((

1− γ

1− $

)(
[s + 1]p − 1

)
+

γs([1 + s]p)
1− ξ

)
αs+1 = κqs, (44)



[
(1−γ)
1−$

[
(s + 1)

{
(1 + 2s)p − 1

}
−
{
(1 + s)p − 1

}]
+ γ

1−ξ

{
2s(1 + s)(2s + 1)p − s(s + 1)2p

}]
α2

s+1

−
{

1−γ
1−$

(
[2s + 1]p − 1

)
+ 2γs([1+2s]p)

1−ξ

}
α2s+1


= κq2s +

κ(κ − 1)
2

q2
s . (45)

From (42) and (44) we obtain
rs = −qs (46)

and

2
((

1− γ

1− $

)(
[s + 1]p − 1

)
+

γs([1 + s]p)
1− ξ

)2

α2
s+1 = κ2(r2

s + q2
s ). (47)

Furthermore, form (43), (45), and (47) we have

1− γ

1− $

{
(s + 1)

(
[1 + 2s]p − 1

)
− 2
(
[1 + s]p − 1

)}
+

γ

1− ξ

(
2s(s + 1)

(
[1 + 2s]p

)
− 2s[1 + s]2p

)
α2

s+1

= κ(r2s + q2s) +
κ(κ − 1)

2
(r2

s + q2
s )

= κ(r2s + q2s) +
(κ − 1)

κ

 (
1−γ
1−$

)(
[s + 1]p − 1

)
+ γs([1+s]p)

1−ξ

2

α2
s+1.

This can be written as

(Q1(γ, $, s, p) + Q2(γ, $, s, p))α2
s+1

= κ(r2s + q2s) +
κ − 1)

κ (Q3(γ, $, s, p))α2
s+1,

[κ(Q1(γ, $, s, p) +κQ2(γ, $, s, p))− (κ − 1)(Q3(γ, $, s, p))]
= κ2(r2s + q2s)

Therefore we have

α2
s+1 =

κ2(r2s + q2s)

[κ(Q1(γ, $, s, p) +κQ2(γ, $, s, p))− (κ − 1)(Q3(γ, $, s, p))]
, (48)

where Q1, Q2 and Q3 are given by (35)–(37).
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Lemma 1 in conjuction with Equation (48) yields

|αs+1| ≤
2κ√

[κ(Q1(γ, $, s, p) +κQ2(γ, $, s, p))− (κ − 1)(Q3(γ, $, s, p))]
.

Next, by subtracting (45) from (44), we can determine the bound on |α2s+1|, that is
2
{(

1−γ
1−$

)(
(1 + 2s)p − 1

)
+ 4γs([1+2s]p

1−ξ

}
α2s+1

−
{

1−γ
1−$ (s + 1)

(
(1 + 2s)p − 1

)
− 2γs(s+1)(1+2s)p

1−ξ

}
α2

s+1


= κ(r2s − q2s) +

κ(κ − 1)
2

(r2
s − q2

s ),

or

Q4(γ, $, s, p)α2s+1 + Q5(γ, $, s, p)α2
s+1 = κ(r2s − q2s) +

κ(κ − 1)
2

(r2
s − q2

s ), (49)

where Q4 and Q5 are given in (38) and (39).
After that, taking into account (46), (47) and using Lemma 1, on (49), we arrive at

|α2s+1| ≤
4κ

Q4(γ, $, s, p)
+

4κ2Q5(γ, $, s, p)
Q4(γ, $, s, p)Q3(γ, $, s, p)

.

This completes the proof.

Theorem 4. Let z given by (4) be in the class SΣs(β, γ, $, ξ, p), then

|αs+1| ≤

√
2(1− β)

Q3(γ, $, s, p)
,

and

|α2s+1| ≤
4(1− β)

Q4(γ, $, s, p)
+

4(1− β)Q5(γ, $, s, p)
Q3(γ, $, s, p)

,

where, Q1(γ, $, s, p), Q2(γ, $, s, p), Q3(γ, $, s, p), Q4(γ, $, s, p), and Q5(γ, $, s, p) are given
by (35)–(39).

Proof. Let z ∈ SΣs(β, γ, $, ξ, p), then

1− γ

1− $

(
Spz(τ)

z(τ)
− $

)
+

γ

1− ξ

(
1− ξ +

Sp+1z(τ)

Spz(τ)

)
= β + (1− β)− p(τ), (50)

moreover , we have for its inverse map g = z−1

1− γ

1− $

(
Spg(η)

g(η)
− $

)
+

γ

1− ξ

(
1− ξ +

Sp+1g(η)
Sp(η)

)
= β + (1− β)q(η), (51)

where the expressions for p(τ) and q(η) are given in (13) and (14). The coefficients are now
equalised in (50) and (51), we obtain((

1− γ

1− $

)(
(s + 1)p − 1

)
+

γs((1 + s)p)

1− ξ

)
αs+1 = (1− β)rs, (52)


(

1−γ
1−$

){(
(2s + 1)p − 1

)
+ 2γs[1+2s]p

1−ξ

}
α2s+1

−
(

1−γ
1−$

(
(s + 1)p − 1

)
+ γs([1+s]2p

1−ξ

)
α2

s+1

 = (1− β)r2s, (53)
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−
(

1− γ

1− $

){(
(s + 1)p − 1

)
+

γs((1 + s)p)

1− ξ

}
αs+1 = (1− β)qs, (54)


{

(1−γ)
1−$

(
(s + 1)

(
(1 + 2s)p − 1

)
−
(
(1 + s)p − 1

))
+ γ

1−ξ

(
2s(1 + s)(2s + 1)p − s(s + 1)2p

)}
α2

s+1

− 1−γ
1−$

{(
(2s + 1)p − 1

)
+ 2γs([1+2s]p)

1−ξ

}
α2s+1

 = (1− β)q2s. (55)

From (52) and (54) we obtain
rs = −qs, (56)

Adding (53) and (55), we have

2
{(

1− γ

1− $

)(
(s + 1)p − 1

)
+

γs([1 + s]p)
1− ξ

}2

α2
s+1 = (1− β)(r2s + q2s), (57)

therefore we have

α2
s+1 =

(1− β)(r2s + q2s)

2
[(

1−γ
1−$

)(
(s + 1)p − 1

)
+ γs([1+s]p)

1−ξ

]2 . (58)

Lemma 1, in conjuction with Equation (58) produced

|αs+1| ≤

√
2(1− β)

Q3(γ, $, s, p)
.

Next, by subtracting (55) from (53), we can determine the bound on |α2s+1|, that is

Q4(γ, $, s, p)α2s+1 + Q5(γ, $, s, p)α2
s+1 = (1− β)(r2s − q2s), (59)

After that, taking into account (56) and (57), and using Lemma 1, on Equation (59),
we have

|α2s+1| ≤
4(1− β)

Q4(γ, $, s, p)
+

4(1− β)Q5(γ, $, s, p)
Q3(γ, $, s, p)

.

As a result, the Theorem 4 proof is achieved.

4. Conclusions

In the open unit disc E, we introduced a new family of bi-univalent functions that are
s-fold symmetric, and we discovered the upper bounds |αs+1| and |α2s+1| for the functions
falling within the newly defined classes. In Section 3, we also established the coefficient
estimates |αs+1| and |α2s+1| for a novel family of symmetric bi-univalent functions that are
connected with the Salagean differential operator. We examine a number of unique cases
from this family, and our findings generalize those from [43,44,48–50].

This research glanced at a new family that may lead to further research into a variety
of topics, including some unique families of bi-univalent functions using the Hohlov op-
erator connected to the Legendre polynomial [51], the integro-differential operator [52],
the q-derivative operator [53], the Fractional q-difference operator [20], the Faber polyno-
mial [41], Modified sigmoid activated function and k-Fibonacci numbers [21], Horadam
polynomials involving modified sigmoid [22], Pascal distribution series and Gegenbauer
polynomials [23], Gegenbauer polynomial [18], Hankel and Symmetric Toeplitz Determi-
nants for a New Subclass of q-Starlike Functions [54] and so on.
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