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Abstract: Complex fuzzy sets (CFSs) are a suitable tool to manage spatial directional information
which includes distance and direction. However, spatial directional information is given by linguistic
values. It is very awkward for the CFS to describe this type of spatial directional information. To
overcome this limitation, we first propose a novel concept called a linguistic complex fuzzy set (LCFS)
to serve as an extension of the CFS. Then we put forward some basic operational laws for LCFSs.
After that, we define three operators for LCFSs: the linguistic complex fuzzy weighted averaging
(LCFWA) operator, the linguistic amplitude max (Amax) operator and the linguistic amplitude min
(Amin) operator. In actual application, we use the LCFWA operator to deal with group decision
making when the importance weights of experts are known. For the situation in which the weights of
experts are unknown, we develop an Amax-Amin method for group decision making.
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1. Introduction

Ramot et al. [1] introduced the concept of complex fuzzy sets (CFSs) as an extension
of fuzzy sets [2]. A CFS and its extensions have wide applications in practice, such as
signal processing [3–5], image processing [6], time series forecasting [7–9] and decision
making [10–13].

Although many studies have paid attention to CFSs and their applications, some schol-
ars have the question: why complex fuzzy sets? As we know, there are many extensions
of FSs, such as interval-valued fuzzy sets (IVFSs) [14], intuitionistic fuzzy sets (IFSs) [15],
interval-valued intuitionistic fuzzy sets (IVIFSs) [16], Pythagorean fuzzy set [17], q-rung
orthopair fuzzy sets [18], Plithogenic Set [19] and hesitant fuzzy sets (HFSs) [20]. Among
these sets, CFSs are a special extension of FSs due to their complex-valued membership.
But complex-valued membership remains a puzzle from the intuitive viewpoint.

In order to answer the question: How to use CFSs in our real life? we use the following
example to show the particularity of CFSs, which is introduced by Dai et al. [21]. In real life,
we often ask passers-by for directions to the nearest market. If there are two markets and
their distance and direction are given by two people and they both think market P is about
0.98 km from you and market Q is about 1 km from you, they have different views on the
direction of market Q. One person thinks market P is located at A and market Q is located at
B, another person thinks market P is located at A but market Q is located at C, as shown in
Figure 1. Combining the opinions of these two people, we think market Q is located at the
center of B and C. Then, the distance to market Q is about 0.95 km. Therefore, we decided
to go to market Q. Interestingly, it is a preference reversal phenomenon. Both people think
market P is nearer than market Q, but our result is that Q is nearer than market P. Distance
and direction are two parameters used in this example. The center-based aggregation
method is reasonable. The ranking which is only based on the distance is also reasonable.
CFSs theory can perfectly describe the above phenomenon. In many other extensions of
FSs, all parameters are used in the ranking. For example, both membership degree and
non-membership degree are used in the ranking of IFSs.
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Figure 1. Distances and directions of two markets. 

The rest of the study is organized as follows: Section 1 reviews the theories of CFSs 
and linguistic fuzzy sets (LFSs). Section 2 defines LCFSs and their operators. Section 3 
provides some decision-making methods to deal with group decision-making problems 
under LCFS information. Section 4 provides a case study. Conclusions are given in the 
last section. 

2. Preliminaries 
Our proposal is based on the LFS and CFS. In this section, we briefly review their 

concepts. 

2.1. Complex Fuzzy Set 
Ramot et al. [1] introduced the complex fuzzy sets (CFSs) as follows: 

Definition 1. [1]. A CFS 𝐸 on the universal set 𝑋 is defined as 𝐸 = {(𝑥, 𝑟ா(𝑥)𝑒௜ఠಶ(௫))|𝑥 ∈ 𝑋}  (1)

where √−1 = 𝑖, 𝑟ா(𝑥) ∈ [0, 1] is the amplitude term and 𝜔ா(𝑥) ∈ [0, 2𝜋) is the phase term. For 
convenience, 𝛼ா = 𝑟ா𝑒௜ఠಶ is called a complex fuzzy number (CFN). 

For two CFNs α୉ = r୉e୧னు and α୊ = r୊e୧னూ, Zhang et al. [18] gave some operations 
on them, shown as follows: 
(1) Neg(α୉) = (1 − r୉)e୧(ଶ஠ିனు); 
(2) max(α୉, α୊) = max(r୉, r୊)e୫ୟ୶(னు,னూ)୧; 
(3) min(α୉, α୊) = min(r୉, r୊)e୫୧୬(னు,னూ)୧. 
2.2. Linguistic Fuzzy Set 

Definition 2. [11]. Let 𝑆 = {𝑠଴, 𝑠ଵ, ⋯ , 𝑠௧} be a finite linguistic term set, where 𝑠௜ owns the fol-
lowing characteristics: 
(1) The set is ordered: 𝑠௝ ≥ 𝑠௞ iff 𝑗 ≥ 𝑘; 
(2) Negation operator: 𝑁𝑒𝑔(𝑠௝) = 𝑠௧ି௝; 
(3) Max operator: max(𝑠௝, 𝑠௞) = 𝑠௠௔௫(௝,௞); 
(4) Min operator: min(𝑠௝, 𝑠௞) = 𝑠௠௜௡(௝,௞). 
Example 1. A set of seven linguistic terms is given as: 𝑆 = {𝑠଴ = 𝑣𝑒𝑟𝑦 𝑛𝑒𝑎𝑟, 𝑠ଵ = 𝑛𝑒𝑎𝑟, 𝑠ଶ = 𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑛𝑒𝑎𝑟, 𝑠ଷ = 𝑛𝑜𝑡 𝑓𝑎𝑟 𝑛𝑜𝑡 𝑛𝑒𝑎𝑟, 𝑠ସ = 𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑓𝑎𝑟, 𝑠ହ = 𝑓𝑎𝑟, 𝑠଺ = 𝑣𝑒𝑟𝑦 𝑓𝑎𝑟}. 

  

Figure 1. Distances and directions of two markets.

In decision-making problems under CFSs or their extension environment, CFSs were
analyzed from two angles: (1) a real part and an imaginary part, (2) an amplitude term and
a phase term. This paper considers the decision-making problem from the second angle of
CFSs. In this situation, both amplitude term and phase term play important roles in the
ranking [10–13]. However, there is a very special situation, as the above example illustrates.
The phase term does not play a role in the ranking, but it still cannot be ignored in the
decision-making process because it plays a role in the aggregation process and then affects
the final sorting result. In some decision-making problems under CFS or its extension
environment [10–13], the phase term plays a role in the ranking. However, as the above
example illustrates, the phase term does not play a role in the ranking, but it still cannot
be ignored because it plays a role in the aggregation and then affects the final sorting
result. Moreover, in some literature [22–24], the phase term plays an important role in the
operations and algebraic structures of the CFS.

In this paper, we develop the linguistic complex fuzzy sets (LCFSs) to improve the
modeling ability of linguistic approaches motivated by CFSs. On the one hand, as far as we
know, nowadays, there are no corresponding discussions to propose the LCFS, although
the CFS has been extended to complex intuitionistic fuzzy sets [25], complex Pythagorean
fuzzy sets [26], complex hesitant fuzzy sets [27] and complex neutrosophic sets [28]. On
the other hand, in our daily life, “very far, south” and “far, northeast” often appear. We
need a new fuzzy approach of dealing with this type of linguistic information. Comparing
with other fuzzy linguistic approaches, LCFSs are particular suitable for these linguistic
assessments in decision making. We also study the aggregation operators to aggregate
LCFSs arguments and use these operators to deal with group decision-making problems.
However, when enjoying the benefits of the presented LCFS, we also have to face the
ensuing challenges:

1. The operators of LCFSs should be reduced to that of the LFS when the phases of the
CHFSs are zero.

2. As mentioned in [1], phase is relative. Although the order of CFSs only relies on their
amplitudes, the phase of the CFS should have a role in decision making under the
CFS environment.

Motivated by the above challenges and keeping the advantages of the CFS, the main
contributions of this article are as follows:

1. We establish the LCFS, which is the combination of the LFS and the CFS, to manage
linguistic variables of spatial directional information in real-decision theory.

2. We define the LCFWA operator, which is used to deal with group decision making
when the importance weights of experts are known.

3. We define the Amax and Amin operators which do not consider the phase terms.
Based on these two operators, we establish the Amax-Amin method for group decision
making when the importance weights of experts are unknown.

The rest of the study is organized as follows: Section 1 reviews the theories of CFSs
and linguistic fuzzy sets (LFSs). Section 2 defines LCFSs and their operators. Section 3
provides some decision-making methods to deal with group decision-making problems
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under LCFS information. Section 4 provides a case study. Conclusions are given in the
last section.

2. Preliminaries

Our proposal is based on the LFS and CFS. In this section, we briefly review their concepts.

2.1. Complex Fuzzy Set

Ramot et al. [1] introduced the complex fuzzy sets (CFSs) as follows:

Definition 1. [1]. A CFS E on the universal set X is defined as

E = {(x, rE(x)eiωE(x))|x ∈ X} (1)

where
√
−1 = i, rE(x) ∈ [0, 1] is the amplitude term and ωE(x) ∈ [0, 2π) is the phase term. For

convenience, αE = rEeiωE is called a complex fuzzy number (CFN).

For two CFNs αE = rEeiωE and αF = rFeiωF , Zhang et al. [18] gave some operations
on them, shown as follows:

(1) Neg(αE) = (1− rE)ei(2π−ωE);
(2) max(αE,αF) = max(rE, rF)emax(ωE,ωF)i;
(3) min(αE,αF) = min(rE, rF)emin(ωE,ωF)i.

2.2. Linguistic Fuzzy Set

Definition 2. [11]. Let S = {s0, s1, · · · , st} be a finite linguistic term set, where si owns the
following characteristics:

(1) The set is ordered: sj ≥ sk iff j ≥ k;
(2) Negation operator: Neg(sj) = st−j;
(3) Max operator: max(sj, sk) = smax(j,k);
(4) Min operator: min(sj, sk) = smin(j,k).

Example 1. A set of seven linguistic terms is given as:

S = {s0 = very near, s1 = near, s2 = slightly near, s3 = not f ar not near,
s4 = slightly f ar, s5 = f ar, s6 = very f ar}.

3. Linguistic Complex Fuzzy Set

In this section, we explore the concept of LCFSs and their basic operational laws.
The established work is also verified with the help of some numerical examples. We also
introduce the LCFWA operator in LCFSs environment.

The concept of the LCFS is given as follows:

Definition 3. A LCFS is defined on the universal set X with the form

S = {sa

∣∣∣a = raeiωa , r ∈ [0, t], w ∈ [0, 2π)} (2)

where sa owns the following characteristics:
The set is ordered: sa ≥ sb iff |a|≥|b|;
Negation operator: Neg(sa) = sb, where rb = t− ra and ωb = 2π −ωa;
Max operator: max(sa, sb) = sc, where rc = max(ra, rb) and ωc = max(ωa, ωb);
Min operator: min(sa, sb) = sc, where rc = min(ra, rb) and ωc = min(ωa, ωb).
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We denote sa as the linguistic complex fuzzy value (LCFV) or the linguistic complex
fuzzy number (LCFN).

For the two LCFNs sa and sb, we use sa ≤ sb if and only if |a| ≤ |b|, i.e., ra ≤ rb, obviously.

Proposition 1. Let sa, sb, sc, sd be four LCFSs. Then:
1) Neg(Neg(sa)) = sa;
2) Neg(max(sa, sb)) = min(Neg(sa), Neg(sb));
3) Neg(min(sa, sb)) = max(Neg(sa), Neg(sb));
4) max(max(sa, sb), sc) = max(sa, max(sb, sc));
5) min(min(sa, sb), sc) = min(sa, min(sb, sc));
6) max(min(sa, sb), sc) = min(max(sa, sb), max(sb, sc));
7) min(max(sa, sb), sc) = max(min(sa, sc), min(sb, sc)).

Proof. 1)
Neg(Neg(sa)) = Neg((t− ra)ei(2π−ωa)) = (t− (t− ra))ei(2π−(2π−ωa)) =

raeiωa = sa.
2) Neg(max(sa, sb))
= Neg(max(ra, rb)emax(ωa,ωb)i)
= (t−max(ra, rb))ei(2π−max(ωa,ωb))

=min(t−ra,t−rb)emin(2π−ωa,2π−ωb)i

= min(Neg(sa), Neg(sb)).
3) Neg(min(sa, sb))
= Neg(min(ra, rb)emin(ωa,ωb)i)
= (t−min(ra, rb))ei(2π−min(ωa,ωb))

=max(t−ra,t−rb)emax(2π−ωa,2π−ωb)i

= max(Neg(sa), Neg(sb)).
4) max(max(sa, sb), sc)
= max(max(ra, rb)emax(ωa,ωb)i, sc)
= max(max(ra, rb), rc)emax(max(ωa,ωb),ωc)i

= max(ra, max(rb, rc))emax(ωa,max(ωb,ωc))i

= max(sa, max(sb, sc)).
5) min(min(sa, sb), sc)
= min(min(ra, rb)emin(ωa,ωb)i, sc)
= min(min(ra, rb), rc)emin(min(ωa,ωb),ωc)i

= min(ra, min(rb, rc))emin(ωa,min(ωb,ωc))i

= min(sa, min(sb, sc)).
6) max(min(sa, sb), sc)
= max(min(ra, rb)emin(ωa,ωb)i, sc)
= max(min(ra, rb), rc)emax(min(ωa,ωb),ωc)i

= min(max(ra, rc), max(rb, rc))e
min(max(ωa,ωb),max(ωa,ωc))i

= min(max(sa, sb), max(sb, sc)).
7) min(max(sa, sb), sc)
= min(max(ra, rb)emax(ωa,ωb)i, sc)
= min(max(ra, rb), rc)emin(max(ωa,ωb),ωc)i

= max(min(ra, rc), min(rb, rc))e
max(min(ωa,ωb),min(ωa,ωc))i

= max(min(sa, sb), min(sb, sc)).
�

Definition 4. Let saj (j = 1, 2, · · · , n) be a collection of LCFNs, the linguistic complex fuzzy
weighted averaging (LCFWA) operator is defined as

sc = LCFWA(sa1 , sa2 , · · ·, san) (3)

where
c = w1a1 + w2a2 + · · ·+ wnan

where wj ∈ [0, 1], ∑n
j=1 wj = 1.
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If wj =
1
n for all j, then the LCFWA operator is the arithmetic average of saj (j = 1, 2, · · · , n),

denoted by the linguistic complex fuzzy arithmetic average (LCFAA) operator, i.e.,

sc =LCFAA(sa1 , sa2 , · · ·, san) (4)

where
c =

a1 + a2 + · · ·+ an

n

Proposition 2. Let saj (j = 1, 2, · · · , n) be a collection of LCFNs, then

(1) Idempotency: If sa1 = sa2 = · · · = san , then LCFWA(sa1 , sa2 , · · · , san ) = sa1 ;
(2) Upper boundedness: LCFAA(sa1 , sa2 , · · · , san ) ≤ sb,

where rb = max(ra1 , ra2 , · · · , ran).

Proof. (1) Since for any α ∈ C, w1α+ w2α+ · · ·+ wnα = (w1 + w2 + · · ·+ wn)α = α.
(2) Since rb = max(ra1 , ra2 , · · · , ran), |w1a1 + w2a2 + · · ·+ wnan| ≤ w1|a1|+ w2|a2|+

· · ·+ wn|an| ≤ |b|. Thus LCFAA(sa1 , sa2 , · · · , san ) ≤ sb. �

However, the LCFWA operator does not satisfy the property of (amplitude) monotonicity.

Example 2. We have |s2eiπ/12 |>|s1.9eiπ | and |s2eiπ5/12 |>|s1.9eiπ |, but

|LCFAA(s2eiπ/12 , s2eiπ5/12 )|= s 1.732eiπ/4 |<|s1.9eiπ |=|LCFAA(s1.9eiπ , s1.9eiπ )|.

If we only have one direction, we can use the subset of eight linguistic terms as follows:

S = {s0 = here, s1 = very near, s2 = near, s3 = slightly near, s4 =
not f ar not near, s5 = slightly f ar, s6 = f ar, s7 = very f ar}.

If we have the positive and negative directions, we can use the subset of eight linguistic terms
as follows:

S = {s−7 = (very f ar, west), s−6 = ( f ar, west), s−5 = (slightly f ar, west), s−4 =
(not f ar not near, west), s−3 = (slightly near, west), s−2 = (near, west), s−1 =

(very near, west), s0 = here, s1 = (very near, east), s2 = (near, east), s3 =
(slightly near, east), s4 = (not f ar not near, east), s5 = (slightly f ar, east), s6 =

( f ar, east), s7 = (very f ar, east)}.

Where east can be used as the positive direction, west can be used as the negative
direction. Therefore, LCFNs are more flexible to manage spatial directions than LFSs.

Here, we introduce two linguistic operators.

Definition 5. Let saj (j = 1, 2, · · · , n) be a collection of LCFNs, the linguistic amplitude max
(Amax) operator is defined as

Amax(sa1 , sa2 , · · ·, san) ={sc1 , sc2 , · · ·, scm}, (5)

where {sc1 , sc2 , · · · , scm} ⊆ {sa1 , sa2 , · · · , san} and rck = max(ra1 , ra2 , · · · , ran) for all
k = 1, 2, · · · , m.

The linguistic amplitude min (Amin) operator is defined as

Amin(sa1 , sa2 , · · ·, san) ={sc1 , sc2 , · · ·, scm}, (6)

where {sc1 , sc2 , · · · , scm} ⊆ {sa1 , sa2 , · · · , san} and rck = min(ra1 , ra2 , · · · , ran) for all
k = 1, 2, · · · , m.
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Example 3. Consider the following sets of LCFNs,

G = {s2eiπ/4 = (near, northeast), s2eiπ5/12 = (near, north by east),
s5eiπ/2 = (slightly f ar, north), s2eiπ/3 = (slightly near, north− northeast),

s3 = (not f ar not near, east)
s4eiπ3/2 = (slightly f ar, south), s5 = ( f ar, east),

s6eiπ17/12 = (very f ar, south by west), s6eiπ/4 = (very f ar, northeast)}

Then

Amax(G) =
{

s
6e

iπ17
12

= (very f ar, south by west), s
6e

iπ
4
= (very f ar, northeast)

}
,

and

Amax(G) = {s
2e

iπ
4
= (near, northeast), s

2e
iπ5
12

= (near, north by east),

s2eiπ/3 = (slightly near, north− northeast)}.

In real life, you try to find a bank near you. Then, you may get the answer such as
follows: “Bank A is near in the east, Bank B is near in the west, but Bank C is near in the
south, so you can go to Bank A or Bank B”.

Proposition 3. Let saj (j = 1, 2, · · · , n) and sb be LCFNs, then

(1) Amax(sa1 , · · · , san1
, sb) = Amax(Amax(sa1 , · · · , san1

), sb),
(2) Amin(sa1 , · · · , san1

, sb) = Amin(Amin(sa1 , · · · , san1
), sb).

Proof. (1) Assume that Amax(sa1 , sa2 , · · · , san ) = {sc1 , sc2 , · · · , scm }, if rc1 > rb, then
Amax(sa1 , · · · , san1

, sb)
= {sc1 , sc2 , · · · , scm}
= Amax(sc1 , sc2 , · · · , scm , sb)
= Amax(Amax(sa1 , · · · , san1

), sb);
if rc1 < rb, then
Amax(sa1 , · · · , san1

, sb)
= {sb}
= Amax(sc1 , sc2 , · · · , scm , sb)
= Amax(Amax(sa1 , · · · , san1

), sb);
if rc1 = rb and sb = scj for some j ∈ {1, 2, · · · , m}, then
Amax(sa1 ,· · · , san1

, sb)
= {sc1 , sc2 , · · · , scm}
= Amax(sc1 , sc2 , · · · , scm , sb)
= Amax(Amax(sa1 , · · · , san1

), sb);
if rc1 = rb and sb 6= scj for all j ∈ {1, 2, · · · , m}, then
Amax(sa1 , · · · , san1

, sb)
= {sc1 , sc2 , · · · , scm , sb}
= Amax(sc1 , sc2 , · · · , scm , sb)
= Amax(Amax(sa1 , · · · , san1

), sb).
(2) Assume that Amin(sa1 , sa2 , · · · , san )={sc1 , sc2 , · · · , scm }, if rc1 > rb, then
Amin(sa1 , · · · , san1

, sb)
= {sb}
= Amin(sc1 , sc2 , · · · , scm , sb)
= Amin(Amin(sa1 , · · · , san1

), sb);
if rc1 < rb, then
Amin(sa1 , · · · , san1

, sb)
= {sc1 , sc2 , · · · , scm}
= Amin(sc1 , sc2 , · · · , scm , sb)
= Amin(Amin(sa1 , · · · , san1

), sb);
If rc1 = rb and sb = scj for some j ∈ {1, 2, · · · , m}, then
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Amin(sa1 , · · · , san1
, sb)

= {sc1 , sc2 , · · · , scm}
= Amin(sc1 , sc2 , · · · , scm , sb)
= Amin(Amin(sa1 , · · · , san1

), sb);
if rc1 = rb and sb 6= scj for all j ∈ {1, 2, · · · , m}, then
Amin(sa1 , · · · , san1

, sb)
= {sc1 , sc2 , · · · , scm , sb}
= Amin(sc1 , sc2 , · · · , scm , sb)
= Amin(Amin(sa1 , · · · , san1

), sb).
�

Proposition 4. Let saj (j = 1, 2, · · · , n1) and sbk
(k = 1, 2, · · · , n2) be two collections of

LCFNs, then

(1) Amax(sa1 , · · · , san1
, sb1 , · · · , sbn2

) = Amax(Amax(sa1 , · · · , san1
), Amax( sb1 , · · · , sbn2

));
(2) Amin(sa1 , · · · , san1

, sb1 , · · · , sbn2
) = Amin(Amin(sa1 , · · · , san1

), Amin(sb1 , · · · , sbn2
)).

Proof. Trivial from Proposition 3. �

Definition 6. Let G1 = {sa1j1
(j1 = 1, 2, · · · , n1)}, G2 = {sa2j2

(j2 = 1, 2, · · · , n2)}, . . . ,
Gk = {sakjl

(jl = 1, 2, · · · , nk)} be collections of LCFNs, the Amax-Amin operator defined as

Amax-Amin{G1, G2, · · ·, Gk} = Amax(Amin(G1), Amin(G2), · · ·, Amin(Gk)). (7)

The Amin-Amax operator defined as

Amin-Amax{G1, G2, · · ·, Gk} = Amin(Amax(G1), Amax(G2), · · ·, Amax(Gk)). (8)

The goal of the Amax-Amin operator is to maximize the minimum LCFNs, and the goal of the
Amin-Amax operator is to minimize the maximum LCFNs.

Proposition 5. Let G1 = {sa1j1
(j1 = 1, 2, · · · , n1)}, G2 = {sa2j2

(j2 = 1, 2, · · · , n2)}, . . . ,
Gk = {sakjl

(jl = 1, 2, · · · , nk)} be collections of LCFNs, then

(1) Amax-Amin{ G1, G2, · · · , Gk} ≥ Amax-Amin{G1, G2, · · · , Gk−1};
(2) Amin-Amax{G1, G2, · · · , Gk−1} ≥ Amin-Amax{G1, G2, · · · , Gk}.

Proof. Trivial. �

4. Group Decision-Making Method Based on the Amin-Amax and LCFWA Operators

In this section, the Amin-Amax and LCFWA operators are applied to decision making.
We also show the consistency and superiority of the proposed methods by comparing with
some conventional methods.

A decision-making problem considered can be described as follows: let X = {x1, x2, · · · , xn}
be the set of alternatives and S = {sa|a = raeiωa , r ∈ [0, t], w ∈ [0, 2π)} the linguistic
complex fuzzy set. Assume that D = {d1, d2, · · · , dp} is the set of decision makers and

R =
(

sajk

)
p×n

is their linguistic complex fuzzy decision matrix, where each sajk is a LCFN

on S and represents the linguistic assessment of the alternative xk ∈ X obtained by the
decision maker dj ∈ D.

Applying the Amin-Amax operator or LCFWA operator on LCFNs, our selection
method of the alternatives is given as follows:

Seep 1: If the important weights of decision makers are unknown, then we utilize the
Amax operator to aggregate all sajk (j = 1, 2, · · · , p) for each alternative xk ∈ X,

sak =Amax(sa1k , sa2k , · · · , sapk ).
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If the important weights of decision makers are given as w = {w1, w2, · · · , wp}, then
we utilize the LCFWA operator to aggregate all sajk (j = 1, 2, · · · , p) for each alternative
xk ∈ X,

s′ak
=LCFWA(sa1k , sa2k , · · · , sapk ).

Seep 2: Rank all the alternatives xk in accordance with sak or s′ak
(k = 1, 2, · · · , n).

Note that in the case of that the important weights of decision makers are unknown,
we can use utilize the Amin-Amax operator to combine setp step 1 and step 2, i.e.,

Amin(Amax(sa11 , sa21 , · · · , sap1), Amax(sa12 , sa22 , · · · , sap2), · · · , Amax(sa1n , sa2n , · · · , sapn)).

If the result is denoted by {saj1k1
,saj2k2

,· · · , sajqkq
}, then {j1, j2, · · · , jq} is the set of the

best alternatives.

Example 4. In real life, we ask strangers for directions, assume that X = {x1, x2, x3} is the set of
alternatives, D = {d1, d2, d3, d4} is the set of strangers, the linguistic complex fuzzy set given in
Table 1 is used to generate the linguistic expressions. The assessments given by strangers to the
four alternatives are shown in Table 2.

Table 1. Representation of spatial orientation.

Very
Near Near Slightly

Near
Not Far

Not Near Slightly Far Far Very
Far

East s1 s2 s3 s4 s5 s6 s7

South by east seiπ23/12 s2eiπ23/12 s3eiπ23/12 s4eiπ23/12 s5eiπ23/12 s6eiπ23/12 s7eiπ23/12

Southeast seiπ11/6 s2eiπ11/6 s3eiπ11/6 s4eiπ11/6 s5eiπ11/6 s6eiπ11/6 s7eiπ11/6

East-southeast seiπ7/4 s2eiπ7/4 s3eiπ7/4 s4eiπ7/4 s5eiπ7/4 s6eiπ7/4 s7eiπ7/4

Southeast seiπ5/3 s2eiπ5/3 s3eiπ5/3 s4eiπ5/3 s5eiπ5/3 s6eiπ5/3 s7eiπ5/3

South-southeast seiπ19/12 s2eiπ19/12 s3eiπ19/12 s4eiπ19/12 s5eiπ19/12 s6eiπ19/12 s7eiπ19/12

South seiπ3/2 s2eiπ3/2 s3eiπ3/2 s4eiπ3/2 s5eiπ3/2 s6eiπ3/2 s7eiπ3/2

South by west seiπ17/12 s2eiπ17/12 s3eiπ17/12 s4eiπ17/12 s5eiπ17/12 s6eiπ17/12 s7eiπ17/12

Southwest by south seiπ4/3 s2eiπ4/3 s3eiπ4/3 s4eiπ4/3 s5eiπ4/3 s6eiπ4/3 s7eiπ4/3

Southwest seiπ5/4 s2eiπ5/4 s3eiπ5/4 s4eiπ5/4 s5eiπ5/4 s6eiπ5/4 s7eiπ5/4

Southwest by west seiπ7/6 s2eiπ7/6 s3eiπ7/6 s4eiπ7/6 s5eiπ7/6 s6eiπ7/6 s7eiπ7/6

West by south seiπ13/12 s2eiπ13/12 s3eiπ13/12 s4eiπ13/12 s5eiπ13/12 s6eiπ13/12 s7eiπ13/12

West seiπ s2eiπ s3eiπ s4eiπ s5eiπ s6eiπ s7eiπ

West by north seiπ11/12 s2eiπ11/12 s3eiπ11/12 s4eiπ11/12 s5eiπ11/12 s6eiπ11/12 s7eiπ11/12

Northwest by west seiπ5/6 s2eiπ5/6 s3eiπ5/6 s4eiπ5/6 s5eiπ5/6 s6eiπ5/6 s7eiπ5/6

Northwest seiπ3/4 s2eiπ3/4 s3eiπ3/4 s4eiπ3/4 s5eiπ3/4 s6eiπ3/4 s7eiπ3/4

North-northwest seiπ2/3 s2eiπ2/3 s3eiπ2/3 s4eiπ2/3 s5eiπ2/3 s6eiπ2/3 s7eiπ2/3

North by west seiπ7/12 s2eiπ7/12 s3eiπ7/12 s4eiπ7/12 s5eiπ7/12 s6eiπ7/12 s7eiπ7/12

North seiπ/2 s2eiπ/2 s3eiπ/2 s4eiπ/2 s5eiπ/2 s6eiπ/2 s7eiπ/2

North by east seiπ5/12 s2eiπ5/12 s3eiπ5/12 s4eiπ5/12 s5eiπ5/12 s6eiπ5/12 s7eiπ5/12

North-northeast seiπ/3 s2eiπ/3 s3eiπ/3 s4eiπ/3 s5eiπ/3 s6eiπ/3 s7eiπ/3

Northeast seiπ/4 s2eiπ/4 s3eiπ/4 s4eiπ/4 s5eiπ/4 s6eiπ/4 s7eiπ/4

East-northeast seiπ/6 s2eiπ/6 s3eiπ/6 s4eiπ/6 s5eiπ/6 s6eiπ/6 s7eiπ/6

East by north seiπ/12 s2eiπ/12 s3eiπ/12 s4eiπ/12 s5eiπ/12 s6eiπ/12 s7eiπ/12
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Table 2. Assessments.

x1 x2 x3

d1 Far, South-southeast Very far, North-northeast Very far, Northwest by west

d2 Slightly far, East-southeast Slightly near, Northeast Not far not near, Northwest

d3 Far, Southeast Slightly far, East by north Slightly far, West by north

d4 Not far not near, Southeast Slightly near, East-northeast Slightly far, Northwest

By using Table 1, we transform the linguistic expressions into LCFNs, which are shown
in Table 3. By using the Amax operator, we get

sa1 = Amax(s6eiπ19/12 , s5eiπ7/4 , s6eiπ5/3 , s4eiπ5/3) = {s6eiπ19/12 , s6eiπ5/3};
sa2 = Amax(s7eiπ/3 , s3eiπ/4 , s5eiπ/12 , s3eiπ/6) = {s7eiπ/3};
sa3 = Amax(s7eiπ5/6 , s4eiπ3/4 , s5eiπ11/12 , s5eiπ3/4) = {s7eiπ5/6}.

Table 3. Assessments transformed into LCFNs.

x1 x2 x3

d1 s6eiπ19/12 s7eiπ/3 s7eiπ5/6

d2 s5eiπ7/4 s3eiπ/4 s4eiπ3/4

d3 s6eiπ5/3 s5eiπ/12 s5eiπ11/12

d4 s4eiπ5/3 s3eiπ/6 s5eiπ3/4

Clearly, we have sa1 < sa2 = sa3 since |6eiπ19/12| = |6eiπ5/3| < |s7eiπ/3 | = |7eiπ5/6|. In
this case, the decision maker is pessimistic, x1 is the nearest alternative.

If the decision maker thinks the strangers are the same weight, i.e., w = { 1
4 , 1

4 , 1
4 , 1

4}.
Then, by using the LCFAA operator to aggregate all sajk (j = 1, 2, 3,4) for each alternative
xk ∈ X,

s′a1
= LCFAA(s6eiπ19/12 , s5eiπ7/4 , s6eiπ5/3 , s4eiπ5/3)

= s 6eiπ19/12+5eiπ7/4+6eiπ5/3+4eiπ5/3
4

= s5.1567e−1.0597i

s′a2
= LCFAA(s7eiπ/3 , s3eiπ/4 , s5eiπ/12 , s3eiπ/6)

= s 7eiπ/3+7eiπ/4+7eiπ/12+7eiπ/6
4

= s4.2631e0.6994i

s′a3
= LCFAA(s7eiπ5/6 , s4eiπ3/4 , s5eiπ11/12 , s5eiπ3/4)

= s 7eiπ5/6+4eiπ3/4+5eiπ11/12+5eiπ3/4
4

= s3.2093e2.6987i .

Therefore, the ranking of alternatives s′a1
> s′a2

> s′a3
. Therefore, x3 is the nearest alternative.

In our methods, the phase term plays a role in decision making. First, we show the
consistency of the Amin-Amax method by comparing it with the conventional Min-Max
method. Since for any collection of LCFNs saj (j = 1, 2, · · · , n), we have

|Amin(sa1 , sa2 , · · · , san)| = Min(|sa1 | , |sa2 |, · · · , |san |),
|Amax(sa1 , sa2 , · · · , san)| = Max(|sa1 | , |sa2 |, · · · , |san |).

Then the final sorting result of the Amin-Amax method is consistent with that of the
conventional Min-Max method.
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If we only consider the amplitude term of LCFNs in aggregation by using the conven-
tional linguistic fuzzy weighted averaging (FWA) operator,

s′′a1 =FWA(|s6eiπ19/12 |, |s
5e

iπ7
4
|, |s

6e
iπ5

3
|, |s

4e
iπ5

3
|) = s 6+5+6+4

4
= s5.25;

s′′a2 = FWA (|s
7e

iπ
3
|, |s

3e
iπ
4
|, |s

5e
iπ
12
|, |s

3e
iπ
6
|) = s 7+7+7+7

4
= s7;

s′a3
= FWA (|s

7e
iπ5

6
|, |s

4e
iπ3

4
|, |s

5e
iπ11

12
|, |s

5e
iπ3

4
|) = s 7+4+5+5

4
= s5.25.

Therefore, the ranking of alternatives is s′′a1 > s′′a2 = s′′a3 . Therefore, both x2 and x3 are
the nearest alternative.

Although the ranking method relies only on the amplitude term of LCFNs, the phase
term can not be neglected in the aggregation of LCFSs. LCFAA is a generalization of
conventional linguistic FWA. Compared with the conventional linguistic FWA operator,
the phase term in the LCFAA-based method is considered to make the result more accurate
and complete.

5. Case Study

In the following, we further illustrate the practicality of LCFSs by utilizing a practical example.
We assume that a person (decision maker) likes to take the train from Hangzhou to one

of three cities (Beijing, Xiamen and Changsha) on 1 April 2022. The linguistic expressions
of travel times are shown in Table 4.

Table 4. LFSs of travel times.

LFSs Very
Near Near Slightly

Near
Not Far

Not Near
Slightly

Far Far Very
Far

Travel time <1 h 1–2 h 2–3 h 3–4 h 4–5 h 5–6 h >6 h

The departure times are divided into three intervals, t1 = [8:00–11:00], t2 = [11:00–14:00]
and t3 = [14:00–20:00]. Since the possibility of departure time belonging to these intervals
are different, each interval is given a weight, as shown in Table 5.

Table 5. Relative weights.

t1 = [8:00–11:00] t2 = [11:00–14:00] t3 = [14:00–20:00]

wj
1
3

1
6

1
2

From the China Railway’s official website (https://12306.cn, accessed on 26 February
2023), the number of trains from Hangzhou to these cities on 1 April 2022 are given in
Tables 6–8, respectively. Here, we only consider the high-speed trains.

Table 6. Trains from Hangzhou to Beijing on 1 April 2022.

Departure Time <4 h 4–5 h 5–6 h >6 h

t1 = [8:00–11:00] 0 0 0 1

t2 = [11:00–14:00] 0 0 0 3

t3 = [14:00–20:00] 0 1 0 1

https://12306.cn
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Table 7. Trains from Hangzhou to Xiamen on 1 April 2022.

Departure Time <4 h 4–5 h 5–6 h >6 h

t1 = [8:00–11:00] 0 0 1 2

t2 = [11:00–14:00] 0 2 0 2

t3 = [14:00–20:00] 0 0 0 3

Table 8. Trains from Hangzhou to Changsha on 1 April 2022.

Departure Time <4 h 4–5 h 5–6 h >6 h

t1 = [8:00–11:00] 0 3 0 0

t2 = [11:00–14:00] 0 2 0 0

t3 = [14:00–20:00] 0 4 0 0

Based on above three tables, the linguistic assessments of these cities for different
departure times are shown in Table 9.

Table 9. Linguistic assessments.

Departure Time Beijing Xiamen Changsha

t1 = [8:00–11:00] Very far, north Far, south Slightly far, southwest

t2 = [11:00–14:00] Far, north Slightly far, south Slightly far, southwest

t3 = [14:00–20:00] Slightly far, north Very far, south Slightly far, southwest

By using Table 1, we transform the linguistic assessments into LCFNs, which are
shown in Table 10.

Table 10. Linguistic assessments transformed into LCFNs.

Departure Time Beijing Xiamen Changsha

t1 = [8:00–11:00] s7eiπ/2 s6eiπ3/2 s5eiπ5/4

t2 = [11:00–14:00] s6eiπ/2 s5eiπ3/2 s5eiπ5/4

t3 = [14:00–20:00] s5eiπ/2 s7eiπ3/2 s5eiπ5/4

Case 1: If we do not consider the possibility of the departure time belonging to different
intervals, by using Amax operator, we get

sBeijing =Amax(s7eiπ/2 , s6eiπ/2 , s5eiπ/2) = {s7eiπ/2}.

sXiamen = Amax
(

s
6e

iπ3
2

, s
5e

iπ3
2

, s
7e

iπ3
2

)
=
{

s
7e

iπ
3

}
.

sChangsha =Amax(s5eiπ5/4 , s5eiπ5/4 , s5eiπ5/4) = {s5eiπ5/4}.

Clearly, we have sChangsha < sXiamen = sBeijing since |5eiπ5/4| < |7eiπ/3| = |7eiπ/2|. In
this case, the decision maker is pessimistic, Changsha is the nearest alternative.
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Case 2: If we consider the possibility of the departure time belonging to different
intervals, i.e., the weight vector of intervals for the departure times is w = { 1

3 , 1
6 , 1

2}, then
by using the LCFWA operator to aggregate all sajk (j = 1, 2, 3) for each alternative,

s′Beijing =LCFWA(s7eiπ/2 , s6eiπ/2 , s5eiπ/2) = s 2∗7eiπ/2+6eiπ/2+3∗5eiπ5/3
6

. = s5.83eiπ/2

s′Xiamen =LCFWA(s6eiπ3/2 , s5eiπ3/2 , s7eiπ3/2) = s 2∗6eiπ3/2+5eiπ3/2+3∗7eiπ3/2
6

= s6.33e0.6994i

s′Changsha =LCFWA(s5eiπ5/4 , s5eiπ5/4 , s5eiπ5/4) = s 2∗5eiπ5/4+5eiπ5/4+3∗5eiπ5/4
6

= s5eiπ5/4

Therefore, the ranking of alternatives becomes s′Xiamen > s′Beijing > s′Changsha. Therefore,
Changsha also is the nearest alternative. Note that Beijing is nearer than Xiamen in this way.

In this example, Case 1 only considered the amplitude term of LCFNs, sXiamen and
sBeijing are not comparable. Case 2 considered both the amplitude and phase terms of
LCFNs, which makes the result more accurate and complete.

6. Conclusions

The objective of this work is to establish the LCFS, which is the combination of the CFS
and LFS to manage spatial directional information in real-decision theory. Furthermore,
Amax, Amin, LCFWA and LCFAA operators of LCFS have been presented. After this,
these operators are utilized in decision making under the LCFS environment to examine
the feasibility and validity of the explored operators. Finally, the numerical example for
established operators is solved to express the validity of the explored work.

Of course, many works should be done on the theory of LCFSs. We give some possible
topics for future consideration.

1. We do not consider the weight determination method of LCFNs. This is a problem left
for further investigation. In this paper, the numerical weight is used in aggregation.
In future work, we will consider the linguistic weights and complex weights for
LCFNs aggregation.

2. We will also study the distance and entropy measures of LCFSs and develop more
aggregation operators for group decision-making problems with LCFSs information.

3. There exists LCFNs that are incomparable. For any two LCFNs sa, sb with |a| = |b|
but a 6= b, they are incomparable. Naturally, a more detailed discussion of the
comparation of LCFNs will be both necessary and interesting.
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Abbreviations
The following abbreviations are used in this manuscript:

CFS Complex fuzzy set
LFS Linguistic fuzzy set
LCFS Linguistic complex fuzzy set
LCFWA Linguistic complex fuzzy weighted averaging
Amax Amplitude max
Amin Amplitude min
IVFS Interval-valued fuzzy set
IFS Intuitionistic fuzzy set
IVIFS Interval-valued intuitionistic fuzzy set
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PFS Pythagorean fuzzy set
HFS Hesitant fuzzy set
CFN Complex fuzzy number
LCFN Linguistic complex fuzzy number
LCFV Linguistic complex fuzzy value
FWA Fuzzy weighted averaging
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