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Abstract: Due to the complexity of the data being generated day in and day out in many practical
domains, as a result of the development of scales for rating the success or failure of reliability, a new
domain of reliability called the classes of life and determinant probability distributions has been
presented. This article introduces novel statistical probability models for the reliability class of life test
under different reliability processes in the age range t◦. Several probabilistic properties and features
were derived and rigorously screened to test the new reliability class. According to the U-statistic, a
novel hypothesis test was created to evaluate the exponentiality property. The comparative efficiency
of the test according to Pitman’s asymptotic efficiency was examined and compared with other
reliability classes. To prove the superiority of the new reliability class, some probability models were
utilized, including the Weibull, Makeham, gamma, and linear failure rate models. Moreover, critical
point simulations of the null Monte Carlo distribution and some applications of the censored and
uncensored data were implemented to validate the class test listed by the reliability analysis.

Keywords: convolution; mixture; statistical model; U-statistic; aging; increasing convex order;
simulation; statistics and numerical data

MSC: 62C07; 62G99; 62N01; 62N02; 62N05

1. Introduction

In the statistical sciences, the process of hypothesis testing involves making an ana-
lyzed assumption about a population parameter for testing. To test the null hypothesis
against an alternative hypothesis, analysts use a sample of the population. The null hypoth-
esis usually states that two parameters are identical. For example, one can claim that the
content means the payout is zero. The alternative hypothesis, such as “population means
yield is not equal to zero” is essentially the opposite of the null hypothesis. Since they
contradict each other, only one of them can be true.
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Several classes of life models have been reported to reflect the different components of
aging. In dependency, economics, queuing, epidemiology, scheduling, and other fields, the
convex ascending order of random variables determined by the comparison of increasing
and convex expectation functions has found wide use. A growing convex system has
many applications in queuing theory, dependability, operations research, economics, and
other fields. Stoyan [1], for example, used this arrangement to determine the ideal sample
size for an experimental design. By comparing queues and stochastic processes, Ross [2]
offered various applications of this ordering. Using a specific distribution order allows
characterizing and creating new definitions of aging categories. The aging phenomenon
refers to the fact that an older system rather than a younger one has a shorter residual life
in some static sense. The lifespan distribution classes, such as increasing failure rate (IFR),
increasing failure rate average (IFRA), and new better than used (NBU), have thoroughly been
researched usingreliability theory and its applications to derive practical constraints for
the reliability of components or modules. The properties of maintaining life distribution
classes under different reliability processes should also be studied for the same reason.
These processes are generated by related systems, which may include identical or different
components. Minimum and maximum component life, which are configured by the serial
and parallel systems, respectively, are two important reliability measures.

Another well-liked action is warp, which is associated with cold standby systems. A
lifetime distribution class is indicated as closed within a reliability process if the lifetime
distributions of system components indicate that the lifetime distribution for the class as a
whole also belongs to the class. It has long been found to be very useful in reliability theory
for classifying life distributions according to aging characteristics. The most-well-known
classes of life distributions that Barlow and Broshan [3] examined are the characteristics of
aging for our IFR, IFRA, and NBU. The new better than used convex ordering (NBUC) and new
worse than used convex ordering (NWUC) aging qualities were both presented by Cao and
Wang [4] as extensions of NBU. Most of the traits connected to NBUC were investigated
in Pellerey [5]. For the new better than used in the increasing convex average order (NBUCA)
class based on the Laplace transform, see Al-Gashgari et al. [6]. A new better than used convex
ordering moment generation function (NBUCmg f ) class was discussed by Abu-Youssef et al. [7].
For the exponential better than equilibrium life in convex (EBELC) class, see Mahmoud et al. [8].
Many aging categories/classes for life distributions at specific ages have been explored from
a variety of perspectives by statisticians and reliability analysts. More information can be
found in Hollander et al. [9]; Ebrahimi and Habbibullah [10] considered the question of
how to prove that the quality of an item, as measured by its residual life, has decreased
after a certain period of time of time t◦. This problem/issue may arise, for example, if
one wishes to prove that the probability of failure has increased since the beginning of
the process in order to justify the demand for certain maintenance activities at time t◦.
Given that t◦ is a given or definite period of interest, it is reasonable to assume that t◦ is
known. See Renea and Samanieg [11] for NBU−t◦, Ahmad [12], Zehui and Xiaohu [13]
for IFRA−t◦ and NBU−t◦, Mahmoud et al. [14] for NBUE−t◦, Mahmoud et al. [15] for
NBURFR−t◦, Pandit and Anuradha [16] for NBU−t◦, Gadallah [17] for NBUmg f − t◦, Abdul
Alim [18] for NBUFR−t◦, Mahmoud et al. [19] for NBUL−t◦, Elbatal [20] for NBUC−t◦ and
NBU(2)−t◦, and EL-Sagheer [21] for NBRUL−t◦. The main objective of the research is that
in nonparametric testing of life distributions, we discovered a lack of test efficiency and a
weak test power. To account for the effectiveness and strength of the test, we developed a
brand-new reliability class test of the life distribution called a new better than renewal used in
the Laplace transform in increasing convex order at age t◦ (NBRULC−t◦).

In actual life, there are instances when the system’s components gradually deteriorate
up to time t◦, the length of the warranty period most manufacturers provide, and are then
renewed by the replacement of spare parts at time t◦. In this situation, renewal aims to
improve system usability, but is unable to restore the system to its previous state at age t◦.
For instance, the Aviation Administration decided that an airplane engine component needs
to be replaced after many hours of flying. According to the airlines, this substitution is at
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best unneeded and might potentially be damaging to the aircraft. Airlines use operating
data to determine whether an airplane engine is still as good as new after hours of renewal
to back up their claim.

In the medical field, according to experts in the field of cancer, a person who has
just received a diagnosis of a certain type of cancer has a significantly lower chance of
surviving than someone alive for five years (= t◦) since receiving the diagnosis. (In fact,
such survivors are frequently labeled as “cured”.) There may be a desire to test the cancer
professionals’ beliefs.

Furthermore, for instance, a component that a manufacturer claims exhibits “infant
mortality” has a declining failure rate over the range [0, t◦]. This notion is based on
knowledge gained for related components. One wants to know if a used component
of a certain age has a stochastically longer residual life than a fresh component. If so,
he/she will test a certain portion of his/her output over the range [0, t◦] and then sell the
components that have survived to customers who require high-reliability components (such
as a spacecraft assembly) at a premium price. To confirm or deny his/her preconceived
notion, he/she wants to test this theory. The development of a new class of life distribution
(NBRULC−t◦), a discussion of its characterization, and a comparison of the exponentiality
and NBRULC−t◦ class using the Un-statistic are the main points of this essay.

2. NBRULC−t◦ Class: Interpretation and Characterization
2.1. Interpretation

A survival function F(x) for a positive random variable X is considered a new better
(worse) than renewal used in the Laplace transform order, X ∈ NBRUL (NWRUL), iff∫ ∞

0

∫ ∞

x+t
e−mxF(u)dudx ≤ (≥)

∫ ∞

0

∫ ∞

t
e−mxF(x)F(u)dudx, x, t, m ≥ 0,

where x is the value of the random variable X, m represents the parameter of the exponential
distribution, and t is the time after a period of operation t◦ (t◦ > 0) (see Mahmoud et al. [22]).
Depending on this concept, Etman et al. [23] defined a new class, in the so-called a new
better (worse) than renewal used in Laplace transform in increasing convex order, say NBRULC
(NWRULC), as follows∫ ∞

0

∫ ∞

x+t
e−mxWF(u)dxdu ≤ (≥)

∫ ∞

0

∫ ∞

t
e−mxF(x)WF(u)dxdu, x, t, m ≥ 0,

or ∫ ∞

0
e−mxΓ(x + t)dx ≤

∫ ∞

0
e−mxF(x)Γ(t)dx,

where Γ(x + t) =
∫ ∞

x+t WF(u)du. According to the definitions of Mahmoud et al. [22]
and Etman et al. [23], a new class of life distributions known as NBRULC at age t◦, say
(NBRULC−t◦), is defined. A survival function F(x) for a non-negative random variable X
is considered new better (worse) than renewal used in the Laplace transform in increasing convex
order at age t◦, (X ∈ NBRULC−t◦(NWRULC−t◦)), iff∫ ∞

0

∫ ∞

t◦
e−mxWF(x + u)dxdu ≤ (≥)

∫ ∞

0

∫ ∞

t◦
e−mxF(x)WF(u)dxdu, x, t◦, m ≥ 0,

or ∫ ∞

0

∫ ∞

x+t◦
e−mxWF(u)dxdu ≤ (≥)

∫ ∞

0

∫ ∞

t◦
e−mxF(x)WF(u)dxdu,

and this could be rewritten as∫ ∞

0
e−mxΓ(x + t◦)dx ≤

∫ ∞

0
e−mxF(x)Γ(t◦)dx.

Remark 1. It is clear that NBRUL⇒ NBRULC⇒ NBRULC−t◦.
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2.2. Characterization
2.2.1. Convolution Property

The convolution property of reliability classes is a property that states that if a system
has a certain reliability class, such as IFR or NBU, then any convolution of systems with the
same reliability class will also have the same reliability class. A systems wrap is a system
consisting of various components connected in series, such that the system fails when any
of the components fail. The reliability class is a way to describe how the failure rate of a
system has changed over time. One possible application of the convolution property of
reliability classes is the reliability analysis of systems consisting of different components
connected in series. For example, one can use the convolution property to determine
whether a system consisting of regenerative convolutions has a certain reliability class, such
as IFR or NBU. Regeneration is a process that defines the time between successive failures
of a system that is either repaired or replaced after each failure. Some possible properties
of reliability classes are: Save property This property states that if a system has a certain
reliability class, such as IFR or NBU, any subsystem or component of the system will have
the same reliability class. This characteristic indicates that adding more components to
the system will not improve the reliability class; Close property This property states that
if a system has a certain reliability class, such as IFR or NBU, then any function in the
system that maintains its failure rate will also have the same reliability class. For example,
if the system has an IFR class, then the reciprocal or logarithm will also have an IFR class;
Duality property This property states that if a system has a certain reliability class, such as
IFR or NBU, its dual system will have the opposite reliability class, such as DFR or NWU.
A dual system is a system with the same failure rate as the original system but with an
inverted time scale. For example, if a system has an IFR class, its dual system will have a
DFR class. One possible way to use the properties of reliability classes to analyze systems is
to perform a RAMS analysis. Using the properties of reliability classes, one can determine
how the failure rate of a system changes over time and how it affects its availability and
maintainability. For example, one can use the save property to compare reliability classes
for different components or subsystems of a system. One can also use the closure property
to apply different functions to the system and see how they affect the reliability class. One
can also use the duality property to find system duality and compare reliability classes.

Theorem 1. The NBRULC−t◦ class is preserved under convolution.

Proof. It is known that the convolution of two independent NBRULC−t◦ lifetime distribu-
tions, F1 and F2, can be formulated as

F(u) =
∫ ∞

0
F1(u− z)dF2(z).

Therefore,∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mxF(u)dudydx =

∫ ∞

0
e−mx

∫ ∞

t◦

∫ ∞

x+y

∫ ∞

0
F1(u− z)dF2(z)dudydx

=
∫ ∞

0

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mxF1(u− z)dudydxdF2(z).

Since F1 is NBRULC−t◦, then∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mxF(u)dudydx ≤

∫ ∞

0

∫ ∞

0

∫ ∞

t◦

∫ ∞

y
e−mxF1(x)F1(u− z)dudydxdF2(z)

≤
∫ ∞

0
e−mxF1(x)

∫ ∞

t◦

∫ ∞

y

∫ ∞

0
F1(u− z)dF2(z)dudydx

≤
∫ ∞

0
e−mxF1(x)

∫ ∞

t◦

∫ ∞

y
F(u)dudydx,
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and by using Fi(x) ≤ F(x) for i = 1, 2, we obtain∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mxF(u)dudydx ≤

∫ ∞

0

∫ ∞

t◦

∫ ∞

y
e−mxF(x)F(u)dudydx,

which completes the proof.

2.2.2. Mixture Property

The mixing property of reliability classes is a property that states that if a system
has a certain reliability class, such as IFR or NBU, any combination of systems with the
same reliability class will also have the same reliability class. A mixture of systems is a
system consisting of different components chosen randomly according to some probability
distribution. The reliability class is a way to describe how the failure rate of a system has
changed over time. One possible application of the mixture characteristic for reliability
classes is the reliability analysis of systems consisting of different components with different
lifetimes and different failure rates. For example, one can use the admixture property to
determine whether a system consisting of a mixture of regeneration processes has a certain
reliability class, such as IFR or NBU. Regeneration is a process that defines the time between
successive failures of a system that is either repaired or replaced after each failure. One
possible example of a system consisting of a mixture of regeneration processes is a system
that detects and separates impulsive sources based on impulse spacing. The pulse spacing
of each source is modeled as a regeneration process, which means that the time between
successive pulses is a random variable that depends only on the previous impulse. The
system receives a mixture of pulses from different sources and tries to determine which
source each pulse belongs to. This is called deinterlacing of regeneration mixtures. The
system filters out mixtures of regeneration processes using a method called maximum
likelihood estimation (MLE). MLE is a technique that searches for the most likely values of
statistical model parameters that fit the observed data. In this case, the system attempts to
find the most likely values of the pulse spacing distributions for each source that fit the
observed mixture of pulses. The system then assigns each pulse to the source that has the
highest probability of generating it. Some of the potential advantages and disadvantages of
MLE are: Advantages: It is easy to apply and can handle different types of statistical models.
It has lower variance than other methods, which means it is less affected by sampling
error. It is also unbiased with increasing sample size, which means that it converges
to the true value of the coefficient. It is statistically well understood and has desirable
properties such as consistency, efficiency, and approximate normality. Disadvantages: May
be computationally intensive or intractable for some complex models. It may also be
sensitive to outliers or model selection error. It does not account for prior information or
parameter uncertainty. It may also result in biased estimates for small sample sizes.

Theorem 2. The NWRULC−t◦ class is preserved under mixture.

Proof. It is obvious that F(u) is the mixture of Fγ, where each Fγ is NWRULC−t◦, where

F(u) =
∫ ∞

0
Fγ(u)dG(γ),

then ∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mxF(u)dudydx =

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y

∫ ∞

0
e−mxFγ(u)dG(γ)dudydx

=
∫ ∞

0

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mxFγ(u)dudydxdG(γ),

since Fγ is NWRULC−t◦, then
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∫ ∞

0

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mxFγ(u)dudydxdG(γ) ≥

∫ ∞

0
{
∫ ∞

0

∫ ∞

t◦

∫ ∞

y
e−mxFγ(x)Fγ(u)dudydx}dG(γ).

Chebyshev’s inequality for similarity-ordered functions yields the following results

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mxF(u)dudydx ≥

∫ ∞

0

∫ ∞

0
e−mxFγ(x)dG(γ)dx

∫ ∞

t◦

∫ ∞

y

∫ ∞

0
Fγ(u)dG(γ)dudy

≥
∫ ∞

0
e−mxF(x)dx.

∫ ∞

t◦

∫ ∞

y
F(u)dudy

≥
∫ ∞

0

∫ ∞

t◦

∫ ∞

y
e−mxF(x)F(u)dudydx,

which complete the proof.

Chebyshev’s inequality is a mathematical theorem that gives a limit on the probability
that a random variable will deviate from its mean by more than a certain number of
standard deviations. It can be used to estimate how likely it is that extreme values will be
observed in a data set.

2.2.3. Homogeneous Poisson Shock Model

Homogeneous Poisson shock model is a type of stochastic model that describes system
failure due to random shocks that occur according to the homogeneous Poisson process.
Homogeneous Poisson process is a process that counts the number of events that occur in a
given time period, where the events are independent and have a constant rate. The shock
model assumes that each shock causes some damage to the system, and the system fails
when the total damage exceeds a certain threshold. Poisson homogeneous shock models
can be used to model various phenomena such as insurance claims, health impairment,
or machine failure. For example, one can use a homogeneous Poisson shock model to
estimate the probability of a car crashing due to random mechanical failures that occur at
a constant rate over time. There are different types of trauma models depending on the
nature and distribution of trauma and the damage it causes. For example, some common
types of shock models are: Heterogeneous Poisson shock models, where shocks occur
according to an in-homogeneous Poisson process with a variable rate over time; delta
models-shocks, where shocks occur at fixed intervals and deal a fixed amount of damage;
trigger shock models, where shocks occur in groups or combinations and deal a variable
amount of damage; mixed shock models, where shocks are a mixture of different types of
shock models. Note that these types of shock models differ from the types of circulatory
shock that affect the human body, such as septic shock, cardiogenic shock, hypovolemic
shock, or anaphylactic shock. Some of the potential advantages and disadvantages of
inhomogeneous Poisson shock models are: Advantages: they can capture changes in
the shock rate over time, which may better reflect the reality of some phenomena than a
constant rate. They can also accommodate different types of shock rate functions, such as
periodic, linear, exponential, or arbitrary functions. According to the disadvantages: they
may be more complex and difficult to analyze than homogeneous Poisson shock models. It
may also require more data and assumptions to estimate the parameters of the shock rate
function. Some potential advantages and disadvantages of homogeneous Poisson shock
models are: Advantages: They are simple and easy to analyze, as they only require one
parameter to describe the shock rate. They can also model various phenomena such as
insurance claims, health declines, or machine failures, by interpreting shocks as different
types of events that affect the system. Disadvantages: It may not capture the fluctuation
of shock rate over time, which may not reflect the reality of some phenomena that have
variable or non-constant rates. They may also be too restrictive or unrealistic for some
applications that require more flexibility or complexity in the shock model. Suppose the
device is subjected to a series of shocks of force k that occur randomly according to the
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Poisson process. Let us say the device has a probability Ps of surviving the first s shocks,
where 1 = P0 ≥ P1 ≥ .... Denote Pj = Pj−1 − Pj, j ≥ 1. As a result, the device’s survival
feature is provided by

H(t◦) =
∞

∑
s=0

Ps
(kt◦)s

s!
e−kt◦ , k, t◦ ≥ 0, (1)

where k is the intensity constant in the shock model and s represents the number of the shocks.
This shock model has undergone research by Esary et al. [24] for different aging properties,
Klefsjo [25] for HNBUE, and EL-Sagheer et al. [26] for NBRUL.

Definition 1. A discrete distribution Ps, s = 0, 1, ..., ∞ is said to have a discrete new better (worse)
than renewal used in the Laplace transform in increasing convex order at age t◦ (NBRULC−t◦)
(NWRULC−t◦) if

∞

∑
i=0

∞

∑
l=j

∞

∑
r=i+l

ziPr ≤ (≥)
∞

∑
i=0

∞

∑
l=j

∞

∑
r=l

ziPiPr , 0 ≤ z ≤ 1. (2)

Theorem 3. If Ps is discrete NBRULC−t◦, then H(t◦) given by (1) is NBRULC−t◦.

Proof. Demonstrate that∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mx H(u)dudydx ≤

∫ ∞

0

∫ ∞

t◦

∫ ∞

y
e−mx H(x)H(u)dudydx.

Upon using (1), we obtain

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mx H(u)dudydx =

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mx

∞

∑
s=0

Ps
(ku)s

s!
e−kududydx

=
∫ ∞

0

∫ ∞

t◦
e−mx

∞

∑
s=0

Ps
1
s!

∫ ∞

x+y
(ku)se−kududydx

=
1
k

∫ ∞

0

∫ ∞

t◦
e−mx

∞

∑
s=0

Ps
1
s!

s

∑
r=0

s![k(x + y)]r

r!
e−k(x+y)dydx,

where
∫ ∞

x+y(ku)se−kudu = 1
k ∑s

r=0
s![k(x+y)]r

r! e−k(x+y):

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mx H(u)dudydx =

1
k

∫ ∞

0

∫ ∞

t◦
e−mx

∞

∑
s=0

Ps

s

∑
r=0

e−k(x+y)

r!

r

∑
j=0

(
r
j

)
(ky)r−j(kx)jdydx

=
1
k

∞

∑
s=0

Ps

s

∑
r=0

r

∑
j=0

(
r
j

) ∫ ∞

t◦

e−ky

r!
(ky)r−j

∫ ∞

0
(kx)je−x(m+k)dxdy

=
1
k2

∞

∑
j=0

∞

∑
r=j

∞

∑
s=r

Ps
1

(r− j)!
[

k
m + k

]j+1
∫ ∞

t◦
(ky)r−je−kydy,

Let l = r− j:
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∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mx H(u)dudydx =

1
k2

∞

∑
j=0

∞

∑
l=0

∞

∑
s=l+j

Ps
1
l!
[

k
m + k

]j+1
∫ ∞

t◦
(ky)le−kydy

=
1
k3

∞

∑
j=0

∞

∑
s=l+j

∞

∑
l=0

l

∑
n=0

Ps[
k

m + k
]j+1 (kt◦)n

n!
e−kt◦

=
1
k3

∞

∑
j=0

∞

∑
s=l+j

∞

∑
n=0

∞

∑
l=n

Ps[
k

m + k
]j+1 (kt◦)n

n!
e−kt◦

=
1
k3

∞

∑
n=0

∞

∑
j=0

∞

∑
l=n

∞

∑
s=l+j

Ps[
k

m + k
]j+1 (kt◦)n

n!
e−kt◦ ,

since F is NBRULC−t◦:

∫ ∞

0

∫ ∞

t◦

∫ ∞

x+y
e−mx H(u)dudydx ≤ 1

k3

∞

∑
n=0

∞

∑
j=0

∞

∑
l=n

∞

∑
s=l

PjPs
(kt◦)n

n!
e−kt◦ .[

k
m + k

]j+1

≤ 1
k2

∞

∑
j=0

∞

∑
s=l

∞

∑
n=0

∞

∑
l=n

PjPs
(kt◦)n

n!
e−kt◦

∫ ∞

0

(kx)j

j!
e−x(m+k)dx

≤ 1
k2

∫ ∞

0

∞

∑
j=0

∞

∑
s=l

∞

∑
l=0

l

∑
n=0

PjPs
(kt◦)n

n!
e−kt◦ (kx)j

j!
e−x(m+k)dx

≤ 1
k

∫ ∞

0

∞

∑
j=0

∞

∑
l=0

∞

∑
s=l

PjPs

∫ ∞

t◦

(ky)l

l!
e−kydy.

(kx)j

j!
e−x(m+k)dx

≤ 1
k

∫ ∞

0

∞

∑
j=0

∞

∑
s=0

s

∑
l=0

PjPs

∫ ∞

t◦

(ky)l

l!
e−kydy.

(kx)j

j!
e−x(m+k)dx

≤
∫ ∞

0

∫ ∞

t◦

∫ ∞

y
e−mx

∞

∑
j=0

Pj
(kx)j

j!
e−kx

∞

∑
s=0

Ps
(ku)s

s!
e−kududydx

≤
∫ ∞

0

∫ ∞

t◦

∫ ∞

y
e−mx H(x)H(u)dudydx.

Reversing the inequalities leads to the proof for the NWRULC−t◦ class.

3. Testing Against NBRULC−t◦ Alternatives

In this segment, we considered the possibility that H◦ : F is exponential in contrast to
the corresponding hypothesis H1 : F that it is not exponential, but NBRULC−t◦. Building
our test statistic requires applying the following snippet/lemma.

Lemma 1. If the random variable X has a distribution function F that belongs to the NBRULC−t◦
class, then

t◦
m

µ(2)ξ(m)− 1
2m

µ(3)ξ(m)− t2
◦

2m
µξ(m) ≥ t◦

m2 µ− 1
m2 µ(2)−

emt◦

m3 µξ(m)+
1

m3 µ, m > 0, (3)

where
ξ(m) = Ee−mX =

∫ ∞

0
e−mxdF(x), µ(r) = E(Xr).

Proof. Since F is NBRULC− t◦, then∫ ∞

0
e−mxΓ(x + t◦)dx ≤

∫ ∞

0
e−mxF(x)Γ(t◦)dx, x, t◦ ≥ 0.
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Integrating all sides with regard to t over [0, ∞) results in∫ ∞

0

∫ ∞

0
e−mxΓ(x + t◦)dxdt ≤

∫ ∞

0

∫ ∞

0
e−mxF(x)Γ(t◦)dxdt. (4)

Setting

I1 =
∫ ∞

0

∫ ∞

0
e−mxΓ(x + t◦)dxdt

=
1
2

E
∫ ∞

0

∫ ∞

0
e−mx(X− x− t◦)2 I(X > x + t◦)I(X > t)dxdt

=
1
2

E
∫ X

0

∫ X−t◦

0
e−mx(X− x− t◦)2dxdt

=
1
2

E
∫ X

0

∫ X−t◦

0
[(X2 − 2Xt◦ + t2

◦)e
−mx + (2t◦ − 2X)xe−mx + x2e−mx]dxdt

=
1
2

E
∫ X

0
[
X2

m
− 2Xt◦

m
+

2t◦
m2 −

2X
m2 −

2
m3 e−m(X−t◦) +

t2
◦

m
+

2
m3 ]dt.

Therefore,

I1 =
1

2m
µ(3) −

t◦
m

µ(2) +
t◦
m2 µ− 1

m2 µ(2) −
emt◦

m3 µξ(m) +
t2
◦

2m
µ +

1
m3 µ. (5)

Similarly, if we set

I2 =
∫ ∞

0

∫ ∞

0
e−mxF(x)Γ(t◦)dxdt

= E
∫ ∞

0
Γ(t◦)

∫ ∞

0
e−mx I(X > x)dxdt

= (
1
m
− 1

m
ξ(m))

∫ ∞

0
Γ(t◦)dt

=
1
2
(

1
m
− 1

m
ξ(m))E

∫ ∞

0
(X− t◦)2 I(X > t)dt

=
1
2

E[
1
m
− 1

m
ξ(m)]

∫ X

0
(X− t◦)2dt,

then

I2 =
1

2m
µ(3) −

t◦
m

µ(2) +
t2
◦

2m
µ− 1

2m
µ(3)ξ(m) +

t◦
m

µ(2)ξ(m)− t2
◦

2m
µξ(m). (6)

Substituting (5) and (6) into (4), we obtain

t◦
m

µ(2)ξ(m)− 1
2m

µ(3)ξ(m)− t2
◦

2m
µξ(m) ≥ t◦

m2 µ− 1
m2 µ(2) −

emt◦

m3 µξ(m) +
1

m3 µ,

and the proof is complete. The following entry point is suggested:

δ =
∫ ∞

0

∫ ∞

0
e−mxF(x)Γ(t◦)dxdt−

∫ ∞

0

∫ ∞

0
e−mxΓ(x + t◦)dxdt,

then

δ =
t◦
m

µ(2)ξ(m)− 1
2m

µ(3)ξ(m) + (
2emt◦ −m2t2

◦
2m3 )µξ(m) +

1
m2 µ(2) − (

mt◦ + 1
m3 )µ.

One can notice that the value of δ under H◦ equals λ, where

λ =
(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2

◦
2m3(m + 1)

.
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Consider that ∆ = δ− λ, ∆ could be expressed as follows:

∆(m, t◦) =
t◦
m

µ(2)ξ(m)− 1
2m

µ(3)ξ(m) + (
2emt◦ −m2t2

◦
2m3 )µξ(m) +

1
m2 µ(2)

−(mt◦ + 1
m3 )µ− (

(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2
◦

2m3(m + 1)
).

An unbiased estimator of δ is given by

∆̂(m, t◦) =
1

n2X4

n

∑
i=1

n

∑
j=1

[
t◦
m

X2
i e−mXj − 1

2m
X3

i e−mXj + (
2emt◦ −m2t2

◦
2m3 )Xie

−mXj +
1

m2 X2
i

−(mt◦ + 1
m3 )Xi − (

(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2
◦

2m3(m + 1)
)]. (7)

Now, set

ϕ(Xi, Xj) =
t◦
m

X2
i e−mXj − 1

2m
X3

i e−mXj + (
2emt◦ −m2t2

◦
2m3 )Xie

−mXj +
1

m2 X2
i

−(mt◦ + 1
m3 )Xi − (

(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2
◦

2m3(m + 1)
). (8)

The test statistic ∆̂(m, t◦) has asymptotic features that are reported in the following
theorem:

Theorem 4. (i) As n → ∞, [∆̂(m, t◦) − ∆(m, t◦)] is asymptotically normal with mean 0 and
variance σ2(m, t◦)/n, where

σ2(m, t◦) = Var{ t◦
m

X2ξ(m)− 1
2m

X3ξ(m) + (
2emt◦ −m2t2

◦
2m3 )Xξ(m) +

1
m2 X2

−(mt◦ + 1
m3 )X +

t◦
m

µ(2)e
−mX − 1

2m
µ(3)e

−mX + (
2emt◦ −m2t2

◦
2m3 )µe−mX

+
1

m2 µ(2) − (
mt◦ + 1

m3 )µ− (
(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2

◦
m3(m + 1)

)}. (9)

(ii) Under H◦, the variance tends to

σ2
◦(m, t◦) =

1
6m6(1 + m)5(1 + 2m)

[4{9m9 + 181m8 + 462m7 + 360m6 + 42m5

−46m4 + 4m3 + 2m2 −m + 1 + e2mt◦(1 + m)2(m3 + 7m2 + 5m + 1)

+emt◦(6m7 + 6m6 − 20m5 − 34m4 − 4m3 − 6m− 2)}
−8mt◦{8m8 + 66m7 + 154m6 + 126m5 + 26m4 − 13m3 + m2 + m− 1

+emt◦(2m6 + 2m5 − 10m4 − 15m3 − 3m2 −+3m + 1)}
+4m2t2

◦{m7 + 27m6 + 73m5 + 78m4 + 24m3 − 4m2 + 2m + 2

−emt◦(1 + m)2(m3 + 7m2 + 5m + 1)}+ 4m3t2
◦(2m6 + 2m5 − 10m4

−15m3 − 3m2 −+3m + 1) + m4t4
◦(1 + m)2(m3 + 7m2 + 5m + 1)]. (10)
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Proof. Using standard U-statistics theory (see Lee [27]),

σ2 = Var{E[ϕ(X1, X2) | X1] + E[ϕ(X1, X2) | X2]}. (11)

Using (8), we can find E[ϕ(X1, X2) | X1] and E[ϕ(X1, X2) | X2] as follows

E[ϕ(X1, X2) | X1] =
t◦
m

X2ξ(m)− 1
2m

X3ξ(m) + (
2emt◦ −m2t2

◦
2m3 )Xξ(m)

+
1

m2 X2 − (
(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2

◦
2m3(m + 1)

), (12)

and

E[ϕ(X1, X2) | X2] =
t◦
m

µ(2)e
−mX − 1

2m
µ(3)e

−mX + (
2emt◦ −m2t2

◦
2m3 )µe−mX +

1
m2 µ(2)

−(mt◦ + 1
m3 )µ− (

(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2
◦

2m3(m + 1)
). (13)

Upon using (11–13), (9) is obtained.

4. Pitman’s Asymptotic Efficiency of ∆̂(m, t◦)

Pitman’s asymptotic efficiency is a concept that measures the relative performance
of two statistical tests in terms of their sample sizes. It is defined as the boundary of the
proportion of minimum sample sizes required for each test to achieve a given level of sig-
nificance and power, at which the alternative hypothesis approaches the null hypothesis. A
higher Pitman’s efficiency means that the test requires fewer observations than another test
to achieve the same accuracy. One possible application of the asymptotic Pitman efficiency
is to compare different tests for different statistical problems and select the most efficient
one. For example, one can use the asymptotic Pitman efficiency to compare different tests
of equality of means, variances, or proportions between two populations. The asymptotic
Pitman efficiency can also be used to compare different tests for the independence, correla-
tion, or regression of two variables. Pitman efficiency can help the approach choose the
best test for a given problem based on the minimum sample size required. Some potential
limitations or assumptions of the asymptotic Pitman efficiency are: It is based on asymptotic
results, which means that it may not be accurate for small or medium sample sizes. It also
depends on the rate of convergence of test statistics for their finite distributions; sensitive
to alternative hypothesis selection and level of significance. May not reflect performance
of tests for alternatives or other levels; it does not take into account other factors that may
influence test selection, such as robustness, simplicity, or interpretability. It also does not
take into account the loss function or the cost of errors. Using the following probability
models, the efficiency of the Pitman’s asymptotic efficiency (PAE) technique is assessed in
this segment for the linear failure rate (LFR), Weibull, and Makeham distributions:

(i) The linear failure rate distribution (LFRD):

F1(u) = e−u− θ
2 u2

, u, θ ≥ 0.

(ii) The Weibull distribution (WD):

F2(u) = e−uθ
, u ≥ 0, θ > 0.

(iii) The Makeham distribution (MD):

F3(u) = e−u−θ(u+e−u−1), u, θ ≥ 0.
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Be aware that F1(u) and F3(u) reduce to exponential distributions for θ = 0, while
F2(u) reduces to an exponential distribution for θ = 1. The PAE is defined by

PAE(∆̂(m, t◦)) =
1

σ◦(m)

∣∣∣∣ d
dθ

δ(m, t◦)
∣∣∣∣

θ→θ◦

.

At m = 5.2, t◦ = 0.01, this leads to

PAE[∆̂(m, t◦), Weibull] = 1.107, PAE[∆̂(m, t◦), LFR] = 1.126,

and
PAE[∆̂(m, t◦), Makeham] = 0.332, where σ◦(m, t◦) = 0.291785.

In Table 1, different tests based on probability distributions are compared with the
PAE test that is offered.

Table 1. The PAE test is compared to some competitive distributions.

Tests MD LFRD WD

Abdel-Aziz [28] 0.184 0.535 0.223
Kango [29] 0.144 0.433 0.132
El-Morshedy et al. [30] 0.155 0.769 0.707
Our test with ∆(5.2, 0.01) 0.332 1.126 1.107

It is noted that the other tests that were studied in [28–30] do not depend on t◦, while
our proposed test depends on t◦ and, therefore, gave better results compared to the results
mentioned in Table 1.

5. Monte Carlo Simulation

Monte Carlo simulation is a mathematical technique that uses random samples to esti-
mate the possible outcomes of an uncertain event. It was invented by John von Neumann
and Stanislaw Ulam during World War II. A Monte Carlo simulation works by predicting a
set of outcomes based on an estimated range of values rather than fixed input values. It
uses a probability distribution to generate random samples and then calculates the results
for each sample. By repeating this process several times, it creates a distribution of possible
outcomes that can be analyzed statistically. Some of the probability distributions that can
be used in a Monte Carlo simulation are: the uniform distribution, all values have an
equal probability of occurrence; Normal distribution, values are symmetrically distributed
around a mean and a standard deviation; lognormal distribution, the values are positively
skewed and have a logarithmic relationship with the mean and standard deviation; Expo-
nential distribution, the values decrease exponentially and have a constant rate coefficient;
binomial distribution, values are discrete and represent the number of successes in a fixed
number of trials with a fixed probability of success; and Poisson distribution, the values are
discrete and represent the number of events that occur in a fixed time interval or space with
a fixed rate parameter. A Monte Carlo simulation can be used to estimate the probability
of an event occurring by following these steps: select the event whose probability you
want to estimate and select the random variables that affect it; determine the probability
distribution of each random variable, and generate random samples from it; evaluate the
event for each sample, and count how often it occurs; Divide the number of iterations by
the total number of samples, and multiply by 100 to get the percentage; Repeat this process
several times, and calculate the mean and standard deviation of the percentages. This will
give you an estimate of the probability of the event and the uncertainty surrounding it.
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5.1. Critical Points

A critical value in a statistic is a distribution point for a test statistic under the null
hypothesis that identifies a set of values that invite a rejection of the null hypothesis. This
group is called the critical region or rejection region. One-sided tests usually have one
critical value and two-sided tests usually have two critical values. A critical value and a
p-value are two different approaches to the same outcome: enabling you to support or
reject the null hypothesis in a test. The difference is: a critical value is a fixed value that
depends on the significance level and the type of test. You are comparing the test statistic
to the critical value to make a decision. If the test statistic is more extreme than the critical
value, you reject the null hypothesis. Whereas, p-value is a calculated value based on the
test statistic and distribution under the null hypothesis. The probability value is compared
to the level of importance to make a decision. If the p-value is less than or equal to the level
of significance, you reject the null hypothesis. According to the statistical literature, there is
no definitive answer to which approach is better: critical value or probability value. Both
have advantages and disadvantages, depending on the situation and preference. Some
factors to consider are: Critical values are easier to use when you have a table of values
for common tests and significance levels. p-values are easier to use when you have a
calculator or software that can calculate them for any test and any level of significance;
Critical values are more intuitive and visual, as they show the boundary between rejecting
and not rejecting the null hypothesis. p-values are more accurate and informative, because
they show the exact probability of obtaining the test statistic or more extreme under the
null hypothesis; Critical values are more conservative and less likely to make a type I error
(rejecting the null hypothesis when it is true). p-values are more flexible and less likely
to make a type II error (not rejecting the null hypothesis when it is false). This segment
mimics the null Monte Carlo distribution’s critical points utilizing 10,000 size-generated
samples with n = 5(5)50. The upper percentile of ∆n(5.2, 0.01) for 90%, 95%, and 99% was
determined. The critical values rose with the rising confidence levels and fell with the
rising sample sizes, as noted in Table 2 and Figure 1, respectively.

Table 2. The upper percentile of ∆n(5.2, 0.01).

n Confidence Levels

90% 95% 99%

5 0.596320 1.382520 7.164070
10 0.184443 0.322756 0.986428
15 0.124193 0.190007 0.424041
20 0.092698 0.130198 0.275838
25 0.076891 0.104348 0.194681
30 0.067978 0.090650 0.156101
35 0.061213 0.081146 0.134843
39 0.055776 0.074077 0.123571
40 0.055441 0.072820 0.121345
43 0.053529 0.069936 0.115660
45 0.051139 0.067655 0.107019
50 0.049032 0.063827 0.099458
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Figure 1. Theoretical visualization of Table 2.

5.2. Power Estimates of ∆n(5.2, 0.01) Test

Power estimates in Statistics are calculations that help you determine the minimum
sample size for your study. Strength is the probability that the null hypothesis will be
correctly rejected when it is false. It is based on four main components: effect size, difference
size or relationship between variables of interest; significance level, probability of making
a type I error (rejecting the null hypothesis when it is true); sample size and number of
observations or study participants; and power, the probability of making a correct decision
(rejecting the null hypothesis when it is false). If you know or have estimates for any three
of these components, you can calculate the fourth using energy analysis. Energy analysis
can help you design your study more efficiently and avoid wasting resources or missing
out on important effects. A confidence interval is a range of values within which you would
expect your estimate to fall if you retested, within a certain level of confidence. Statistical
confidence is another way of describing probability. Power and confidence intervals are
related in the following ways: Both power and confidence are probabilities dependent
on the level of significance and sample size. A higher significance level or larger sample
size will increase both power and confidence; Both strength and confidence are affected
by impact size. A larger effect size will increase the strength and narrow the confidence
interval; Both strength and confidence are inversely related. A higher power means a lower
probability of making a type II error (not rejecting the null hypothesis when it is false), but
also a higher probability of making a type I error (rejecting the null hypothesis when it is
true). A higher confidence means a lower probability of making a type I error, but also a
lower probability of making a type II error. Based on the 10,000 samples given in Table 3,
the power of the proposed test was estimated at the (1− α)% confidence level, α = 0.05.
Assume appropriate parameter values of θ for the LFRD, WD, and gamma distribution
(GD), respectively, at n = 10, 20 and 30. Table 3 shows that the test we used ∆n(5.2, 0.01)
has good power for all other options.
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Table 3. Power estimates of ∆n(5.2, 0.01).

n θ LFRD WD GD

10
2
3
4

0.5768
0.7960
0.9185

0.9614
0.9951
0.9992

0.9945
1.0000
1.0000

20
2
3
4

0.9764
0.9993
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

30
2
3
4

0.9998
1.0000
1.0000

1.0000
1.0000
1.0000

1.0000
1.0000
1.0000

5.3. Testing against NBRULC−t◦ Class for Censored Data

A test statistic is suggested to compare H◦ versus H1 using data that have been
randomly right-censored. In a life-testing model or clinical study where patients may be
lost (censored) before the completion of a study, such censored data are typically the only
information available. Formally, this experimental scenario can be represented as follows.
Assume that n objects are tested, with X1, X2, ..., Xn designating each object’s actual lifespan.
Assuming a continuous life distribution F, we let X1, X2, ..., Xn be independently and
identically distributed (i.i.d). Assume that, by a continuous life distribution G, Y1, Y2, ..., Yn
are i.i.d. Furthermore, consider the Xs and Ys to be independent variables. We observed the
pairs in the randomly right-censored model (Zj, δj), j = 1, ..., n, where Zj = min(Xi, Yj) and

δj =

{
1, if Zj = Xj (j-th observation is uncensored)
0, if Zj = Yj (j-th observation is censored).

Let Z(0) = 0 < Z(1) < Z(2) < ..... < Z(n) signify the ordered Zs and δ(j) be δj
comparable to Z(j). Using the censored data (Zj, δj), j = 1, ..., n. Kaplan and Meier [31]
proposed the product limit estimator:

Fn(X) = ∏
[j:Z(j)≤X]

{(n− j)/(n− j + 1)}δ(j) , X ∈ [0, Z(n)].

Now, for testing H◦ : ∆c(m, t◦) = 0 against H1 : ∆c(m, t◦) > 0, using the data that
were right-censored randomly, we recommend the following test statistic:

∆(m, t◦) =
t◦
m

µ(2)ξ(m)− 1
2m

µ(3)ξ(m) + (
2emt◦ −m2t2

◦
2m3 )µξ(m) +

1
m2 µ(2)

−(mt◦ + 1
m3 )µ− (

(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2
◦

2m3(m + 1)
).

where ξ(m) =
∫ ∞

0 e−mxdFn(x). It is possible to rewrite ∆c(m, t◦) for computing purposes as

∆c(m, t◦) =
t◦
m

τη − 1
2m

Φη + (
2emt◦ −m2t2

◦
2m3 )Ωη +

1
m2 τ

−(mt◦ + 1
m3 )Ω− (

(t◦ − 1)(2m2 − 2m)− 2(1− emt◦)−m2t2
◦

2m3(m + 1)
),
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where

Ω =
n

∑
s=1

[
s−1

∏
m=1

Cδ(m)
m

(
Z(s) − Z(s−1)

)
],

η =
n

∑
j=1

e−mZ(j) [
j−2

∏
p=1

Cδ(p)
p −

j−1

∏
p=1

Cδ(p)
p ],

τ = 2
n

∑
i=1

[
i−1

∏
v=1

Z(i)C
δ(v)
v

(
Z(i) − Z(i−1)

)
],

Φ = 3
n

∑
i=1

[
i−1

∏
v=1

Z2
(i)C

δ(v)
v

(
Z(i) − Z(i−1)

)
],

and
dFn(Zj) = Fn(Zj−1)− Fn(Zj), cs = [n− s][n− s + 1]−1.

To make the test invariant, let

∆̂c(m, t◦) =
∆c(m, t◦)

Z̄4 , where Z̄ =
n

∑
i=1

Z(i)

n
.

The critical percentiles of the ∆̂c test for sample sizes n = 10(10)80, 51, 81 are shown in
Table 4 and Figure 2. Using the Mathematica 12 program, the common exponential distribu-
tion was used to obtain the critical values at m = 5.2, t◦ = 0.01 and 10,000 replications for
the null Monte Carlo distribution.

Following Figure 2 and Table 4, the critical values rose with the rises in the confidence
level and fell with the rising sample sizes, respectively.
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Figure 2. Theoretical visualization of Table 4.
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Table 4. The upper percentile of ∆̂c at m = 5.2, t◦ = 0.01.

n 90% 95% 99%

10 0.059725 0.066002 0.077595
11 0.059405 0.065565 0.076262
20 0.057046 0.062618 0.071659
21 0.056410 0.061686 0.070329
30 0.054140 0.059101 0.066920
40 0.052021 0.057016 0.064999
50 0.050652 0.055694 0.063739
51 0.050105 0.055233 0.063203
60 0.049608 0.054491 0.061288
70 0.048010 0.052997 0.060309
80 0.047323 0.052271 0.059003
81 0.046768 0.051935 0.058674

5.4. Power Estimates of Test ∆c(m, t◦)

According to the three different Weibull, LFR, and gamma distributions based on 10,000 sam-
ples, the power of our test was evaluated at a significance level α = 0.05 with occasion parameter
values of θ at n = 10, 20 and 30. For all other options, Table 5 demonstrates that the power
estimates of our test ∆c(5.2, 0.01) were good.

Table 5. Power estimates of ∆c(5.2, 0.01).

n θ WD LFRD GD

10
2
3
4

0.9596
0.9991
1.0000

0.9871
0.9977
0.9995

0.9992
1.0000
1.0000

20
2
3
4

0.9228
0.9952
0.9999

0.9763
0.9942
0.9982

0.9997
1.0000
1.0000

30
2
3
4

0.9055
0.9947
0.9999

0.9738
0.9925
0.9987

0.9996
0.9999
1.0000

6. Applications to Real Data: Censored and Uncensored Observations

Controlled (censored) data is only partially known data, which means that some
information is missing or incomplete. Uncensored data is fully known data, which means
that all information is available and complete. Controlled data can present challenges for
statistical analysis, as it requires special methods and assumptions to deal with missing or
incomplete information. Unsupervised (Uncensored) data is easier to analyze, because it
does not have these issues.

6.1. Non-Censored Data
6.1.1. Dataset I: Aircraft’s Air Conditioning

The number of operational days between successive failures of an aircraft’s air condi-
tioning system is a classic real dataset that Keating et al. [32] examined. This information is
documented.

3.750 0.417 2.500 7.750 2.542 2.042 0.583
1.000 2.333 0.833 3.292 3.500 1.833 2.458
1.208 4.917 1.042 6.500 12.917 3.167 1.083
1.833 0.958 2.583 5.417 8.667 2.917 4.208
8.667
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The shape of the data can be seen in Figure 3, and it is noted that there is an extreme
observation and the kernel density is right-skewed. The ∆(5.2, 0.01) = 0.0023287 was
obtain, and this number is less than the value in Table 2’s tabulated value. The significance
level of α = 0.05 makes it clear. The NBRULC−t◦ attribute is not met by this type of data;
hence, this is true.

0
2

4
6

8
1
0

1
2

1

Violin Plots Histogram Plot

w

F
re

q
u
e
n
c
y

0 2 4 6 8 10

0
.0

0
0
.1

0
0
.2

0

0 2 4 6 8 10

0
.0

0
0
.1

0
0
.2

0

0 5 10 15

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Kernel Density 

N = 29   Bandwidth = 1.027

D
e
n
s
it
y

0
2

4
6

8
1
0

1
2

Box Plot

w

−2 −1 0 1 2

0
2

4
6

8
1
0

1
2

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(i
/n

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T T T Plot

 

Figure 3. Non-parametric visualization plots for aircraft’s air conditioning data.

6.1.2. Dataset II: Air Conditioning in a Boeing 720 Aircraft

The dataset below shows the 16 operational days between consecutive air conditioning
system failures in a Boeing 720 aircraft (see Edgeman et al. [33]).

4.25 8.708 0.583 2.375 2.25 1.333 2.792 2.458
5.583 6.333 1.125 0.583 9.583 2.75 2.542 1.417

Visualization plots of the data can be listed in Figure 4, and it was observed that there
is no extreme observation and that the intensity of the kernel tends to the right. When
∆(5.2, 0.01) = 0.0023405 was obtained, it is smaller than the relevant critical value in Table 2,
and the null hypotheses, which demonstrate that the dataset has an exponential feature,
are accepted.
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Figure 4. Non-parametric visualization plots for air conditioning in a Boeing 720 aircraft data.

6.1.3. Dataset III: Leukemia

Consider the dataset below, which was compiled by Kotz and Johnson [34] and shows
the survival periods (in years) of 43 patients who had a specific type of leukemia after
their diagnosis.

0.019 0.129 0.159 0.203 0.485 0.636 0.748 0.781 0.869 1.175
1.206 1.219 1.219 1.282 1.356 1.362 1.458 1.564 1.586 1.592
1.781 1.923 1.959 2.134 2.413 2.466 2.548 2.652 2.951 3.038

3.6 3.655 3.754 4.203 4.690 4.888 5.143 5.167 5.603 5.633
6.192 6.655 6.874

The data representation plots are reported in Figure 5, and it was found that there
are no extreme observations and the nucleation intensity tends to the right. We obtained
a value of ∆(5.2, 0.01) = 0.0066037, which is below the crucial value in Table 2. The null
hypotheses were then accepted, proving that the dataset possesses exponential properties.
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Figure 5. Non-parametric visualization plots for Leukemia data.

6.1.4. Dataset IV: COVID-19 in Italy

This data represents the COVID-19 mortality rate in Italy from 27 February to 27 April
2020 (see Almongy et al. [35]). The data are

4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503
18.474 11.010 17.337 16.561 13.226 15.137 8.697 15.787 13.333
11.822 14.242 11.273 14.330 16.046 11.950 10.282 11.775 10.138
9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445 7.214
6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148
4.040 4.253 4.011 3.564 3.827 3.134 2.780 2.881 3.341
2.686 2.814 2.508 2.450 1.518

Data representation plots are presented in Figure 6, and it is clear that there are no
extreme observations and the nucleation intensity tends to the right. When ∆(5.2, 0.01) =
0.000377 was obtained, it is smaller than the relevant critical value in Table 2, and the null
hypotheses, which demonstrate that the dataset has an exponential feature, are accepted.
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Figure 6. Non-parametric visualization plots for COVID-19 in Italy data.

6.1.5. Dataset V: COVID-19 in the Netherlands

These data represent the COVID-19 mortality rate (see EL-Sagheer et al. [36]). The
data are

14.918 10.656 12.274 10.289 10.832 7.099 5.928 13.211
7.968 7.584 5.555 6.027 4.097 3.611 4.960 7.498
6.940 5.307 5.048 2.857 2.254 5.431 4.462 3.883
3.461 3.647 1.974 1.273 1.416 4.235

The data representation plots are sketched in Figure 7, and it was found that there is an
extreme observation and the intensity of nucleation tends to the right. At the significance
level α = 0.05, ∆(5.2, 0.01) = 0.000661 is smaller than the corresponding critical value in
Table 2. This indicates that the type of data does not match the NBRULC−t◦ attribute.
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Figure 7. Non-parametric visualization plots for COVID-19 in the Netherlands data.

6.2. Censored Data
6.2.1. Dataset VI: Myelogenous Blood Cancer

According to the International Bone Marrow Transplant Registry, 101 patients with
advanced acute myelogenous blood cancer are represented by the following datasets (see
Ghitany and Al-Awadhi [37]). The data can be listed as:

0.030 0.493 0.855 1.184 1.283 1.480 1.776 2.138 2.500
2.763 2.993 3.224 3.421 4.178 4.441+ 5.691 5.855+ 6.941+
6.941 7.993+ 8.882 8.882 9.145+ 11.480 11.513 12.105+ 12.796

12.993+ 13.849+ 16.612+ 17.138+ 20.066 20.329+ 22.368+ 26.776+ 28.717+
28.717+ 32.928+ 33.783+ 34.221+ 34.770+ 39.539+ 41.118+ 45.033+ 46.053+
46.941+ 48.289+ 57.401+ 58.322+ 60.625+

Consider the entire set of survival data (both censored and uncensored). At a 95%
confidence level, ∆c(5.2, 0.01) = −3.83989× 1027 is less than the critical value shown in
Table 4. Then, we agree with H◦, which asserts that the dataset has exponential features.
The leukemia-free survival times for the 51 autologous transplant patients are (in months)

0.658 0.822 1.414 2.500 3.322 3.816 4.737 4.836+ 4.934
5.033 5.757 5.855 5.987 6.151 6.217 6.447+ 8.651 8.717

9.441+ 10.329 11.480 12.007 12.007+ 12.237 12.401+ 13.059+ 14.474+
15.000+ 15.461 15.757 16.480 16.711 17.204+ 17.237 17.303+ 17.664+
18.092 18.092+ 18.750+ 20.625+ 23.158 27.730+ 31.184+ 32.434+ 35.921+

42.237+ 44.638+ 46.480+ 47.467+ 48.322+ 56.086

It was discovered that ∆c(5.2, 0.01) = −3.23764× 1038, smaller than the critical value
of Table 4, was obtained. At the significance level α = 0.05, it is obvious. This suggests that
the data type does not align with the NBRULC−t◦ attribute.
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6.2.2. Dataset VII: Melanoma

Consider the data in Susarla and Van Ryzin [38]. These data show 46 melanoma
patients’ survival rates. Of them, 35 correspond to entire lifetimes (non-censored data). The
censored observations are listed in order:

13 14 19 19 20 21 23 23 25 26
26 27 27 31 32 34 34 37 38 38
40 46 50 53 54 57 58 59 60 65
65 66 70 85 90 98 102 103 110 118

124 130 136 138 141 234

The censored observations are ordered as follows:

16 21 44 50 55 67 73 76 80 81
86 93 100 108 114 120 124 125 129 130

132 134 140 147 148 151 152 152 158 181
190 193 194 213 215

If we consider the entire set of survival data (both censored and uncensored), we
found that the critical value in Table 4 is more than our result, which is ∆c(5.2, 0.01) =
−2.78737× 1039. The data’s exponential qualities are thus clear to us.

7. Concluding Remarks

The emphasis on reliability has increased during the past few years among manu-
facturing companies, the government, and civilian groups. Attempts are being made by
agencies to purchase systems that have higher reliability and require less frequent mainte-
nance as a result of current worries regarding government spending. Buying products that
are more dependable and require less upkeep is our top priority as consumers. Quality
that holds up over time is reliable. Quality is related to craftsmanship and manufacture;
thus, if something does not work or fails quickly after it is acquired, one would consider its
quality to be bad. Poor reliability would, however, be present if, over time, product parts
started to fail sooner than planned. Thus, the difference between quality and reliability
is related to the passage of time and, more specifically, the product lifetime. The new life
distribution class known as NBRULC−t◦ is now a part of family of life distribution renewal
classes. Convolution, mixture, and homogeneous shock models, among other reliability
approaches, have all been used to create studies of closure qualities. After comparing the
offered class test to some rival tests using the Weibull, LFR, gamma, and Makeham models,
it was found that the suggested class performed well. A Monte Carlo simulation was run
to evaluate the performance of NBRULC−t◦. It was discovered that, as the confidence
levels climb and the sample sizes rise, the critical values also tend to rise. Furthermore, the
power estimates of the suggested test were accurate based on the simulation results. To
demonstrate the viability of the suggested NBRULC−t◦ class, certain applications in the
engineering and medical (censored and uncensored scenarios) domains were examined
and addressed. Through the results, we concluded the following:

• This class of life distribution was more efficient than the rest of the other classes that
were compared with it, and its testing strength was strong.

• Table 1 revealed that, in all proposed distributions, our test was more effective than
other tests, as predicted by the PAEs.
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