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Abstract: In recent modern power systems, the number of renewable energy systems (RESs) and
nonlinear loads have become more prevalent. When these systems are connected to the electricity grid,
they may face new difficulties and issues such as harmonics and non-standard voltage. The proposed
study suggests the application of a whale optimization algorithm (WOA) based on a fractional-
order proportional-integral controller (FOPIC) for unified power quality conditioner (UPQC) and
STATCOM tools. These operate best with the help of their improved control system, to increase
the system’s reliability and fast dynamic response, and to decrease the total harmonic distortion
(THD) for enhancing the power quality (PQ). In this article, three different configurations are studied
and assessed, namely: (C1) WOA-based FOPIC for UPQC, (C2) WOA-based FOPIC for STATCOM,
and (C3) system without FACTS, i.e., base case, to mitigate the mentioned drawbacks. C3 is also
considered as a base case to highlight the main benefits of C1 and C2 in improving the PQ by reducing
the %THD of the voltage and current system and improving the systems’ voltage waveforms. With
C2, voltage fluctuation is decreased by 98%, but it nearly disappears in C1 during normal conditions.
Additionally, during the fault period, voltage distortion is reduced by 95% and 100% with C2 and
C1, respectively. Furthermore, when comparing C1 to C2 and C3 under regular conditions, the
percentage reduction in THD is remarkable. In addition, C1 eliminates the need for voltage sag,
and harmonic and current harmonic detectors, and it helps to streamline the control approach and
boost control precision. The modeling and simulation of the prepared system are performed by
MATLAB/Simulink. Finally, it can be concluded that the acquired results are very interesting and
helpful in the recovery to the steady state of wind systems and nonlinear loads, thereby increasing
their grid connection capabilities.

Keywords: STATCOM; smart grid; total harmonic distortion; voltage stability; UPQC; wind energy;
WOA-based FOPI controller
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1. Introduction

A. Motivation and Background

Power quality (PQ) challenges and their remediation are now a priority for trans-
mission system operators. PQ issues arise due to many causes such as nonlinear loads
(NLs), transient faults [1,2], and the installation of renewable generators. This needs PQ
improvement, which helps to extend the equipment’s life cycle as well as increase the
supply reliability for supplying critical loads in the electric system [3–5]. The use of power
electronic components (PECs) can cause technical problems for PQ, such as grid voltage
dips and swells, power surges, notches, spikes, flicker, harmonics, real and reactive power
deviations, and imbalanced voltage [6,7]. PQ is defined as “any fault or quality degradation
of voltage, current, or frequency that causes inappropriate equipment performance or
operational error” [7].

PQ issues cost the EU more than USD 200 billion every year, while the USA spends
USD 30 billion per year to address such concerns [8,9]. The classification of PQ concerns is
shown in Figure 1 [6]. The rapid expansion of NLs, photovoltaic systems, and wind energy
(WE) systems causes harmonic distortion in branch currents, which results in harmonic
voltage distortion in modern electric power systems (EPSs) [7,10]. The basic goal of any
EPS is to deliver a continuous sinusoidal voltage with balanced sinusoidal currents of
constant magnitude and frequency. The IEC and IEEE have outlined several PQ standards
to achieve PQ standardization, which are presented in Table 1 [11].
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Figure 1. Percentage of PQ disruptions.

Table 1. PQ standards.

Technical Hitches Period Amplitude

Harmonics Steady-state 0–20%

Vo
lt

ag
e

Dip 0.5–30 cycle 0.1 pu–0.9 pu
Swell 0.5–30 cycle 1.1 pu–1.9 pu

Fluctuations Discontinuous 0.1–9%
Under >60 s 0.8 pu–0.9 pu
Over >60 s 1.1 pu–1.2 pu

Interruption 0.5 cycle–30 s >0.1 pu
Noise Steady-state 0–1%

DC offset Steady-state 0–0.1%

Wind energy has made more inroads in modern EPSs because it does not give off
any dangerous gases such as CO2 [12,13]. The global wind report for 2019 shows that WE
output is growing, with a total installed capacity of 650 GW and wind additions surpassing
60 GW. More than 3,41,320 wind turbines (WTs) are currently operational around the
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world [14]. There are numerous challenges when a WE system is combined with an EPS,
such as variations in both output power and voltage. It was found that the impact on EPS
dynamic actions is significantly different between fixed and variable speed WTs, because
of their distinct principles of operation. Due to various advantages, such as simple and
sturdy construction, low maintenance, low cost, and self-starting nature, squirrel cage
induction generators (SCIGs) are considered to generate wind power in our study [15,16].
A comparison of four WT generators in terms of their capability of grid stability is displayed
in Table 2.

Table 2. The capability of common WT generators for grid stability.

WT Generator
Control of Power

Inertia FRT Capability
Active (P) Reactive (Q)

Conventional � � � �
PMSG � � 7 �
DFIG � � 7 �

FSIG (studied) � 7 � �

B. Literature Overview

The use of passive filters for harmonic cancellation and reactive power compensating
has been widely discussed. Later, application decreased due to several notable drawbacks,
including continual compensatory performance, huge size, and resonance [17]. Active
power filters (APFs) are becoming more popular now since they function better than passive
filters [18]. They often generate an identical number of harmonics when compared to a
load with a 180◦ phase shift. These harmonics are fed into the PCC, and the nonlinear
load current harmonics are consequently reduced in sinusoidal supply [19]. The APF
family can be integrated into the shunt, series, and shunt + series configurations such
as STATCOM, dynamic voltage restorer (DVR), and unified power quality conditioner
(UPQC), respectively, to mitigate various PQ issues [20–22].

In power systems, STATCOM can improve the power factor, damping power oscilla-
tions, control of voltage flicker and reactive power, and fast dynamic response based on
applied switches and controllers; thus, there is no need for additional components [23].
STATCOM is utilized to increase EPS stability and performance since it outperforms the
static var compensator in terms of performance and transient response, as presented in [24].
The layout for PQ improvement, as well as the varieties of STATCOM controllers, were
discussed in [25,26]. A PID-based STATCOM was used to improve stability in grid-tied
WTs but NLs were not considered in [27,28]. References [29,30] discussed how and why
the PQ in a hybrid EPS can be enhanced using STATCOM. The development of PQ using
new STATCOM approaches is progressing hour-by-hour, as mentioned in [31]. The voltage
sag and swell of STATCOM can be easily regulated using the sinusoidal PWM method,
which is becoming increasingly popular [32].

The UPQC is thought to be the best instrument for protecting critical and key loads
from voltage- and current-based PQ issues [33,34]. Reference [7] gives a detailed analysis of
the UPQC and its application in modern EPSs. In UPQCs, the series APF alleviates voltage
quality disruptions such as harmonics, and over- and under-voltage, while the shunt APF
alleviates current disruptions such as current harmonics and controls the DC bus to ensure
the adapting efficiency of the system [35]. The literature [36] presents a survey on how
to classify an APF based on its kVA rating, speed of reaction, circuit architecture, system
parameter adjustment, and control mechanisms. Another study [37] analyzes topologies,
setups, compensation approaches, and recent advancements in the field of UPQCs, as well
as the application of UPQCs to increase PQ and system dependability. Several techniques
are used to find the optimal place for the UPQC in the EPS to reduce power loss and
improve the system’s performance. The UPQC can also regulate the flow of active power,
reactive power, and voltage-independent power in real time [38]. The UPQC is gaining
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popularity over STATCOM because it can improve low- and high-voltage ride-through
(L\HVRT) better than STATCOM [39,40].

The smart load in [41] was used to show and analyze only the PQ problems, and
there was no adequate investigation in this regard, so the PQ problems were not solved.
The authors in [42] presented only a comprehensive review linking the smart grid (SG) to
solar energy to assess the contained harmonics and did not provide any options for the PQ
problems. The author of [43] addressed only the harmonics of the UPQC system and did
not provide a detailed design or investigation of the issue. The author only reviewed some
PQ problems in his review articles [44–46]. Table 3 summarizes the main findings of many
recently published papers in the PQ research area. The DQ detection scheme and PI, BBC,
fuzzy, optimized PI, and hysteresis controllers for control systems are used in the majority
of the existing studies and are included in Table 3. Furthermore, the disadvantages of those
systems are already mentioned.

Table 3. A literature review of the studied FACTS devices in the PQ research area.

References FACTS Type Controller Benefits Limitations

[47]

STATCOM

Bang-Bang (BBC)
• Cancel out the load current

harmonics and improve the
power factor.

• No limit to the switching
frequency.

• Adverse impacts of NLs and
faults were not discussed.

[48] Hysteresis current

• Provides fast switching
signal.

• The hysteresis error is more
than the maximum error.

• Integration of PV system and
unbalanced faults were not
covered.

[25] Fuzzy logic (FLC)
and BBC

• THD in the FLC is less than
the BBC controller.

• FLC is more simple and
faster than BBC.

• Symmetrical or unsymmetrical
faults were not studied.

[23] PI

• Voltage sag, swell, and
harmonics were considered
with grid-tied WE systems
only.

• Balanced faults and PV
connection were not tested.

• Poor performance of the used
controller.

[49] STATCOM and
UPQC. PI

• UPQC provides better
performance than
STATCOM.

• THD in UPQC is less than
that in STATCOM when the
WE system is considered.

• NLs are not considered.
• Balanced and unbalanced

faults are not studied to test
UPQC.

[27] STATCOM PID

• The PWM technique is used
in STATCOM for control of
the WE system only.

• Power loss is reduced and
improves the system stability.

• Faults are not studied.
• Harmonic analysis is not

performed.
• WE type cannot operate at

maximum power.

[50] DVR PI

• Prevents voltage
disturbances and harmonics
considering renewables only.

• It was effective in low and
medium distribution
systems.

• This solution is not suitable for
high-voltage systems.

• NLs are not discussed.
• Poor performance of

traditional PI in nonlinear
systems.
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Table 3. Cont.

References FACTS Type Controller Benefits Limitations

[51]

STATCOM

Neuro and
resonant control

• LVRT technique, nonlinear
adaptive coordinating,
optimal load flow, and DFT
synchronization algorithm
are very popular control
strategies for WE systems.

• Hardware tools are required to
regulate voltages.

• The used controller can be
compared with recent types.

[52] PI

• The network voltage was
kept by adapting the
negative sequence output
admittance.

• Faults are not considered.
• Experimental validation is

hard.

[53] PI
• The frequency oscillation was

damped in a multi-machine
EPS.

• Voltage sag and voltage swell
with symmetrical faults were
not covered.

[54] PI
• Improves system stability

and the system involves NL
and SCIG-based WT.

• Symmetrical faults’ adverse
impacts were not studied.

• Dominant wind generators
were not mentioned.

[55] Multi Converter
UPQC PI

• It only efficiently alleviates
the current difficulties related
to PQ on the feeder system.

• In comparison to the
connected UPQC topology,
the suggested plan offers
greater energy efficiency.

• The chosen particle swarm
optimization method is old.

• This scheme is complex and
needs storage tools.

[3]

UPQC

Atom search-
FOPI

• Enhances PV/WT/battery
system tied to the grid which
effectively mitigates voltage
sag, swells, and disturbances
only.

• UPQC regulates voltage with
low THD and power loss.

• Standalone mode was not
studied.

• Recent controllers such as
neuro-fuzzy, hybrid ANN
controllers can be implemented
in this hybrid configuration.

[56] Synchronous
reference frame

• Improves the PQ at the PCC
on the EPS under unbalanced
and distorted load conditions
only.

• THD values are 3.9% and
7.4% for voltage and current,
respectively.

• The only possibilities taken
into consideration are NL and
unbalanced states.

• In this arrangement, new
controllers such as neuro-fuzzy
and hybrid ANN controllers
can be used.

[57] PI-3 resonant

• NLs only considered.
• THD values are 1.2% and

1.95% for voltage and current,
respectively.

• Renewables were not
considered.

Current
work
(Proposed)

STATCOM and
UPQC WOA-based FOPI

• System includes NLs and SCIG-based WT and is also tested under
fault conditions.

• Improves voltage stability and increases the system’s reliability.
• THD analysis is presented under three scenarios.

C. Contributions

Our research provides a complete and detailed analysis study to solve the PQ problems
in the studied system, in which PQ is the main factor in modern EPSs. Furthermore, this
research is a comprehensive guide to improving the PQ and stability in the modern EPS
using a developed STATCOM and UPQC under different operating conditions: NLs,
transient three-phase faults, and WE-sourced higher penetration. This paper studies three
configurations called: C1—whale optimization algorithm (WOA) based fractional-order
proportional-integral controller (FOPIC) for UPQC; C2—WOA-based FOPIC for STATCOM;
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and C3—system without FACTS under three scenarios (NLs (S1), 42% penetration of wind
energy (S2), and three-phase fault (S3), where they cause problems in PQ injected to the
grid. The studied scenarios cause technical-economic damage that negatively affects the
performance of the PCC bus. The main contributions of this study compared to previous
works are summarized as follows:

1. A new WOA-FOPIC-based robust control was developed for the STATCOM and
UPQC to improve their dynamic response, stabilize the PCC bus voltage, and reject
harmonics of the current and voltage at this bus.

2. The proposed controller for the UPQC and STATCOM can risk mitigating unstable
voltage and harmonics without the need for detector tools in the UPQC, which
effectively reduces the UPQC cost with a less complex design.

3. The proposed configurations can solve PQ problems such as voltage distortions and
minimize harmonics of the current and voltage at the PCC to acceptable levels under
regular and irregular conditions (S1, S2, and S3), thereby improving EPS reliability.

4. The application of STATCOM and the UPQC overcomes 98% and 100% of the voltage
fluctuation, respectively, during S1 and S2, and during S3 95% and 100% of the voltage
fluctuation is overcome.

5. The UPQC is superior to STATCOM in ensuring the system is more reliable, especially
during short-circuit faults and compared with recently published works.

6. Finally, it can be concluded that both C1 and C2 enable the high penetration scenarios
of the WE source, NLs, and achieving FRT capability.

D. Paper Organization

This work is presented as follows: Section 2 explores the system description and mod-
eling. Sections 3 and 4 present the performance and modeling of the proposed STATCOM
and UPQC tools. In addition, a comparison between them is performed to show their
benefits and capabilities in mitigating PQ problems. Section 5 provides comprehensive
discussions of the obtained simulation results. Section 6 concludes the points drawn from
this study.

2. System Description

The proposed configuration is a connection of the WT system and NL to the EPS
through a power transformer with the integration of STATCOM and UPQC, as depicted in
Figure 2. The WT system uses a SCIG due to its merits compared with other types. Modeling
of WT and SCIG are presented in this section to help us in analyzing the behavior of the
investigated WE system. The most prominent PQ problems that arise from connecting the
WT to the SG are voltage fluctuations and harmonics, which are verified later. To evaluate
the effectiveness of the STATCOM and UPQC technologies, three operational scenarios
are chosen. In the first scenario, the EPS is connected to S1, which represents several SG
loads, while in the second situation, the EPS is connected to S2, which is widely dispersed
across SGs. Finally, the third scenario addresses the capability of FACTS tools to overcome
transient faults and maintain the stability of the EPS.

2.1. Modeling of WT

The modeling of WTs has been discussed in detail in [58]. In the equation below, Cp is
the coefficient of performance, which is related to β (blade pitch angle) and λ (tip speed
ratio). For the SCIG, Cp is specified by Equation (1):

Cp(λ,β) = 0.5176
(

116
λi
− 0.4β− 5

)
exp−

21
λi +0.0068λ (1)

1
λi

=
1

λ+ 0.08β
− 0.035
β3 + 1

(2)
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λ =
ωmR
Vwind

(3)

Equation (4) shows the turbine’s mechanical output power, where ρ is the air density,
A is the turbine swept area, and Vwind is the wind speed:

pm = 0.5cpρA(Vwind)
3 (4)

The value of ωm can be obtained from Equation (3):

Ttur =
Pm

ωm
(5)

Ttur = Jeq
dωm

dt
+ Beq.ωm + Te (6)

The variables Ttur, Jeq, Beq, and Te are turbine torque, total equivalent inertia of the tur-
bine, the damping coefficient, and the electromagnetic torque of the generator, respectively.
The modeling of WTs is shown in Figure 3.
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2.2. Modeling of SCIG

A fourth-order model describes the dynamic model of the SCIG according to the
equations below [58]:

Vqs = RsIqs + Pλqs +ωλds (7)

Vds = RsIds + Pλds −ωλqs (8)

Vqr = RrIqr + Pλqr + (ω−ωr)λdr = 0 (9)

Vdr = RrIdr + Pλdr − (ω−ωr)λqr = 0 (10)


ids
iqs

idr
iqr

= 1
_

D1
.


Lr 0
0 Lr

−Lm 0
0 −Lm

−Lm 0
0 −Lm

Ls 0
0 Ls

 .


λds
λqs
λdr
λqr

 (11)

λds = (V ds − RsIds +ωλqs
)
/S (12)

λqs = (V qs − RsIqs −ωλds

)
/S (13)

λdr = (V dr − RrIdr + (ω−ωr)λqr
)
/S (14)

λqr = (V qr − RrIqr − (ω−ωr)λdr

)
/S (15)

D1 = LsLr − (Lm)
2 (16)

Te = 1.5P
(
Iqsλds − Idsλqs

)
(17)

The parameters used in modeling are voltage (V), current (I), resistance (R), number
of poles (P), rotor angular speed (ωr), flux linkage (λ), electromagnetic torque (Te), and
inductance (L). The sub-indexes r and s stand for rotor and stator, respectively.

3. Modeling and Control of Proposed Developed Systems
3.1. Modeling and Control Structure of Investigated STATCOM System

STATCOM units can supply Q to the EPS with a very fast response, which can be
utilized to enhance voltage quality and mitigate other PQ disruptions in the EPS. These
technologies can also improve the power grid’s efficiency and overall stability. It is a shunt
reactive compensator that may absorb or generate Q in the EPS [59]. Figure 4 illustrates its
identical circuit with the proposed control method. It transmits P and Q to the EPS, and the
transmitted power is managed via the firing angle (α) and modulation index (m) of the
pulse width modulation (PWM) of the voltage source converter (VSC).
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The equations for calculating STATCOM and VSC in the three-phase structure are
as follows:

L
dia
dt

= −RIa + (Va −Va1) (18)

L
dib
dt

= −RIb + (Vb −Vb1) (19)

L
dic
dt

= −RIc + (Vc −Vc1) (20)

where the system currents are Ia, Ib, and Ic. Va1, Vb1, and Vc1 are the inverter’s output
voltages, while Va, Vb, and Vc are the PCC voltages. In addition, R and L are the equivalent
resistance and inductance for the power transformer, respectively.

The following is a d-q frame representation of the three-phase parameters:

L
did
dt

= −RId + ωLIq(Vd −Vd1) (21)

L
diq

dt
= −RIq + ωLId

(
Vq −Vq1

)
(22)

The d- and q-axis voltages of the grid and the STATCOM are represented by the
symbols Vd, Vd1, Vq, and Vq1, andω is the synchronous angular speed of the fundamental
grid voltage.

The inverter’s DC link voltage can be determined as shown below:

Vd1 = KmVdcsin(δ) (23)
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Vq1 = KmVdccos(δ) (24)

where K is the inverter steady-state constant related to the inverter construction, m is the
PWM modulation index, Vdc is the STATCOM’s DC-link voltage, and δ is the firing angle.

The PWM control parameters (m and δ) are given below:

m =

√
V2

d1 + V2
q1

km
(25)

δ = tan−1 Vq1

Vd1
(26)

The transmitted Pac and Qac to the grid are given below:

Pac = 1.5
(
Vd Id + Vq Iq

)
= 0 (27)

Qac = 1.5
(
Vd Iq −Vq Id

)
(28)

Pac is taken to be zero because the STATCOM does not transfer any P to the grid and
instead regulates the PCC point voltage by gripping or emancipating the Q. To prevent P
from being exchanged with the power grid, δ in this approach must be adjusted to a value
equal to the PCCV phase angle. For the PCCV to be somewhat in the lag phase concerning
δ, the PCC’s tiny internal losses must also be mitigated. The closed-loop control system in
Figure 4 makes this possible. If there are internal losses, this will decrease the level of the
DC link voltage, bypassing the input signals through into the WOA-based FOPIC, which
will eradicate the steady-state error of the capacitor voltage, and adjust δ so that its internal
losses are enclosed by the grid.

3.2. Modeling and Control Structure of Investigated UPQC System

The UPQC is made up of two FACTS devices called DVR and STATCOM, as depicted
in Figure 5, so it simultaneously offers their benefits [1]. Nevertheless, UPQC’s approach
still limits how effectively PQ may be improved. In this study, a newly created UPQC is
used to reduce current and voltage harmonics in an EPS. The mathematical model of the
UPQC can be written below. The referenced three-phase currents are estimated as seen
in [7,55]. Isa

Isb
Isc

 =

√
2
3


1 0

− 1
2

√
3
2

− 1
2 −

√
3
2

[ VαVβ

−VβVα

][
P
Q

]
(29)

The obtained instantaneous load power (P and Q) is used to calculate the instantaneous
power angle (ϕ), as shown below:

ϕ = Sin−1 Q handeled by the DVR
P o f load

(30)

Total power (VA) loading of the UPQC, as a function of ϕ and the ratio between actual
and rated source voltages (k), is represented by:

SUPQC(ϕ, k) = Sshunt(ϕ, k) + Sseries(ϕ, k) (31)

The VA loading of the series and shunt can be determined by the following equations:

Sseries(ϕ, k) =
√∣∣∣Pseries(ϕ, k)2

∣∣∣+ ∣∣∣Qseries(ϕ, k)2
∣∣∣ (32)



Axioms 2023, 12, 420 11 of 26

Sshunt(ϕ, k) =
√∣∣∣Pshunt(ϕ, k)2

∣∣∣+ ∣∣∣Qshunt(ϕ, k)2
∣∣∣ (33)

The Vdc magnitude is:

Vdc =
2
√

2Vll√
3m

(34)

The capacitor rating at the DC bus is:

Cdc =
3kaVph ISTATCOMt

0.5
(
V2

dc −V2
dc1

) (35)

where a is the overloading factor and t is the time required to reach its rated value after an
abnormal condition.

The STATCOM interfacing inductor is:

Lsh =

√
3mVdc

12a fsh Icr,pp
(36)

The DVR interfacing inductor is:

Lr =

√
3mVdcKse

12a fse Ir
(37)

where fsh and fse are the STATCOM and DVR switching frequencies, respectively. The
symbol Kse is the transformation ratio of the series transformer.

In this study, an enhanced FOPIC with the help of WOA is presented to enhance the
UPQC control performance, as shown in Figure 5. The system detectors can be cancelled
with a WOA-based FOPIC, which results in improving its dynamic response. The supply
current and load voltage are monitored and adjusted to track the references that correspond
to them in the d-q ref. frame via the studied control system. Using a sinusoidal PWM
technique, the voltage refs. are used to generate the signals for the two components.
Furthermore, a phase-locked loop (PLL) is employed to find the supply voltage’s phase
angle to perform coordinated transformations because the suggested technique is built in
the d-q ref. frame.

3.3. A Comparison between STATCOM and UPQC Systems

As shown in Table 4, a comparison between STATCOM and UPQC is presented in
terms of response time, cost, operation, benefits, drawbacks, and remarks. The points listed
here were extrapolated from a number of articles, as seen in Table 4. Both STATCOM and
UPQC are regarded as quick, but UPQC is better because it reacts instantly. It is important
to note that for the same ratings, UPQC is costlier than STATCOM.

Table 4. Performance comparison for the applied FACTS tools.

Points
Investigated Tools

STATCOM UPQC (Proposed)

Speed in time (~2–4) ms instantaneously
Cost (USD/kVAR) 50–70 80–100

connection Shunt only Shunt and series

Advantages
• Minimizes the negative sequence voltage.
• Injects reactive current.

• Restrict the fault current.
• Increases the voltage protection boundary.

Disadvantages
• Requires to reduce the high voltage dip.
• Cannot inject active power.

• Suffers from the match-up of the control scheme
between SFCL and UPQC.

Remarks
• The reactive current functions individually dur-

ing the voltage sag.
• Restrictions of too much current increase the

voltage level at the generator terminal.
References [23,25,29,30,59] [1,7,36,49,55]



Axioms 2023, 12, 420 12 of 26Axioms 2023, 12, x FOR PEER REVIEW 12 of 27 
 

 
Figure 5. UPQC structure with its proposed control system. 

3.3. A Comparison between STATCOM and UPQC Systems 
As shown in Table 4, a comparison between STATCOM and UPQC is presented in 

terms of response time, cost, operation, benefits, drawbacks, and remarks. The points 
listed here were extrapolated from a number of articles, as seen in Table 4. Both STATCOM 
and UPQC are regarded as quick, but UPQC is better because it reacts instantly. It is im-
portant to note that for the same ratings, UPQC is costlier than STATCOM. 

Table 4. Performance comparison for the applied FACTS tools. 

Points 
Investigated Tools 

STATCOM UPQC (Proposed) 
Speed in time (~2–4) ms instantaneously 

Cost (USD/kVAR) 50–70 80–100 
connection Shunt only Shunt and series 

Advantages 
• Minimizes the negative sequence voltage. 

• Injects reactive current. 

• Restrict the fault current. 
• Increases the voltage protection bound-

ary. 

Figure 5. UPQC structure with its proposed control system.

4. Application of Proposed Control Strategy
4.1. WOA Technique

WOA is a meta-heuristic optimization technique informed by nature that imitates
the action of humpbacks when hunting. The bubble-net searching technique serves as an
inspiration for the technique. Bubble-net dining is the term used to describe humpback
whales’ hunting activity. Hunting krill or small fish in schools near the surface is preferred
by humpbacks. This hunting has been seen to be accomplished by blowing characteristic
bubbles in a circle [60–62].

The WOA-based FOPIC’s implementation process can be summarized and its flow
chart is depicted in Figure 6, as follows: The agent’s coefficients are KP, Ki, and γ.
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1: Create the whale population from scratch Xi (i = 1, 2, . . . n).
2: Determine each searching agent’s fitness level, where X∗= the fittest hunting agent.
3: For each hunting agent, the agent brings up-to-date a, A, i, C, and P.

A = 2ar− a (38)

C = 2r (39)

where both P and r are in the range of [0, 1]. The direct dimension ranges from 2 to 0.
4: If (P < 0.5) and |A| < 1.
5: The existing search agent’s situation is updated by the subsequent equation:

X(t + 1) = X*(t)−AD (40)

D =
∣∣∣CX*(t)− X(t)

∣∣∣ (41)

6: If |A| ≥ 1, choose a random agent (Xrand), which brings the up-to-date place of the
current agent with the following equation:

∑ X(t + 1) = Xrand −AD (42)
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7: If (P ≥ 0.5), keep posted about the site of the present search by the next equation:

X’(t + 1) = D’eblcos(2πl) + X*(t) (43)

8: If any agent goes beyond the search space and amends it, calculate the fitness of
each search, and update X* if there is a better solution t = t + 1.

9: Choose the new X*.
10: While t = maximal iteration.
11: Yield the optimal gains of Kp, Ki, and γ.

4.2. Application of FOPIC with WOA Technique

Equation (44) illustrates how the transfer function of the FOPIC works [63,64]. Figure 7
depicts the FOPIC structure. According to proportional gain (Kp), integral gain (Ki), and
fractional order (γ), the FOPIC values are listed in Table 5 for UPQC and STATCOM. In
addition, these values are selected using the WOA approach [65].
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Table 5. The obtained gains of applied controllers.

Tools Controllers
WOA-Based FOPIC Gains

KP KI γ

STATCOM

FOPIC1 0.0021 0.0731 0.7421
FOPIC2 0.372 11.342 0.8798
FOPIC3 0.423 12.231 0.8678
FOPIC4 7.173 999.97 0.9137

UPQC

FOPIC5 7.8548 29.8490 0.8798
FOPIC6 0.347 10.234 0.8441
FOPIC7 0.249 10.781 0.8237
FOPIC8 0.0019 0.1040 0.6320
FOPIC9 0.9441 147.810 0.9120
FOPIC10 0.0271 7.941 0.7810

U(t) = KP e(t) + Ki

∫ γ

t
e(t) (44)
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5. Simulated Results and Discussion

This section provides significant detail about the analysis of the suggested system
seen in Figure 2. To conduct a thorough analysis, the proposed EPS’s effective operation
is assessed, and the efficacy of the compensation provided by integrating STATCOM and
UPQC to enhance the PCC bus voltage portfolio is confirmed; the system is simulated
under conditions of a connection of WT, a connection of nonlinear loads, and a transient
fault. As indicated in Table 6, three distinct situations based on various configuration
methods of the same system are simulated, and matching cases are created. This will make
it possible to compare them effectively and aid in determining which scenario offers the
best overall performance. In this section, the dynamic and transient responses for each
setup scheme are examined independently.

Table 6. Studied scenarios for three different configurations.

Configurations
Studied Scenarios

Compensation of Q
S1 S2 S3

C1 � � � �
C2 � � � �
C3 � � � 7

5.1. Application of the STATCOM

The developed STATCOM is linked to the EPS at the PCC bus, as shown in Figure 2.
This section outlines how well STATCOM performs in overcoming PQ disruptions. For the
purpose of overcoming PQ issues, the STATCOM was designed, developed, and simulated
in MATLAB/Simulink. Table 7 lists the system parameters shown in Figure 2.

Table 7. Studied system parameters with STATCOM.

Parameters Value Unit

Feeder base voltage 25 kV
Distributed transformer 25\0.575 kV
STATCOM base voltage 25 kV

Frequency 50 Hz
Load 1.2 MVA

STATCOM rating (R) 700 kVAR
WTR 500 kW

R wind speed 7.8 m\s
DC-capacitor 4.84 µF

Filter inductance 6 mH
Filter capacitance 12 µF

5.1.1. Scenario 1: Mitigation of Non-Linear Load (S1)

This section investigates how STATCOM successfully handles and mitigates voltage
instability and current harmonics at the PCC bus where S1 causes them. Figures 8 and 9
show feeding S1 in the presence and absence of STATCOM to show how STATCOM affects
the PCC voltage (PCCV) waveforms, where these waveforms evaluate the performance
of STATCOM. The PCCV swings between 1.089 pu and 0.989 pu, as is shown in this
instance. In order to maintain the PCCV at close to 1 pu and within the permitted voltage
limitations, STATCOM smooths out the PCCV waveforms. Additionally, as shown in
Figure 9, STATCOM effectively enhances the voltage quality in a fast reaction duration of
roughly 2 ms.
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The results clarified in Figures 10 and 11 display the THD without and with STATCOM
for the PCC voltage and current when the EPS is tied to S1. Figure 10a,b show that when
the STATCOM is interconnected with the system, the THD of the PCC voltage decreases
from 4.5% without STATCOM to 2.42% using STATCOM. This is despite the fact that the
THD of the PCC bus current is significantly decreased from 20.46% without STATCOM to
5.57% with STATCOM, as depicted in Figure 11a,b. The percentage reduction in THD is
about 46.22% and 72.78% for the PCC bus voltage and current, respectively, which indicates
a significant enhancement in these waveforms.
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5.1.2. Scenario 2: Mitigation of 42% Penetration of Wind Energy (S2)

The EPS is linked to S2 in this instance, which causes harmonics in the voltage and
current at the PCC bus. It is obvious from this that the PCCV varies between 1.019 pu and
0.939 pu as depicted in Figure 12. The effect of STATCOM on reducing voltage fluctuations
is shown in Figure 13. This improvement in the PCCV waveforms is because of the
STATCOM’s ability to regulate the PCCV around 1 pu. The obtained simulated results
ensure the capability of STATCOM to overcome all of these unfavorable disturbances,
which enhances the power system stability and reliability.
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The results illustrated in Figures 14 and 15 show the THD without and with STATCOM
for the PCC bus voltage and current when the EPS is tied to S2. Figure 14a,b shows that
when the STATCOM is connected to the system, the THD of the PCC bus voltage is reduced
from 16.25% without STATCOM to 1.62% with STATCOM, while the THD of the feeder bus
current is significantly reduced from 4.18% without STATCOM to 5.47% with STATCOM,
as depicted in Figure 15a,b. The percentage reduction in THD is about 61.24% and 66.34%
for the PCC bus voltage and current, respectively, which is a significant improvement in
these waveforms. It can be noticed that the performance of STATCOM under S1 is similar
to that under S2.
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5.1.3. Scenario 3: Mitigation of Three-Phase to Ground Fault (S3)

This study presents S3 during 0.1 s–0.12 s, which is well thought-out and one of the
most hazardous kinds of fault. It is important to note that STATCOM can manage system
faults, which are frequent problems that can lead to system instability and are examined
in this study. The PCCV decreased to 0.74 pu of its base value without STATCOM during
the faults period, and EPS instability was observed, as shown in Figure 16. The PCCV bus
limit increased to 0.95 pu thanks to STATCOM, as shown in Figure 17, which demonstrates
the utility of STATCOM.
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5.2. Application of the UPQC

The application of UPQC is shown in Figure 2, where it is used to connect the modern
SG system with the EPS. The UPQC is used to aid in solving PQ issues and improve the
power system’s reliability. The addressed UPQC rating is 700 kVAR and all the system
parameters were mentioned earlier in Table 4.

5.2.1. Scenario 1: Non-Linear Load (S1) Mitigation

The EPS is coupled with S1 in this instance. It is quite probable that the PCC bus
will experience voltage distortion, and voltage and current harmonics. By integrating
S1 between 0.1 and 0.22 s, the UPQC eliminates voltage distortion. As demonstrated in
Figure 18, the voltage approaches 1 pu (pure sine wave), and the voltage is maintained
within acceptable bounds.
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When the UPQC with its control system is connected, the THD of the PCC voltage,
which was 4.5% without it, is reduced to 1.5%, as seen in Figure 19. Similar to this, the
PCC current’s THD in the basic configuration is 20.46%, but with UPQC, it is just 2.3%, as
depicted in Figure 20.
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5.2.2. Scenario 2: 42% Penetration of Wind Energy (S2) Mitigation

High penetration of the SCIG-based WE scenario is considered to highlight the impact
of the UPQC in reducing the THD of the PCC bus voltage for improving PQ. The waveform
of the PCC bus voltage when UPQC is illustrated in Figure 21. In C3 under S2, the THD
of the PCC voltage was 4.5% and in C1 under S2, the THD decreased to 0.16%, as seen in
Figure 22.
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5.2.3. Scenario 3: Three-Phase to Ground Fault (S3) Mitigation

Amongst the most hazardous fault types, S3, which happens in this situation between
0.1 and 0.12 s, causes PCC voltage instability. The PCC voltage dip (0.74 pu) caused
by this failure is depicted in Figure 16. The UPQC, on the other hand, defeats S3 and
restricts voltage to almost 1 pu (pure sine wave), maintaining the EPS stability, as shown in
Figure 23. It may therefore effectively handle any fault condition. It can be mentioned that
the suggested configuration can achieve FRT capability.
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Table 8 illustrates the THD values of the voltage and current at the PCC bus for
the three studied configurations in S1 and S2, for which the table demonstrates how
impressively well the UPQC solution outperformed the STATCOM solution in terms of
handling harmonics. As a result, both preserved the PQ and reliability of the system under
consideration. The bar chart in Figure 24 is used to display the performance comparison
of the studied configurations in terms of percentage figures for %THD of PCC voltage
and current to highlight the superiority of UPQC. In particular, it is useful for showing
the relationship between C1, C2, and C3 and the %THD under S1 and S2. In addition,
PCC voltage values during the different studied operating conditions are listed in Table 9.
Furthermore, to highlight the key performance differences between the UPQC reported
in [66] and the proposed UPQC, Table 10 is shown.

Table 8. Obtained %THD and the percentage reduction during S1 and S2 with C1, C2, and C3.

Studied
Cases

Parameters
Without
FACTS

Magnitude

WOA-Based FOPIC of STATCOM WOA-Based FOPIC of UPFC
(Suggested)

Magnitude Percent Reduction (%) Magnitude Percent Reduction (%)

TH
D

in
S 1

(%
) Voltage 4.5 2.42 46. 22 1.5 66.67

Current 20.46 5.57 72.78 2.3 88.76

TH
D

in
S 2

(%
) Voltage 4. 18 1. 62 61.24 0.16 96.17

Current 16.25 5.47 66.34 1.43 91.2
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Table 9. Performance comparison of PCC voltage values during studied scenarios.

Studied Scenarios
Voltage Variation Values under Presented Configurations (pu)

Without FACTS WOA-Based FOPIC of
STATCOM

WOA-Based FOPIC of UPQC
(Proposed)

Nonlinear loads ≈0.989–1.089 ≈1 1
42% penetration of WE ≈0.939–1.019 ≈1 1

Transient fault ≈0.74 ≈0.95 ≈1

Table 10. Performance comparison of proposed UPQC and recently published UPQC.

Items UPQC [66] UPQC (Proposed)

Number of levels 9 2
Controller Fuzzy logic controller WOA-FOPIC

Connection Between (PV + NL) and grid (380 V) Between (WT + NL) and grid (25 kV)
Modulation method Adaptive hysteresis band (ADB) PWM

Researched point Load voltage (380 V) PCC bus (25 kV)

Scenarios Voltage sag and swell only NLs and 42% penetration of WE adverse
impacts, besides three-phase fault.

Simplicity 7 �
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Table 10. Cont.

Items UPQC [66] UPQC (Proposed)

Main benefits FLC-based AHB reduces the THD, but
FLC needs high experience.

Detectors are not required which lowers
the system’s cost and complexity.

The obtained %THD is satisfied with
IEEE standards. � �

6. Conclusions and Future Research Directions

This study analyzed the effects of STATCOM, and UPQC operated with WOA-based
FOPIC, on EPS stability and PQ improvement using three different configurations (C1, C2,
and C3). Three different operating scenarios (S1, S2, and S3) were used to study C1, C2, and
C3. Both STATCOM and UPQC inject current to cancel out Q and harmonic parts of the
load, which enhances the overall system performance. Modeling and comprehensive study
of the investigated FACTS devices were presented to show their benefits and capabilities
for enhancing PQ issues.

The findings revealed that C1 has better accuracy than both C2 and C3 in reducing
THD percentage and damping the voltage oscillations in the case of all simulation scenarios.
Furthermore, in light of the comparative simulation results of C1, C2, and C3 in all studied
simulated scenarios, it can be concluded that C1 outperforms the other approaches and
significantly boosts the system’s reliability.

S1, S2, and S3 showed that the STATCOM was efficient in overcoming harmonics issues
by decreasing THD to an acceptable level according to the IEEE standards, although UPQC
is remarkable at resolving these problems. The percentage reduction in THD presented by
C1 is interesting compared to that of C2 and C3. C2 successfully avoided voltage instability
by a percentage of 98%, whereas C1 nearly completely overcame the voltage distortion.
Furthermore, C2 controlled the PCC bus voltage during the fault period by 95%, whereas
the control of C1 was close to 100%. Finally, it can be said that the optimal solution is to use
C2 for PQ problems caused by voltage fluctuations and dips, and C1 for highly sensitive
loads. The future research directions for this work are presented in the following points:

1. Comparing the wind generators under different penetration levels to show the best
type for ensuring the studied system is more reliable with low THD.

2. Applying new optimization methods to determine the optimal size of the integrated
FACTS tools.

3. Installing PV instead of a wind generator to show the best option for ensuring the
studied system is more stable with low THD.

4. Installing storage systems instead of FACTS in the studied system to show the best
solution.

5. Applying the developed FACTS tools to microgrids.
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