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1. Introduction

We use the notation ‖T‖p for the norm of a linear operator from the sequence space
`p to itself. Several references have addressed the problem of finding the norm and lower
bound of operators on matrix domains [1–7]. Our study considers infinite matrices [A]j,k,
where all the indices j and k are non-negative.

Definition 1 (Hilbert matrix). If n is a non-negative integer, we define the Hilbert matrix of order
n, Hn, as follows:

[Hn]j,k =
1

j + k + n + 1
j, k = 0, 1, . . . .

In the case of n = 0, H0 = H is the well-known Hilbert matrix, which was introduced by
David Hilbert in 1894. According to [8] theorem 323, the Hilbert matrix is a bounded operator on
`p and

‖H‖p = Γ(1/p)Γ(1/p∗) = π csc(π/p),

where p∗ is the conjugate of p, i.e., 1
p + 1

p∗ = 1.

Definition 2 (Hausdorff matrices). One of the best examples of summability matrices is Hµ,
which is defined as

[Hµ]j,k =


∫ 1

0 ( j
k)θ

k(1− θ)j−kdµ(θ) 0 ≤ k ≤ j,

0 otherwise.

where µ is a probability measure on [0, 1]. Even though it is a difficult task to obtain the `p-norm of
operators, the Hausdorff matrices can be computed using Hardy’s formula [9], Theorem 216, which
states that this matrix is a bounded operator on `p, if and only if

∫ 1

0
θ
−1
p dµ(θ) < ∞, 1 ≤ p < ∞.
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In fact,

‖Hµ‖p =
∫ 1

0
θ
−1
p dµ(θ). (1)

Hausdorff operators have the interesting norm-separating property.

Theorem 1 ([7], Theorem 9). Let p ≥ 1 and Hµ, Hϕ and Hν be Hausdorff matrices such that
Hµ = Hϕ Hν. Then, Hµ is bounded on `p if and only if both Hϕ and Hν are bounded on `p.
Moreover, we have

‖Hµ‖p = ‖Hϕ‖p‖Hν‖p.

For comprehensive information about the Hausdorff matrices, the enthusiastic reader
can refer to [10,11].

Several famous matrices have been derived from the Hausdorff matrix. For positive
integer n, the following are the two classes.

Definition 3 (Cesàro matrix). The measure dµ(θ) = n(1− θ)n−1dθ gives the Cesàro matrix of
order n, Cn, for which

[Cn]j,k =


(n+j−k−1

j−k )

(n+j
j )

0 ≤ k ≤ j,

0 otherwise.

Note that C0 = I, where I is the identity matrix, and C1 = C is the classical Cesàro
matrix. According to (1), Cn has the `p-norm

‖Cn‖p =
Γ(n + 1)Γ(1/p∗)

Γ(n + 1/p∗)
,

which for the famous Cesàro matrix that is ‖C‖p = p
p−1 .

Definition 4 (Gamma matrix). The measure dµ(θ) = nθn−1dθ gives the Gamma matrix of order
n, Gn, for which

[Gn]j,k =


(n+k−1

k )

(n+j
j )

0 ≤ k ≤ j,

0 otherwise.

Hence, by Hardy’s formula, Gn has the `p-norm

‖Gn‖p =
np

np− 1
.

You should note that G1 is the classical Cesàro matrix C.
A well-known property of Hausdorff means is that products are determined by the

diagonal elements. Specifically, if A, B, and C are Hausdorff means and [A]j,j[B]j,j = [C]j,j
for all j, then AB = C. (This is proved in [9], Section 11.3, though in different notation.) The
following result is also known from [9]:

Theorem 2. Cn−1Gn = Cn, hence Cn = Sn,mCm for m < n, where Sn,m = Gm+1 · · ·Gn.
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Proof. The diagonal elements of Cn−1Gn are

[Cn−1Gn]j,j =
j!

n(n + 1) · · · (n + j− 1)
n

n + j
= [Cn]j,j.

Hence, the stated identity.

The following result is known as the Hellinger–Toeplitz theorem.

Theorem 3 ([1], Proposition 7.2). Let 1 < p, q < ∞. The matrix M maps `p into `q if and only
if the transposed matrix, Mt, maps `q∗ into `p∗ . Then, we have

‖M‖`p→`q = ‖Mt‖`q∗→`p∗ .

As an example of the Hellinger–Toeplitz theorem, the transposed Cesàro matrix of
order n has the `p-norm

‖Ct
n‖p =

Γ(n + 1)Γ(1/p)
Γ(n + 1/p)

.

Motivation. Hilbert operators are used in a wide range of fields including approxima-
tion theory, cryptography, image processing, functional analysis, representation theory, and
noncommutative geometry. The estimates of the norm of this operator and the study of its
properties in various spaces are of considerable interest and have a long history. Recently,
ref. [12] has introduced some classes of Hilbert’s commutators mostly based on Cesàro and
Gamma matrices. In this study, we establish the `p norm of these operators.

For non-negative integers n, j and k, let us define the matrix Bn by

[Bn]j,k =

(
n + k

k

)
β(j + k + 1, n + 1) =

(k + 1) · · · (k + n)
(j + k + 1) · · · (j + k + n + 1)

,

where the β function is

β(m, n) =
∫ 1

0
xm−1(1− x)n−1dz (m, n = 1, 2, . . .).

B0 = H where H represents Hilbert’s matrix.
We need the following lemma before we can discuss the Hilbert operator’s commu-

tants, which reveals the relationship between the Hilbert operator and the Cesàro and
Gamma matrices.

Lemma 1 (Lemmas 2.3 and 3.1 of [13,14]). Hilbert matrices satisfy the following identities for
positive integer n:

• H = BnCn
• Hn = CnBn
• HnCn = CnH
• HnGn = GnHn−1
• Bn is a bounded operator that has the `p-norm

‖Bn‖p =
Γ(n + 1/p∗)Γ(1/p)

Γ(n + 1)
.

• ‖H‖p = ‖Bn‖p‖Cn‖p,

where Cn and Gn are the Cesàro and Gamma matrices of order n and Bn is the matrix, which was
defined earlier.
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Commutants of the infinite Hilbert operator. Assume that n is a non-negative integer,
and define the symmetric matrix as follows:

Φb
n = Bt

nBn Ψb
n = BnBt

n

Φc
n = Ct

nCn Ψc
n = CnCt

n

and for n ≥ 1

Φg
n = Gt

nGn Ψg
n = GnGt

n,

Note that for n = 1,

Ψ := Ψc
1 = Ψg

1 = CCt and Φ := Φc
1 = Φg

1 = CtC.

In [12] Theorems 11.2.2 and 11.2.4, the author has proved that the above matrices are
commutants of Hilbert operators. We present those theorems with their proofs.

Theorem 4. The operators Φc
n and Ψb

n are commutants of H.

Proof. By applying Lemma 1 twice, we have

Φc
n H = Ct

n HnCn = (HnCn)
tCn

= (Cn H)tCn = HCt
nCn = HΦc

n.

It can easily be seen from Lemma 1 that HBn = Bn Hn. Now,

Ψb
n H = Bn(HBn)

t = Bn(Bn Hn)
t

= BnHnBt
n = HBnBt

n = HΨb
n.

Theorem 5. The operators Φb
n, Φg

n+1, Ψc
n and Ψg

n are commutants of the Hilbert operator of
order n.

Proof. By applying Lemma 1 twice, we have

Ψc
n Hn = Cn(HnCn)

t = Cn(CnH)t

= CnHCt
n = HnCnCt

n = HnΨc
n.

Additionally, applying Lemma 1 results in

Ψg
n Hn = Gn(HnGn)

t = Gn(Gn Hn−1)
t

= GnHn−1Gt
n = HnGnGt

n = HnΨg
n.

The proof of the other items is similar.

2. Main Results

For non-negative integers m and n, let us define the following matrices:

Φb
m,n = Bt

mBn Ψb
m,n = BmBt

n

Φc
m,n = Ct

mCn Ψc
m,n = CmCt

n
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and for m, n ≥ 1

Φg
m,n = Gt

mGn Ψg
m,n = GmGt

n.

Note that for m = n, all the above matrices are reduced to the Hilbert operator’s
commutators that we introduced earlier. Through this section, we will prove the norm-
separating property for the Cesàro and Gamma matrices of the form:

‖CmCt
n‖p = ‖Cm‖p‖Ct

n‖p,

‖Ct
mCn‖p = ‖Ct

m‖p‖Cn‖p,

‖GmGt
n‖p = ‖Gm‖p‖Gt

n‖p,

‖Gt
mGn‖p = ‖Gt

m‖p‖Gn‖p.

Theorem 6. For non-negative integers m and n, matrices Ψc
m,n and Φc

m,n are bounded operators
on `p and

‖Ψc
m,n‖p =

Γ(m + 1)Γ(n + 1)
Γ(m + 1/p∗)Γ(n + 1/p)

π csc(π/p)

‖Φc
m,n‖p =

Γ(m + 1)Γ(n + 1)
Γ(m + 1/p)Γ(n + 1/p∗)

π csc(π/p).

In particular, the matrices Ψc
n and Φc

n are bounded operators on `p and

‖Ψc
n‖p = ‖Φc

n‖p =
Γ2(n + 1)

Γ(n + 1/p)Γ(n + 1/p∗)
π csc(π/p).

Theorem 7. For positive integers m and n, matrices Ψg
m,n and Φg

m,n are bounded operators on
`p and

‖Ψg
m,n‖p =

mnpp∗

(mp− 1)(np∗ − 1)

‖Φg
m,n‖p =

mnpp∗

(mp∗ − 1)(np− 1)
.

In particular, the matrices Ψg
n and Φg

n are bounded operators on `p and

‖Ψg
n‖p = ‖Φg

n‖p =
n2 pp∗

(np− 1)(np∗ − 1)
.

Theorem 8. For non-negative integers m and n, the matrices Ψb
m,n and Φb

m,n are bounded operators
on `p and

‖Ψb
m,n‖p =

Γ(m + 1/p∗)Γ(n + 1/p)
Γ(m + 1)Γ(n + 1)

π csc(π/p)

‖Φb
m,n‖p =

Γ(m + 1/p)Γ(n + 1/p∗)
Γ(m + 1)Γ(n + 1)

π csc(π/p).
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In particular, the matrices Ψb
n and Φb

n are bounded operators on `p and

‖Ψb
n‖p = ‖Φb

n‖p =
Γ(n + 1/p)Γ(n + 1/p∗)

Γ2(n + 1)
π csc(π/p).

3. Proof of Theorems

In this section, we focus on proving our claims, but first, we need the following lemmas.

Lemma 2. For the Hilbert operator, we have ‖H2‖p = ‖H‖2
p.

Proof. Let H be the Hilbert operator with matrix entries 1/(j + k)(j, k ≥ 1), and write
Mr = π/ sin(rπ). It is well known that ‖H‖p ≤ M1/p for p > 1. Here, we show that
‖H‖p ≥ M1/p and ‖H2‖p ≥ M2

1/p (so that equality holds in both cases). The same

statements hold for the alternative Hilbert operator with matrix entries 1
j+k−1 .

Choose r with rp > 1, and let xk = 1/kr for k ≥ 1. Let y = Hx and z = Hy. Then,

yj =
∞

∑
k=1

1
(j + k)kr ≥

∫ ∞

1

1
(t + j)tr dt.

Now, ∫ ∞

0

1
(t + j)tr dt =

Mr

jr
,

and ∫ 1

0

1
(t + j)tr dt ≤

∫ 1

0

1
jtr dt =

1
(1− r)j

.

so

yj ≥
Mr

jr
− 1

(1− r)j
. (2)

Informally, yj is approximately Mrxj, so ‖y‖`p is approximately Mr‖x‖`p . For 0 < x <

a, we have (1− x
a )

p ≥ 1− px
a , hence (a− x)p ≥ ap − pap−1x. Hence,

yp
j ≥

Mp
r

jrp −
p

1− r
Mp−1

r

jrp−r+1 ,

so,

∞

∑
j=1

yp
j ≥ Mp

r ζ(rp)− p
1− r

Mp−1
r ζ(rp− r + 1),

while ∑∞
k=1 xp

k = ζ(rp). Now, let r → 1/p from above. Then, ζ(rp) → ∞, while

ζ(rp− r + 1)→ ζ(2− 1/p). Hence,
‖y‖`p
‖x‖`p

tends to M1/p.

We now turn to H2. We require the following:
Let uk = 1/k for k ≥ 1. Then,

(Hu)j =
∞

∑
k=1

1
(j + k)k

=
1
j

∞

∑
k=1

(
1
k
− 1

j + k

)
=

1
j

(
1 +

1
2
+ · · ·+ 1

j

)
= Lj/j,
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where Lj = ∑
j
i=1

1
i . By (2), y ≥ Mrx− u/(1− r), so

z ≥ Mr(Hx)− Hu
1− r

= Mry− Hu
1− r

.

So, again by (2),

zj ≥
M2

r
jr
− Mr

(1− r)j
−

Lj

(1− r)j
.

Hence,

zp
j ≥

M2p
r

jrp − p
M2p−2

r

jr(p−1)

Mr + Lj

(1− r)j
.

Write η(s) = ∑∞
j=1

Lj
js : this is convergent for s > 1. Then,

∞

∑
j=1

zp
j ≥ M2p

r ζ(rp)− p
(1− r)

M2p−2
r (Mrζ(rp− r + 1) + η(rp− r + 1)).

When r → 1/p from above, η(rp − r + 1) tends to the finite limit η(2− 1/p). So
‖z‖`p /‖x‖`p tends to M2

1/p.

Lemma 3. For the Hilbert operator of order n, we have ‖H2
n‖p = ‖Hn‖2

p.

Proof. With x and z as defined in the previous lemma, it shows that, given ε > 0, there
exists δ > 0 such that if r < 1

p + δ, then ‖z‖`p ≥ (M2
1/p − ε)‖x‖`p . Now, let u = (H− Hn)x

and w = (H2 − H2
n)x = (H + Hn)u. Then, ‖w‖`p ≤ 2M1/p‖u‖`p . We show that for r close

enough to 1
p , ‖u‖`p ≤ ε‖x‖`p . Now, for any r > 1

p ,

uj =
∞

∑
k=1

(
1

j + k
− 1

j + k + n

)
1
kr <

∞

∑
k=1

n
(j + k)2k1/p .

Hence,

‖u‖`p ≤ ‖u‖`1 =
∞

∑
j=1

uj < n
∞

∑
k=1

1
k1/p

∞

∑
j=1

1
(j + k)2 < nζ(1 +

1
p
),

since ∑∞
j=1

1
(j+k)2 < 1

k . Meanwhile, ‖u‖`p = ζ(rp)→ ∞ as r → 1
p . Hence, for r close enough

to 1
p , ‖u‖`p ≤ ε‖x‖`p , as required.

Proof of Theorem 6. We first compute the `p-norm of Ψc
m,n. Obviously,

‖Ψc
m,n‖p ≤ ‖Cm‖p‖Ct

n‖p.

According to the Lemma 2, we also have ‖H‖p = ‖Bt
n‖p‖Ct

n‖p, which results in

‖H‖2
p = ‖Bm‖p‖Cm‖p‖Ct

n‖p‖Bt
n‖p.

Now, regarding the identity H2 = BmΨc
m,nBt

n and Lemma 1,

‖H‖2
p = ‖H2‖p ≤ ‖Bm‖p‖Ψc

m,n‖p‖Bt
n‖p.
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Hence,

‖Ψc
m,n‖p ≥ ‖Cm‖p‖Ct

n‖p,

which completes the proof.
For computing the norm of Φc

m,n, we suppose that m ≥ n. The other case m < n has a
similar proof. In this case, regarding Lemma 1 and Theorem 2, we have

H2
m = (CmBm)

tCmBm = Bt
mCt

mCnSm,nBm = Bt
mΦc

m,nSm,nBm.

However, by applying Lemma 3,

‖Hm‖2
p = ‖Bt

m‖p‖Ct
m‖p‖Cm‖p‖Bm‖p

= ‖Bt
m‖p‖Ct

m‖p‖Cn‖p‖Sm,n‖p‖Bm‖p

= ‖H2
m‖p ≤ ‖Bt

m‖p‖Φc
m,n‖p‖Sm,n‖p‖Bm‖p,

which shows

‖Φc
m,n‖p ≥ ‖Ct

m‖p‖Cn‖p.

The other side of the above inequality is obvious, so the proof is complete.

Proof of Theorem 7. First, ‖Ψg
m,n‖p ≤ ‖Gm‖p‖Gt

n‖p. From the definition and relation
Cn = Cn−1Gn = GnCn−1, we have

Ψc
m,n = Cm−1Gm(Cn−1Gn)

t = Cm−1Ψg
m,nCt

n−1,

so ‖Ψc
m,n‖p ≤ ‖Gm−1‖p‖Ψg

m,n‖p‖Ct
n−1‖p. By Theorem 6 and ‖Cm‖p = ‖Cm−1‖p‖Gm‖p

‖Ψc
m,n‖p = ‖Cm‖p‖Ct

n‖p = ‖Cm−1‖p‖Gm‖p‖Gt
n‖p‖Ct

n−1‖p,

hence ‖Ψg
m,n‖p ≥ ‖Gm‖p‖Gt

n‖p.

Similarly, using Ct
mCn = Ct

m−1Φg
m,nCn−1 and Theorem 6.

Proof of Theorem 8. Using the identities H = BnCn = Ct
mBt

m, we obtain H2 = Ct
mΦb

m,nCn.
Reasoning as in the proof of Theorem 6, we obtain

‖Φb
m,n‖p ≥ ‖Bt

m‖p‖Bt
m‖p,

hence equality. Similarly, ‖Ψb
m,n‖p = ‖Bm‖p‖Bt

n‖p.

4. Conclusions

The author, in his previous work, has introduced the following symmetric matrices:

Φb
n = Bt

nBn Ψb
n = BnBt

n

Φc
n = Ct

nCn Ψc
n = CnCt

n

Φg
n = Gt

nGn Ψg
n = GnGt

n,

as the Hilbert operators commutants. In this study, we have obtained the `p-norm of these
operators as:

• ‖Ψb
n‖p = ‖Φb

n‖p = Γ(n+1/p)Γ(n+1/p∗)
Γ2(n+1) π csc(π/p)
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• ‖Ψc
n‖p = ‖Φc

n‖p = Γ2(n+1)
Γ(n+1/p)Γ(n+1/p∗)π csc(π/p)

• ‖Ψg
n‖p = ‖Φg

n‖p = n2 pp∗

(np−1)(np∗−1)

Through this research, we have also proved the norm-separating property for the
Cesàro and Gamma matrices of the form:

‖CmCt
n‖p = ‖Cm‖p‖Ct

n‖p

‖Ct
mCn‖p = ‖Ct

m‖p‖Cn‖p

‖GmGt
n‖p = ‖Gm‖p‖Gt

n‖p

‖Gt
mGn‖p = ‖Gt

m‖p‖Gn‖p
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