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Abstract: In the current study, we investigate the stochastic Benjamin–Bona–Mahony equation with
beta derivative (SBBME-BD). The considered stochastic term is the multiplicative noise in the Itô
sense. By combining the F -expansion approach with two separate equations, such as the Riccati and
elliptic equations, new hyperbolic, trigonometric, rational, and Jacobi elliptic solutions for SBBME-BD
can be generated. The solutions to the Benjamin–Bona–Mahony equation are useful in understanding
various scientific phenomena, including Rossby waves in spinning fluids and drift waves in plasma.
Our results are presented using MATLAB, with numerous 3D and 2D figures illustrating the impacts
of white noise and the beta derivative on the obtained solutions of SBBME-BD.
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1. Introduction

Nonlinear evolution equations (NEEs) are utilized to explain complex phenomena in
many disciplines, including optical fiber communication, chemical kinetics, population
dynamics, chaotic systems, photonic, plasma physics, electromagnetism, ocean wave, wave
propagation, nuclear physics, fluid mechanics, and solid-state physics. Obtaining traveling
wave solutions for NEEs is the most significant physical challenge. There are several
effective methods for solving NEEs, including the generalized Kudryashov approach [1],
modified decomposition approach [2], Riccati equation expansion [3], sine-Gordon expan-
sion [4], sine-cosine method [5], Exp-function [6], improved tan(ϕ/2)-expansion [7], Lie
symmetry [8], Jacobi elliptic function [9], and the tanh–sech method [10] .

Recently, numerous mathematicians have introduced several fractional derivatives.
Some of the most well-known are those presented by Caputo, Riemann–Liouville, Grunwald–
Letnikov, Kober, Erdelyi, Marchaud, Hadamard, and Riesz [11–14]. Most kinds of fractional
derivatives do not follow the chain rule, quotient rule, or product rule. In recent years,
Atangana et al. [15] produced a new operator derivative called the beta-derivative (BD),
which extends the classical derivative. If f : (0, ∞) → R then its beta derivative [15] is
defined as:

Dβ
x φ(x) =

dβφ

dxβ
= lim

h→0

φ(x + h(x + 1
Γ(β)

)1−β)− φ(x)

h
, 0 < β ≤ 1.

Moreover, the BD possesses the following properties [15] for all real numbers a and b:
(1) Dβ

x f (y) = (x + 1
Γ(β)

)1−β d f
dx ,

Axioms 2023, 12, 447. https://doi.org/10.3390/axioms12050447 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12050447
https://doi.org/10.3390/axioms12050447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-2394-0041
https://orcid.org/0000-0002-1694-7907
https://orcid.org/0000-0002-1402-7584
https://doi.org/10.3390/axioms12050447
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12050447?type=check_update&version=1


Axioms 2023, 12, 447 2 of 12

(2) Dβ
x (a f + bg) = aDβ

x ( f ) + bDβ
x (g),

(3) Dβ
x ( f ◦ g(x)) = (x + 1

Γ(β)
)1−βg′(x) f ′(g(x)), (4) Dβ

x (a) = 0.
Moreover, stochastic partial differential equations (SDEs) have a wide range of ap-

plications in physics, including molecular dynamics, neurodynamics, climate dynamics,
geophysics, biology, physics, chemistry, and other scientific disciplines [16–18]. More pre-
cisely, SDEs characterize all dynamical equations in which quantum influences are either
insignificant or can be accounted for as perturbations. SDEs are an extension of the theory
of dynamical systems to models with noise. This is a significant generalization because
actual systems cannot be entirely isolated from their surroundings and, as a result, are
always subject to external stochastic influence.

As a consequence, obtaining exact solutions to fractional or stochastic differential
equations is critical. Many analytical and numerical methods, including the (G′/G)-
expansion method [19], the mapping method [20], the Jacobi elliptic function technique [21],
the extended tanh-coth method [22], bifurcation analysis [23,24], and more.

Therefore, it is critical here to look at the stochastic Benjamin–Bona–Mahony equation
with beta derivative (SBBME-BD) as follows:

Qt + 6QDβ
xQ+Dβ

xxxQ− αDβ
xxQt = σ(Q− αDβ

xxQ)Bt, (1)

where the function Q = Q(x, t) is real, σ is the strength of the noise, B = B(t) is a white
noise that satisfies the following properties: (i) B has continuous trajectories, (ii) B(0) = 0,
and (iii) B(ti+1)−B(ti) has standard normal distribution. If we put σ = 0, and β = 1, then
we obtain the Benjamin–Bona–Mahony equation as follows:

Qt + 6QQx +Qxxx − αQxxt = 0. (2)

Benjamin, Bona, and Mahony [25] investigated Equation (2) as a modification of the
KdV equation. The modified equation was proposed to simulate long surface gravity
waves with small amplitudes propagating in a 1 + 1 dimension. Many researchers have
acquired the exact solutions of Equation (2) by applying many various methods, such as
the generalized (G′/G)-expansion method [26], (G′/G)-expansion method [27], Hirota’s
bilinear method [28], the Lie group method [29], the exp-function method [30], the tanh–
coth method, and the sn–ns method [31]. The stochastic Benjamin–Bona–Mahony equation
with beta derivative has not been considered until now.

The motivation behind this study is to obtain exact stochastic solutions of SBBME-BD
(1) using the F -expansion approach combined with two distinct equations, namely the
Riccati and elliptic equations. The presence of a stochastic term in the equation makes
these solutions particularly useful for physicists in understanding important physical
phenomena. Moreover, we present various 2D and 3D graphical representations using
the MATLAB program to explore the impact of the Beta derivative and noise on the exact
solution of SBBME-BD (1).

The sequence of the paper is as follows: In Section 2, we derive the wave equation
for the SBBME-BD (1). In Section 3, the solution of the SBBME-BD (1) may be obtained by
using Fwhite noise and the BD on the obtained solutions of SBBME-BD (1). In the end, the
conclusions of this paper are introduced.

2. Traveling Wave Equation for SBBME-BD

The wave equation for SBBME-BD (1) is achieved by applying:

Q(x, t) = G(ζ)e[σB(t)−
1
2 σ2t], ζ =

ζ1

β
(x +

1
Γ(β)

)β + ζ2t, (3)



Axioms 2023, 12, 447 3 of 12

where G is a deterministic function, and ζ1, ζ2 are unknown constants. We note that

Qt = [ζ2G ′ + σGBt +
1
2

σ2G−1
2

σ2G]e[σB(t)−
1
2 σ2t]

= [ζ2G ′ + σGBt]e[σB(t)−
1
2 σ2t], (4)

and
Dβ

xxQt = [ζ2
1ζ2G ′′′ + σζ2

1G ′′Bt]e[σB(t)−
1
2 σ2t] (5)

Dβ
xQ = ζ1G ′e[σB(t)−

1
2 σ2t], Dβ

xxxQ = ζ3
1G ′′′e[σB(t)−

1
2 σ2t]. (6)

Inserting Equation (3) into Equation (1) and utilizing (4)–(6), we obtain

ζ2G ′ + (ζ3
1 − αζ2

1ζ2)G ′′′ + 6ζ1GG ′e[σB(t)−
1
2 σ2t] = 0. (7)

Taking the expectations on both sides, we have

ζ2G ′ + (ζ3
1 − αζ2

1ζ2)G ′′′ + 6ζ1GG ′e−
1
2 σ2tEe[σB(t)] = 0. (8)

Since B(t) is a Gaussian process, then E(eσB(t)) = e
1
2 σ2t. Thus, Equation (8) becomes

ζ2G ′ + (ζ3
1 − αζ2

1ζ2)G ′′′ + 6ζ1GG ′ = 0. (9)

Integrating Equation (9) once with a zero integration constant yields

G ′′ + γ1G + γ2G2 = 0, (10)

where
γ1 =

ζ2

(ζ3
1 − αζ2

1ζ2)
and γ2 =

3
(ζ2

1 − αζ1ζ2)
.

3. Exact Solutions of SBBME-BD

Utilizing the F -expansion method (F -EM) with two different equations, such as
the Riccati equation and elliptic equation, the solutions to Equation (10) are discovered.
Afterward, the SBBME-BD solutions (1) can be obtained.

3.1. F -EM with Riccati Equation

Assuming that the solution G of Equation (10) has the form:

G(ζ) = }0 +
J

∑
k=1

}kF k, (11)

where F is the solution of the Riccati equation:

F ′ = F 2 + φ, (12)

Determining J needs balancing G ′′ with G2 in Equation (10) as

J + 2 = 2J ⇒ J = 2.

Equation (11) becomes
G(ζ) = }0 + }1F+}2F 2. (13)
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Equation (12) has the following solution:

F (ζ) =
√

φ tan(
√

φζ) or F (ζ) = −
√

φ cot(
√

φζ), (14)

If φ > 0, or

F (ζ) = −
√
−φ tanh(

√
−φζ) or F (ζ) = −

√
−φ coth(

√
−φζ), (15)

If φ < 0, or

ϕ(ζ) =
−1
ζ

, (16)

If φ = 0.
Now, putting Equation (13) into Equation (10), we have

(6}2 + γ2}2
2)F 4 + (2}1 + 2γ2}1}2)F 3 + (8φ}2 + 2}0}2γ2 + }2

1γ2 + γ1}2)F 2

(2φ}1 + γ1}1 + 2γ2}0}1)F + (2φ2}2 + γ1}0 + γ2}2
0) = 0

Putting the coefficients of F to zero:

6}2 + γ2}2
2 = 0,

2}1 + 2γ2}1}2 = 0,

8φ}2 + 2}0}2γ2 + }2
1γ2 + γ1}2 = 0,

2φ}1 + γ1}1 + 2γ2}0}1 = 0,

and
2φ2}2 + γ1}0 + γ2}2

0 = 0.

By solving these equations, we obtain the two families of solutions:
First family:

}0 =
−6φ

γ2
, }1 = 0, }2 =

−6
γ2

, ζ2 =
4φζ3

1
1 + 4αφζ2

1
, (17)

Second family:

}0 =
−2φ

γ2
, }1 = 0, }2 =

−6
γ2

, ζ2 =
−4φζ3

1
1− 4αφζ2

1
, (18)

First family: The solution to Equation (10) is as follows:

G(ζ) = −6φ

γ2
− 6

γ2
F 2(ζ).

There are three distinct cases for F (ζ):
Case 1: If φ > 0, then with (14), we have

G(ζ) = −6φ

γ2
− 6φ

γ2
tan2(

√
φζ) = −6φ

γ2
sec2(

√
φζ),

and
G(ζ) = −6φ

γ2
− 6φ

γ2
cot2(

√
φζ) =

−6φ

γ2
csc2(

√
φζ).
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Consequently, the solution of SBBME-BD (1) is

Q(x, t) = −6φ

γ2
sec2(

√
φζ)e(σB(t)−

1
2 σ2t), (19)

and
Q(x, t) =

−6φ

γ2
csc2(

√
φζ)e(σB(t)−

1
2 σ2t), (20)

where ζ = ζ1
β (x + 1

Γ(β)
)β +

4φζ3
1

1+4αφζ2
1
t.

Case 2: If φ < 0, then by using (15), we have

G(ζ) = −6φ

γ2
+

6φ

γ2
tanh2(

√
−φζ) =

−6φ

γ2
sech2(

√
−φζ),

and
G(ζ) = −6φ

γ2
+

6φ

γ2
coth2(

√
−φζ) =

6φ

γ2
csch2(

√
−φζ).

Consequently, the solution of SBBME-BD (1) is

Q(x, t) =
−6φ

γ2
sech2(

√
−φζ)e(σB(t)−

1
2 σ2t), (21)

and
Q(x, t) =

6φ

γ2
csch2(

√
−φζ)e(σB(t)−

1
2 σ2t). (22)

Case 3: If φ = 0, then by using (16), we have

G(ζ) = 6
γ2

1
ζ2 .

Consequently, the solution of SBBME-BD (1) is

Q(x, t) = [− 6
γ2

1
ζ2 ]e

(σB(t)− 1
2 σ2t), (23)

where ζ = ζ1
β (x + 1

Γ(β)
)β +

4φζ3
1

1+4αφζ2
1
t.

Second family: Equation (10) has the solution

G(ζ) = −2φ

γ2
− 6

γ2
F 2(ζ)

There are three distinct cases for F (ζ):
Case 1: If φ > 0, then by using (14), we have

G(ζ) = −2φ

γ2
− 6φ

γ2
tan2(

√
φζ),

and
G(ζ) = −2φ

γ2
− 6φ

γ2
cot2(

√
φζ).

Consequently, the solution of SBBME-BD (1) is

Q(x, t) = [
−2φ

γ2
− 6φ

γ2
tan2(

√
φζ)]e(σB(t)−

1
2 σ2t), (24)



Axioms 2023, 12, 447 6 of 12

and
Q(x, t) = [

−2φ

γ2
− 6φ

γ2
cot2(

√
φζ)]e(σB(t)−

1
2 σ2t), (25)

where ζ = ζ1
β (x + 1

Γ(β)
)β − 4φζ3

1
1−4αφζ2

1
t.

Case 2: If φ < 0, then by using (15), we have

G(ζ) = −2φ

γ2
+

6φ

γ2
tanh2(

√
−φζ),

and
G(ζ) = −2φ

γ2
+

6φ

γ2
coth2(

√
−φζ).

Consequently, the solution of SBBME-BD (1) is

Q(x, t) = [
−2φ

γ2
+

6φ

γ2
tanh2(

√
−φζ)]e(σB(t)−

1
2 σ2t), (26)

and
Q(x, t) = [

−2φ

γ2
+

6φ

γ2
coth2(

√
−φζ)]e(σB(t)−

1
2 σ2t), (27)

where ζ = ζ1
β (x + 1

Γ(β)
)β − 4φζ3

1
1−4αφζ2

1
t.

Case 3: If φ = 0, then by using (16), we have

G(ζ) = 6
γ2

1
ζ2 .

Consequently, the solution of SBBME-BD (1) is

Q(x, t) =
6

γ2

1
ζ2 e(σB(t)−

1
2 σ2t), (28)

where ζ = ζ1
β (x + 1

Γ(β)
)β − 4φζ3

1
1−4αφζ2

1
t.

3.2. F -EM with Elliptic Equation

Suppose that the solution of Equation (10) has the form (13). However, at this time, F
solves the following elliptic equation:

F ′ =
√

R + KF 2 + PF 4, (29)

where R, K, and P are constants. Differentiating Equation (13) twice and using (29), we
have

G ′′ = }1(KF + 2PF 3) + 2}2(R + 2KF 2 + 3PF 4). (30)

Setting Equation (13) and Equation (30) into Equation (10), we have

(6}2P + γ2}2
2)F 4 + (2P}1 + 2}1}2γ2)F 3 + (4}2K + 2γ2}0}2 + }2

1

+}2γ1)F 2 + (}1K + 2γ2}0}1 + γ1}1)F+(2R}2 + γ1}0 + γ2}2
0) = 0.

If we assign each coefficient of F k to 0, we will have a system of equations. Here are the
two families we obtain when we solve this system for K2 − 3RP > 0:
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First family:

}0 = −2(
K +

√
(K2 − 3RP)

γ2
), }1 = 0, }2 =

−6P
γ2

, ζ2 =
4
√
(K2 − 3RP)ζ3

1

1 + 4α
√
(K2 − 3RP)ζ2

1

.

Second family:

}0 = −2(
K−

√
(K2 − 3RP)

γ2
), }1 = 0, }2 =

−6P
γ2

, ζ2 =
−4

√
(K2 − 3RP)ζ3

1

1− 4α
√
(K2 − 3RP)ζ2

1

.

In both families, the solution of Equation (10) takes the form:

G(ζ) = }0 + }2F 2(ζ). (31)

There are many cases for F depending on P, K and R such that K2 − 3RP > 0 as follows :

Case P K R F(ζ)
1 ρ2 −(1 + ρ2) 1 sn(ζ)
2 1 2ρ2 − 1 −ρ2(1− ρ2) ds(ζ)
3 1 2− ρ2 (1− ρ2) cs(ζ)
4 −ρ2 2ρ2 − 1 (1− ρ2) cn(ζ)
5 −1 2− ρ2 (ρ2 − 1) dn(ζ)

6 ρ2

4
(ρ2−2)

2
1
4 (or ρ2

4 )
sn(ζ)

1±dn(ζ)

7 −1
4

(ρ2+1)
2

−(1−ρ2)2

4 ρcn(ζ)± dn(ζ)

8 ρ2−1
4

(ρ2+1)
2

(ρ2−1)
4

dn(ζ)
1±sn(ζ)

9 1−ρ2

4
(1−ρ2)

2
(1−ρ2)

4
cn(ζ)

1±sn(ζ)

For the first family: the solutions of SBBME-BD (1) are

Q1(x, t) = [
2(1 + ρ2)− 2

√
ρ4 − ρ2 + 1

γ2
− 6ρ2

γ2
sn2(ζ)]e[σB(t)−

1
2 σ2t], (32)

Q2(x, t) = [
(2− 4ρ2)− 2

√
ρ4 − ρ2 + 1

γ2
− 6

γ2
ds2(ζ)]e[σB(t)−

1
2 σ2t], (33)

Q3(x, t) = [
(2ρ2 − 4)− 2

√
ρ4 + ρ2 + 1

γ2
− 6

γ2
cs2(ζ)]e[σB(t)−

1
2 σ2t], (34)

Q4(x, t) = [
(2− 4ρ2)− 2

√
ρ4 − ρ2 + 1

γ2
+

6ρ2

γ2
ds2(ζ)]e[σB(t)−

1
2 σ2t]. (35)

Q5(x, t) = [
(2ρ2 − 4)− 2

√
ρ4 − ρ2 + 1

γ2
+

6
γ2

dn2(ζ)]e[σB(t)−
1
2 σ2t]. (36)

Q6(x, t) = [
(4− 2ρ2)−

√
4ρ4 − 19ρ2 + 16

2γ2
− 3ρ2

2γ2

sn2(ζ)

(1± dn(ζ))2 ]e
[σB(t)− 1

2 σ2t]. (37)

Q7(x, t) = [
−(2ρ2 + 2)−

√
ρ4 + 14ρ2 + 1

2γ2
+

3
2γ2

(ρcn(ζ)± dn(ζ))2]e[σB(t)−
1
2 σ2t]. (38)

Q8(x, t) = [
−(2ρ2 + 2)−

√
ρ4 + 14ρ2 + 1

2γ2
− 3(ρ2 − 1)

2γ2

dn2(ζ)

[1± sn(ζ)]2
]e[σB(t)−

1
2 σ2t]. (39)
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Q9(x, t) = [
(2ρ2 − 2)−

√
ρ4 − 2ρ2 + 1

2γ2
− 3(1− ρ2)

2γ2

cn2(ζ)

[1± sn(ζ)]2
]e[σB(t)−

1
2 σ2t]. (40)

If ρ→ 1 in Equations (32)–(40), then we attain the soliton solutions for SBBME-BD (1)
as:

Q(x, t) = [
2

γ2
− 6

γ2
tanh2(ζ)]e[σB(t)−

1
2 σ2t]. (41)

Q(x, t) = [
−4
γ2
− 6

γ2
csch2(ζ)]e[σB(t)−

1
2 σ2t]. (42)

Q(x, t) = [
−4
γ2

+
6

γ2
sech2(ζ)]e[σB(t)−

1
2 σ2t]. (43)

Q(x, t) = [
1

2γ2
− 3

2γ2

tanh2(ζ)

(1± sech(ζ))2 ]e
[σB(t)− 1

2 σ2t]. (44)

Q(x, t) = [
1

2γ2
− 3

2γ2
(coth(ζ)∓ csch(ζ))2]e[σB(t)−

1
2 σ2t]. (45)

If ρ→ 0 in Equations (32)–(40), then we acquire the triangular periodic solutions for
SBBME-BD (1) as:

Q(x, t) = − 6
γ2

csc2(ζ)]e[σB(t)−
1
2 σ2t]. (46)

Q(x, t) = [
−6
γ2
− 6

γ2
cot2(ζ)]e[σB(t)−

1
2 σ2t] = − 6

γ2
csc2(ζ)e[σB(t)−

1
2 σ2t]. (47)

Q(x, t) =
−3
2γ2

[1− 1
[1± sin(ζ)]2

]e[σB(t)−
1
2 σ2t]. (48)

Q(x, t) =
−3
2γ2

[1 +
cos2(ζ)

[1± sin(ζ)]2
]e[σB(t)−

1
2 σ2t]. (49)

Second Family: By following the same steps as the first family, the same solutions may
be found with various coefficients.

4. Impacts of the Beta Derivative and Noise on SBBME-BD Solutions

We discuss the impact of the BD and white noise on the exact solutions of the SBBME-
BD (1). To demonstrate the behavior of these solutions, we provide various graphs. For
a different σ (noise intensity), we run some simulations for acquired solutions, including
Equations (26) and (32). Let us first fix the parameters ζ1 = 1, φ = −1, α = 1

2 and ρ = 0.5.
Moreover, let x ∈ [0, 6] and t ∈ [0, 3].

Effects of the beta derivative:When β decreases, we can observe in Figures 1 and 2
that the form of the graph is compressed:
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(a) σ = 0, and β = 1 (b) σ = 0, and β = 0.7

(c) σ = 0, and β = 0.5 (d) σ = 0, and β = 1, 0.7, 0.5

Figure 1. (a–c) show the 3D shapes of Equation (26) with σ = 0 and different values of β = 1, 0.7, 0.5
(d) Depicts a graph in two dimensions for these values of β.

(a) σ = 0, and β = 1 (b) σ = 0, and β = 0.7

(c) σ = 0, and β = 0.5 (d) σ = 0, and β = 1, 0.7, 0.5

Figure 2. (a–c) show the 3D shapes of Equation (32) with σ = 0 and various values of β = 1, 0.7, 0.5
(d) Depicts a graph in two dimensions for these values of β.

As we can see in Figures 1 and 2, the solution curves do not intersect. Additionally,
the curves shift to the right when the order of the beta derivative increases.
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Impacts of white noise: The impact of noise on the solutions is seen in Figures 3 and
4 as follows:

(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 0, 1, 2

Figure 3. (a–c) show the 3D shapes of the solution Q(x, t) to Equation (26) for various values of
σ = 0, 1, 2 (d) Depicts a graph in two dimensions for these values of σ.

(a) σ = 0 (b) σ = 1

(c) σ = 2 (d) σ = 0, 1, 2

Figure 4. (a–c) show the 3D shapes of the solution Q(x, t) to Equation (32) for various values of
σ = 0, 1, 2 (d) Depicts a graph in two dimensions for these values of σ.
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From Figures 3 and 4, we can conclude that there are distinct types of solutions, such as
hyperbolic, trigonometric, rational, and Jacobi elliptic solutions, when the noise is ignored
(i.e., at σ = 0). Adding noise with a strength of σ = 1, 2 causes the surface to become much
flatter following tiny transit patterns, as verified by the 2D graph. This demonstrates that
the solutions of SBBME-BD (1) tend to converge around zero when white noise is present.

5. Conclusions

We looked at the stochastic Benjamin–Bona–Mahony Equation (1) with beta derivative
(SBBME-BD). The solutions to the Benjamin–Bona–Mahony equation are helpful in under-
standing several exciting scientific phenomena, such as Rossby waves in rotating fluids
and drift waves in plasma. New hyperbolic, trigonometric, rational, and Jacobi elliptic
solutions for SBBME-BD were obtained by combining the F -expansion approach with two
separate equations, namely the Riccati and elliptic equations. Numerous fascinating and
difficult physical occurrences may only be understood with these solutions. The MATLAB
program was utilized to investigate the impact of the Gaussian process and beta derivative
on the solutions of SBBME-BD (1). It was observed that the white noise component kept
the solutions centered around zero. It was concluded that reducing the derivative order
resulted in an enlargement of the surface. In future work, we can address Equation (1) with
additive noise.
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