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Abstract: Economic Order Quantity (EOQ) is an important optimization problem for inventory
management with an impact on various industries; however, their mathematical models may be
complex with non-convex, non-linear, and non-differentiable objective functions. Metaheuristic
algorithms have emerged as powerful tools for solving complex optimization problems (including
EOQ). They are iterative search techniques that can efficiently explore large solution spaces and
obtain near-optimal solutions. Simulated Annealing (SA) is a widely used metaheuristic method
able to avoid local suboptimal solutions. The traditional SA algorithm is based on a single agent,
which may result in a low convergence rate for complex problems. This article proposes a modified
multiple-agent (population-based) adaptive SA algorithm; the adaptive algorithm imposes a slight
attraction of all agents to the current best solution. As a proof of concept, the proposed algorithm
was tested on a particular EOQ problem (recently studied in the literature and interesting by itself)
in which the objective function is non-linear, non-convex, and non-differentiable. With these new
mechanisms, the algorithm allows for the exploration of different regions of the solution space and
determines the global optimum in a faster manner. The analysis showed that the proposed algorithm
performed well in finding good solutions in a reasonably short amount of time.

Keywords: inventory management; supply chain; order quantity; Simulated Annealing

1. Introduction

The efficient management of inventory systems plays a crucial role in the success
and profitability of businesses across various industries. That is why inventory manage-
ment is widely studied, and is sometimes called the Economic Order Quantity (EOQ)
problem, which aims to determine the optimal order quantity that minimizes the total
inventory cost or maximizes the profitability of a certain industry actor. This may include
supplier selection and may consider ordering and holding costs, along with other realistic
situations [1,2].

The problem may include (as mentioned) the supplier selection, which may be difficult
due to the number of requirements to fulfill. For example, suppliers have different capacities
(a maximum capacity of produced items per month), different prices, delivery times, and
quality indexes. Therefore, supplier selection is an important task in the purchasing activity
of the company. Suppliers are usually selected at the same time as the selection of the
amount of material purchased from each order and how many orders are placed in the
order cycle [3]. Making wise choices may save money when the cost is minimized, or it may
help to increase income when the revenue is maximized. Therefore, the task of improving
the efficiency of inventory is very important to offer better costs [4–6].

Mathematical models are used to perform the aforementioned task. After modeling
the process, it is possible to apply optimization techniques to minimize costs or maximize
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benefits. The mathematical models to be optimized can be complex to solve. Particularly in
supplier selection, the objective function is sometimes non-linear, non-convex, and non-
differentiable [6]. In some cases, non-linear behaviors are generated by volume discounts.
For example, some companies offer discounts on price or transportation costs to encourage
customers to purchase larger orders [7–10].

Traditionally, the EOQ model has been solved using analytical and deterministic
methods. However, these methods can struggle to find optimal solutions in complex
and realistic scenarios, which often involve multiple items, quantity discounts, maximum
capacity on suppliers, etc. [6–12].

In recent years, the growing importance of computational intelligence has led to
the exploration of metaheuristic algorithms to solve complex optimization problems [13].
Metaheuristic methods have been used to solve EOQ problems and demonstrated good
efficiency in finding a reasonable solution within a reasonable timeframe.

When the objective function is non-convex (for example, owing to the presence of
quantity discounts), traditional methods are more difficult to apply. For example, the classi-
cal gradient descent algorithm has been used in supply chain problems [14,15]; however, it
performs appropriately only when the objective function is convex.

Metaheuristic methods are a class of iterative, numerical optimization algorithms that
utilize probabilistic methods to search for the solution to mathematical problems; they can
be used for a wide range of applications, but they have been mainly applied to optimization
problems. Although they cannot guarantee to find the global optimal solution, they have
been shown to be very powerful in finding a solution near the optimum (and sometimes
the optimum) in a very short time, with relatively low computational requirements [13].
That is why they can be used to solve complex problems that are difficult or impossible to
solve using traditional optimization methods. Examples of metaheuristic methods include
particle swarm optimization (PSO), Genetic Algorithms (GAs), Artificial Bee Colony (ABC)
algorithms, and Differential Evolution (DE) [13]. Metaheuristic algorithms have been
applied to a wide range of fields, including EOQ problems [2,16].

Simulated Annealing (SA), initially introduced in [17], is one of the most researched
metaheuristic optimization algorithms. Inspired by the annealing process of metals, the
main advantage of the SA algorithm over other metaheuristic methods is its ability to
escape from local suboptimal solutions. This feature makes SA particularly effective
for optimization problems with complex, non-convex solution spaces, with suboptimal
solutions, where other metaheuristic methods may fail to find the global optimum. These
characteristics have motivated the use of SA in several fields of engineering, such as
electrical chemistry, mechanics, and operations research [18].

In the supply chain field, the SA algorithm has been used for routing problems. For
example, [19] proposed a hybrid heuristic to solve a location-routing problem with two-
dimensional loading constraints. The authors of [20] applied Simulated Annealing to solve
a model to minimize the total number of connections to transfer passengers and generate
flight schedules. This algorithm has been applied to search for the global optimal assembly
sequence scheme [21] to find the optimal allocation schemes for water resources [22],
scheduling [23], manufacturing systems [24], the traveling salesman problem [25], and
others [26,27].

Although the SA algorithm has impressive abilities, it may lead to slower convergence
rates, requiring more computation effort to achieve a satisfactory solution.

This paper proposes a Modified Simulated Annealing (MSA) method. The proposed
modification consists of utilizing multiple agents and a modified scheme to produce new
solutions. The scheme produces a slight attraction to all agents to the current best solution.
The MSA contrasts with the traditional SA algorithm, which is usually applied with a
single agent. By integrating these new mechanisms, the algorithm is capable of exploring
various regions within the solution space and can rapidly identify the global optimum.
As a proof of concept, the proposed algorithm was tested with a complex problem that
was recently studied in the state of the art, and it is interesting by itself. It is an EOQ
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problem that considers discounts on transportation costs. The problem has a non-linear,
non-convex, and non-differentiable objective function, which is a challenging problem
but also good for testing the capabilities of the MSA algorithm. The analysis showed that
the proposed algorithm obtained excellent results within a reasonable time. While the
previously reported solution (in the scientific literature) took one hour to be obtained, the
MSA method obtained ten similar solutions in around one minute. Some of the solutions
were even better than the previously reported solution, which means the MSA algorithm
discovered new solutions, demonstrating that the previously reported solution is actually a
suboptimal solution.

The proposed MSA provided better results in a very short time, compared to the pre-
viously reported solution and the traditional SA algorithm, showing that the modifications
to the original SA algorithm impacted the results. Furthermore, the presented method
represents a novel approach and a unique perspective on the problem. While several
multi-agent methods are being developed, little attention has been put on adapting the SA
algorithm to work in a multi-agent manner.

The remainder of this paper is organized as follows. Section 2 presents the main
definitions of inventory problems and freight rates in transportation costs in the literature,
focusing on how the objective function is represented. Section 3 describes the process of
the Simulated Annealing method. Section 4 presents the modification of the Simulated An-
nealing method as a metaheuristic to solve the problem. Section 5 presents computational
experiments and analyzes the results when the proposed method was applied. Section 6
presents a discussion and future work, and Section 7 mentions the conclusions.

2. Inventory Problems

Inventory management is an important part of supply chain management. The basic
problem statement is as follows. A decision maker must purchase products to store as
inventory. Purchasing a larger amount of products may decrease the cost per item for
several reasons; for example, every order has a setup cost that is the same regardless of the
number of items. If we purchase ten items, the setup cost is split among them. Sometimes
the supplier offers a lower cost per item depending on the purchase volume.

On the other hand, storing the items have a (holding) cost if we purchase a large
number of items, and selling them takes a longer time. The holding cost increases the cost
per item. Solving the EOQ problems involves balancing the costs of holding inventory
with the costs of ordering or setup. Economic Order Quantity (EOQ) is a model used in
inventory management to mine the optimal inventory level for a business by balancing
these costs. Figure 1 shows an example of the discussed problem in which only two variable
costs are considered: a constant setup cost (cost for placing an order) and the holding cost.
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In this type of function, there are no local optimal solutions, and the optimization
of the cost has a relatively low complexity. Therefore, it can be solved using classical
optimization methods. However, other costs and assumptions will be considered to make
this model more realistic. For example, quantity discounts are usually given in a non-linear
manner, with thresholds at which the price drops; instead of a formula to calculate the price
according to the volume, this kind of discount may be provided by the cost of items or by
the shipping cost (or both independently). These discounts introduce local optimal points
and produce an objective function that is non-convex, non-linear, and non-differentiable.
One example of this is shown in Figure 2.
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The complexity of the function increases with the number of suppliers, discounts, and
costs. Some of these problems in the literature for supplier selection have been solved
using exact methods, which are possible when the number of possible solutions is finite
and relatively small. Other authors have also explored other metaheuristic algorithms.
Several algorithms have been proposed to solve non-linear problems. There are two
different schemes: classical and metaheuristic methods. One classical method is gradient
descent, which (as its name indicates) uses a form of gradient descent to solve systems
of linear equations. This method is also known as the steepest descent method. This
method uses a simple operator to obtain the solution. Some examples of evolutionary
methods include the particle swarm optimization (PSO) algorithm, genetic algorithm
(GA), and differential evolution (DE) [13]. These methods are searching techniques based
on populations [13]. There are other methods based on a single agent, for example, the
Simulated Annealing (SA) algorithm, which is a widely recognized technique inspired by
the annealing process observed in metallurgy. Devised to tackle complex combinatorial
optimization problems, SA emulates the gradual cooling of a material, allowing its atoms
to settle into a minimum energy state, forming a highly ordered crystalline structure. By
iteratively exploring the solution space and stochastically accepting both improvements
and occasional deteriorations, the algorithm strikes a balance between exploration and
exploitation, thus increasing the chances of converging to a global optimum.

Owing to its flexibility and effectiveness, the SA algorithm has found success across
various domains [13,17]. However, the SA algorithm is a single-agent method, and in recent
years, the field of optimization has witnessed a significant shift in focus towards population-
based metaheuristic algorithms, as they have steadily gained popularity over traditional
single-agent algorithms. This increasing interest can be attributed to several key advantages
offered by population-based approaches. Unlike single-agent algorithms, which rely on a
single solution’s exploration and exploitation, population-based metaheuristics maintain a
diverse set of candidate solutions, promoting global search capabilities and reducing the
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likelihood of premature convergence to local optima. Additionally, these algorithms are
inherently parallelizable [28–30], allowing for efficient utilization of modern computational
resources and facilitating the solution of large-scale, complex problems.

3. Simulated Annealing (SA) Method

This section introduces the traditional SA method, which is particularly useful in
problems where the objective function is non-convex, discontinuous, or noisy. An additional
advantage is the simplicity and ease of its implementation.

This method uses a technique that emulates the cooling process of metals. This
algorithm is based on gradually decreasing the temperature of a piece of metal to cool it.
Kirkpatrick, Gelatt, and Vecchni presented this method in 1983 [17], where, as previously
mentioned, temperature reduction in the particles was achieved until the lowest energy
state was reached.

Procedure of the Simulated Annealing

To begin the search procedure, an initial solution is generated (can be randomly
initialized). This point or initial solution is denoted by x0, and this candidate solution
is modified in each repetition (iteration). It is also important to define the final number
of iterations (Iter). A variable called temperature changes from the initial temperature
condition (T0) to the final temperature (Te). The rate of change is controlled with a parameter
called the cooling rate (ρ).

Beginning with the initial point x0, this decision variable must be modified over an
iterative process until the number of iterations (Iter) is reached if the temperature is higher
than the final temperature. The goal is to converge the algorithm at the end of the process.
When the algorithm starts, it uses a high temperature and can explore further areas of
the research space. However, through the iterations, the temperature decreases, and the
algorithm can explore a smaller region of the research space. Finally, only the solution is
modified using the increment ∆x of the objective function. An advantage of this algorithm
is the use of probability decisions to allow the use of worst solutions to avoid local solutions
and increase the exploration process.

After the solution is evaluated in the objective function, let us consider a maximization
problem, and the next solution is chosen in two cases:

(i) First, if the value of the solution is better than the current best solution, the solution
is updated.

f (xk+1) > f (xk) (1)

In Equation (1), f (xk) represents the value of the objective function in the current
iteration, and f (xk+1) is the objective function value of the next position xk+1.

(ii) The second case involves the use of acceptance probability, pa. This alternative
determines that, in some cases, the solution is updated with the new solution, even
when the objective function value is smaller (worst for a maximization problem).
This mechanism has the purpose of exploring other regions. The solution of the
function and its values for the variables is taken if a random value is less than pa. The
acceptance probability is calculated using Equation (2).

pa = e−∆ f/T (2)

where ∆f, as was mentioned, represents the increment of the objective function between
xk+1 and xk.

∆ f = f (xk+1)− f (xk) (3)

When the acceptance probability is calculated, this is compared against a random
value (r) that is uniformly distributed between 0 and 1 [0,1]; if r is less than pa, then the
next solution xk+1 is memorized as the new solution.

When the temperature is high (during the first iteration), the acceptance probability
is close to 1, and the probability of accepting the new solution is large. However, when
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the temperature decreases, the acceptance probability is small (close to zero), and the
probability of accepting a bad solution is small.

Therefore, temperature plays an important role in this process. The temperature T(k)
is updated using the following equation where ρ represents the cooling factor between
[0,1], it is a constant value, and the temperature is decremented through the use of this
cooling factor.

In the linear scheme, the temperature reduction is calculated using the following equation:

Tk+1 = Tkρ (4)

Simulated Annealing is a widely used optimization algorithm employed in vari-
ous fields, including control systems, chemical processes, and structural processes. This
algorithm allows engineers to optimize complex systems and algorithms in all these appli-
cations, thereby improving their performance and reliability.

Despite its remarkable capacity, Simulated Annealing has slower convergence rates.
This is because Simulated Annealing uses a random process to explore the search space,
which can result in slower convergence to the optimal solution compared to other methods
that use deterministic rules to guide the search.

4. The Modified Simulated Annealing

Simulated Annealing, in its original form, relies on a single solution to explore the
search space. Although it has shown good efficiency, for problems with several local
suboptimal solutions, this may lead to a low convergence rate. Furthermore, in the field
of optimization, population-based algorithms have shown advantages over their single-
agent counterparts. Unlike single-agent algorithms, which rely on the exploration and
exploitation of a solitary solution, population-based metaheuristics maintain a diverse set
of candidate solutions, fostering robust global search capabilities and mitigating the risk
of early convergence to local optima. They are also intrinsically parallelizable, enabling
efficient use of contemporary computational resources. This is particularly attractive for
the SA algorithm in which the searching agent can be (with a low probability) updated
with a less optimal solution to prevent a local suboptimal. Multiple agents may reduce the
risk of jumping from the global optimal.

Many of the EOQ problems have multimodal and non-linear functions. For example,
the decision to choose the best suppliers is an important decision in the industry and needs
to be made quickly. For this reason, it is necessary to explore methods that represent a low
computational complexity to solve the mathematical models in this topic (supplier selection
and order quantity decisions) because these models have a high complexity. Therefore, it is
desirable to propose fast and simple algorithms which can be applied to the EOQ problem.
This paper presents a modified version of Simulated Annealing to make the algorithm a
good tool for exploring multimodal and non-linear functions.

The Modified Simulated Annealing Algorithm

The main objective of the proposed method is to effectively address complex and
multimodal objective functions. To achieve this, it is desirable to increase the exploration
process and explore more regions of the search space, thereby accelerating the process of
finding the optimal solution. To fulfill these requirements, the proposed method incor-
porates two distinct mechanisms. The first mechanism involves the use of a population
of agents instead of just a single agent. By incorporating multiple agents, the algorithm
is better equipped to explore different regions of the solution space simultaneously. This
approach increases the chances of finding the global optimum in a shorter period of time.
The second mechanism involves a new scheme for producing solutions. Rather than simply
generating solutions randomly, the proposed method perturbs the solutions with an attrac-
tion toward the best value detected so far. This innovative approach allows the algorithm
to efficiently navigate the search space and quickly converge on the global optimum. With
the incorporation of these new mechanisms, the proposed algorithm can effectively explore
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different regions of the solution space and determine the global optimum faster. This makes
it an ideal tool for solving complex and multimodal objective functions.

To begin the search procedure, the initial points are randomly generated. These points
represent the first set of solutions. These solutions are denoted as x0

ij. These candidate
solutions will be modified in each iteration (Iter) of the process.

To generate the first sets of solutions, the upper and lower limits of the variables must
be considered; let us define the lower limit as l and the upper limit as u.

x0
ij = lj + rand

(
uj − lj

)
(5)

where i represents the number of solution (since the algorithm is initialized with a total
number of agents) and j is the decision variable. After the population begins, the solutions
are evaluated in terms of the objective function f (·). Among these values, the best solution
xbest is determined and is considered the optimal solution so far (glob_opt). The next
formulation represents the decision criteria for the minimization problem, where f (x k

i )

represents the value of the function in the current iteration k for the solution i, and f (x k+1
i )

represents the value of the function in the next iteration k for the solution i. This variable
saves the value of the total cost for the solution (agent) i, in the iteration k or k + 1.

Minimization problem decision criteria:

f (xk+1
i ) < f (xk

i ) (6)

The second mechanism incorporated in our algorithm is a new solution generation
scheme. Unlike the original SA method, which generates solutions randomly, our scheme
introduces perturbations to the solutions while also directing them towards the best value
xbest identified so far. In the case that a better value than xbest is found, it must be updated.
The solutions are then perturbed by considering the following model:

∆xk
i = N(0, σT) (7)

xk+1
i = xk

i + ∆xk
i

(
xbest − xk

i

)
(8)

An improvement in the algorithm is the gradual reduction of random perturbation ∆x.
The perturbation is generated using a Gaussian distribution ∆x ← N(0, σT) ; the standard
deviation (2.5 for this algorithm) is multiplied by the value of the temperature T. In the
first iterations, large random jumps are generated to increase the exploration. As the
temperature decreases, the perturbation also decreases. If some variable lies outside the
bounds, this perturbance is generated again.

The new solution is accepted, considering the two cases mentioned in a later section.
If the objective function value is less than the value for the current solution, an adaptive
algorithm is proposed to minimize the cost of the supplier selection process. In the other
case, when the value of the objective function is worse, acceptance probability (2) is
considered. The new solutions are evaluated in the objective function, and an iterative
process is performed until the stop criteria (number of iterations and temperature value)
are satisfied. The temperature is then updated as follows:

T(k) = Tρk+1 (9)

This process is executed iteratively for a number of iterations; therefore, the stop
criterion is the maximum number of iterations; when it is achieved, the temperature
reaches the final value.

5. The Problem under Study

This section presents the use of the modified Simulated Annealing algorithm to solve
the Supplier Selection and Order Quantity Allocation Problem. The algorithm aims to



Axioms 2023, 12, 459 8 of 17

optimize the selection of suppliers and the allocation of order quantities in a way that
minimizes the overall cost and meets the demand of the customers.

The problem consists of an inventory manager who needs to purchase a single item to
meet a demand of d = 1000 items a month with a perfect rate of qa = 0.95, which means 5% of
items with defective parts are acceptable. Therefore, they must have 950 perfect parts a month.

There are some situations that make the problem complex. There are three (r = 3)
possible suppliers (1, 2, and 3) for the items, but none of them can meet the demand
of d = 1000 parts a month since their maximum monthly capacity is c1 = 700, c2 = 800,
and c3 = 750, respectively. Furthermore, they have different costs per item, different
setup costs, and different perfect rates (they cannot offer 100% perfect items). They also
have different shipping costs and volume discounts for the shipping cost provided in a
non-linear manner, with thresholds at which the cost decreases.

As they have different costs per item (p1 = 20, p2 = 24, p3 = 30), there is the cheapest
supplier. However, the cheaper supplier, at least cheaper on the cost per item (USD 20 per
item), has a more expensive setup cost (k1 = 160, k2 = 140, k3 = 130), which means it charges
the largest amount when making an order (USD 160). Furthermore, as mentioned, suppliers
have different perfect rates (q1 = 0.93, q2 = 0.95, q3 = 0.98), which is the percentage of items
that meet the specifications (or perfect item), and the cheapest supplier is the worst in this
parameter (q1 = 0.93), which means the supplier offers a perfect rate smaller than the perfect
rate required by the customer.

Since the storage is performed in the customer facilities, the holding cost is the same
for all items regardless of the supplier (h = USD 10 per item, per month). Notice that this
cost is important. If we purchase an item from the cheapest supplier at USD 20 and store it for
two months before using it, the cost of this particular item is finally USD 40 (considering
only purchasing and holding costs).

The objective is to determine the optimal order quantity to be assigned to each supplier.
This function is a non-linear multimodal function with an infinite number of possible solu-
tions and many local suboptimal solutions. Each supplier offers discounts on transportation
costs, increasing the complexity of the problem, which is common in the industry. This
example was extracted from [31], and for illustrative and comparative purposes, let us
use the same example. This problem (in [31]) was solved using the commercial software
LINGO as the optimization tool. The parameters are summarized in Table 1, and Table 2
shows the freight rates of suppliers.

Table 1. Parameters of the example problem.

Data Definition

r = 3 Number of suppliers.
d = 1000 Demand to be met (units per month).
w = 16 Weight of an item shipped (lbs.).
h = 10 Inventory (holding) cost in USD per unit a month.

k1 = 160, k2 = 140, k3 = 130 Setup cost of each supplier in USD per order.
p1 = 20, p2 = 24, p3 = 30 Price of items of the suppliers in USD per unit.

l1 = 1, l2 = 3, l3 = 2 The lead time of the suppliers in days.
q1 = 0.93, q2 = 0.95, q3 = 0.98 The perfect rate of the suppliers.

qa = 0.95 The minimum required perfect rate of the manufacturer.
Y = 30 Time length of the planning scenario in days.

c1 = 700, c2 = 800, c3 = 750 Production capacity of suppliers (units per month)
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Table 2. Freight Rates for Suppliers.

Shipped Weight
Range (lbs) Supplier 1 Supplier 2 Supplier 3

1–499 USD 107.75/CWT USD 136.26/CWT USD 81.96/CWT
500–999 USD 92.26/CWT USD 109.87/CWT USD 74.94/CWT

1000–1999 USD 71.14/CWT USD 91.61/CWT USD 61.14/CWT
2000–4999 USD 64.14/CWT USD 79.45/CWT USD 49.65/CWT
5000–9999 USD 52.21/CWT USD 69.91/CWT USD 39.73/CWT

10,000–19,999 USD 40.11/CWT USD 54.61/CWT USD 33.44/CWT
20,000–29,999 USD 27.48/CWT USD 48.12/CWT USD 18.36/CWT
30,000–40,000 USD 7525 USD 13,200 USD 5030

Each supplier offers a rate for transportation costs, and it is a non-linear function of
the shipment weight, which depends on the order size and the weight w of each item. The
transportation cost is given in USD per hundred pounds (centi-weight, CWT).

Mendoza and Ventura [32] proposed breakpoints for a continuous piecewise linear
function (for the weight shipped). A breakpoint k specifies the point at which a variation in
cost occurs. For example, in quantity discounts without over-declaring, there are values for
the order quantity that generate a higher transportation cost than a major value for Q. In this
situation, the manufacturer should send a major quantity to take advantage of the discount.

5.1. Assumptions of the Problem

• Manufacturers must calculate the quantity assigned per supplier and how often orders
are placed (the length of the order cycle).

• The manufacturer must satisfy a demand per period.
• Shortages are not allowed. The demand must be satisfied.
• Assigning each order generates an order cost per supplier. This order cost is indepen-

dent of the number of pieces purchased; therefore, it is inappropriate to order a small
number of items.

• Each supplier sells the items at a different price.
• The lead time indicates how long we must wait from the order assignment until items

are received. This should be considered when planning the purchase, but it has no
associated cost.

• Each supplier has a different monthly capacity. In this example, no suppliers can
produce demand for d = 1000 units per month. This forces the manufacturer to select
at least two suppliers, making the problem more challenging.

• Another parameter is the perfect rate of suppliers, which indicates the fraction of
non-defective parts over the total purchased units is guaranteed by the supplier. The
manufacturer also has a minimum required perfect rate for the total items purchased.

• There is a cost related to the inventory holding cost, which means that the storage
of one piece costs several USD. This holding cost is also considered in the transit
inventory cost.

This problem implies that the manufacturer pays transportation costs, known as a
free-on-board (FOB) policy [31]. It is very important to point out that the transportation
cost considers quantity discounts, which introduces a non-linear behavior to the problem
and leads to a locally optimal solution. This study considers transportation costs with
over-declaring. For example, the transportation cost for the supplier is presented in Table 3,
and over-declaring is calculated for all suppliers.

Figure 3 shows the representation of the transportation cost for Supplier 3, using the
values from Table 3. It is possible to observe that, in some values for weight, the total
transportation cost is the same. With this behavior, the company can take advantage of
these circumstances; for example, sending 772 to 999 pounds has the same cost.
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Table 3. Actual freight rates considering over-declaring.

Weight Range (lbs) Freight Rate

1–428 USD 81.96/CWT
429–499 USD 374.7
500–771 USD 74.94/CWT
772–999 USD 611.4

1000–1803 USD 61.14/CWT
1804–1999 USD 993
2000–4070 USD 49.65/CWT
4071–4999 USD 1986.5
5000–7682 USD 39.73/CWT
7683–9999 USD 3344

10,000–13,702 USD 33.44/CWT
13,703–19,999 USD 3672
20,000–27,383 USD 18.36/CWT
27,384–40,000 USD 5030
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5.2. Decision Variables

The variables to be optimized are listed in Table 4, where ji represents the number of
orders assigned per supplier, Qi represents the optimal order quantity per supplier, and TC
represents the order cycle period.

Table 4. Solution variables.

Variable Description

ji The number of orders assigned to supplier i per order cycle period, ∀ I = 1, . . . , r.
Qi The optimal order quantity to supplier i (in units), ∀ i = 1, . . . , r.
TC Order cycle period (in months).

Before introducing the mathematical model, let us define a couple of variables that
will be helpful. First, Ri is the total number of items ordered from the supplier i.

Ri = jiQi, ∀i = 1, . . . , r. (10)

This definition will be useful when calculating costs that depend on the total number
of items ordered from a certain supplier during the full ordera cycle.
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The second definition will be the order cycle which is defined as the total items
purchased from all suppliers multiplied by their respective perfect rate, divided by the
demand multiplied by the required perfect rate.

TC =

r
∑

i=1
Riqi

dqa
(11)

5.3. Mathematical Model

The objective function

Min ZT =
1

TC

[
r

∑
i=1

jiki +
r

∑
i=1

Ri pi +
h

2d

r

∑
i=1

R2
i

ji
+

h
Y

r

∑
i=1

Rili +
r

∑
i=1

jiTCodi

]
, (12)

which is subject to:

Riqad ≤ ci

r

∑
i=1

Riqi, ∀i = 1, . . . , r. (13)

r

∑
i=1

ji = M, (14)

ji ≥ 0, integer, ∀i = 1, . . . , r. (15)

M ≥ 1, integer. (16)

The objective function (12) calculates the total cost on average, which is why the
summation of costs is divided over the order cycle. The summation of costs considers, in
the first term, the ordering cost (sum of orders multiplied by the setup cost), the second
term calculates purchasing cost (sum of all ordered items multiplied by their respective
cost), the third term is the inventory cost (it considers the traditional triangular shape
of inventory), the fourth term is the inventory cost in transit (which is also paid by the
customer), and finally, the transportation cost. The total cost is calculated per month; thus,
the equation is multiplied by the frequency (inverse of the cycle order period). The objective
function considers the perfect rate as a part of the order cycle. With this condition, it is
possible to ensure the quality requirement, although the supplier’s average quality is less
than the minimum perfect rate. Constraint (13) ensures that the assigned order quantity is
covered by the supplier’s capacity. Constraint (14) represents the term M, which is the sum
of the total number of placed orders.

The order cycle is calculated as:

Tc =
r

∑
i=1

Riqi

/
dqa (17)

5.4. Proposed Decision Vector and Parameters of the Proposed Algorithm

The variables to be optimize are represented as a vector for each solution in the
algorithm. The vector consists of a set of six quantities (6 dimensions).

xi =
[
j1 j2 j3 Q1 Q2 Q3

]
(18)

where ji represents the number of orders assigned per supplier, Qi represents the optimal
order quantity per supplier, and TC is the order cycle period in months.

The parameters of the algorithms were set for the optimization process. Initial pa-
rameters were configured with the following values: the total population was set to
200 individuals (agents), and the maximum number of iterations Iter was set to 100, the
initial temperature T0 = 1, final temperature Te = 1 × 10−10, and the cooling factor ρ = 0.95.
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5.5. Computational Results

This section presents the solutions to the Supplier Selection and Order Quantity
Allocation Problem using the proposed algorithm. All the experiments were performed
using MATLAB R2021 on a Dell Latitude 5420 laptop with an Intel processor with an 11th
Gen Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz 1.69 GHz and 32 GB of installed RAM. The
computer has a solid state hard disk with 254 GB and runs with Windows 11 Pro 22H2.

First, the optimal order quantity per supplier was obtained using the modified Simu-
lated Annealing algorithm; for this purpose, only one supplier was considered without
considering the capacity constraint; the results per supplier are presented in Table 5;
Figures 4–6 represent the total cost against order quantity per supplier, respectively.

Table 5. Optimal solution per supplier.

Sol. Q Total Cost
(USD/Month) Ordering Cost Purchasing

Cost
Inventory

Cost
Inventory in
Transit Cost

Transit
Cost

S1 625 USD 28,895 USD 261.50 USD 19,000 USD 2760.9 USD 316.66 USD 6555.6
S2 625 USD 35,532 USD 224 USD 22,800 USD 2820.3 USD 950 USD 8737.6
S3 313 USD 37,155 USD 402.62 USD 28,500 USD 1457.0 USD 633.33 USD 6122.2
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In Table 5, it is possible to observe that the cheapest supplier is Supplier 1, and the
most expensive one is Supplier 3. Therefore, if the optimization was solved only for one
order, the optimal order quantity per supplier is 625, 625, and 313, respectively.

Figures 4–6 show the optimal order quantity per supplier, respectively, and the behav-
ior of the costs.

Table 6 presents the results of several executions using the proposed model of this
work for the Supplier Selection and Order Quantity Allocation Problem. It is essential to
note that we compared our results with the optimization model presented in reference [31],
which was solved using LINGO 17, and the solution is presented in Table 5 as solution A
(it was solved with the same computer, the method selected in LINGO package was the
Global Optimization).

Table 6. Solutions.

Sol j1 j2 j3 Q1 Q2 Q3 M Total Cost
(USD/Month)

Order Cycle
Period (Months) Time (S)

A 2 1 0 625 625 0 3 USD 32,912.08 1.85 3600
B 6 1 5 652 327 328 12 USD 33,329.99 5.83 5.6
C 5 2 1 625 635 131 8 USD 32,836.84 4.46 8.06
D 6 2 1 625 664 348 9 USD 32,867.77 5.35 5.3
E 9 4 1 625 632 2 14 USD 32,793.15 8.03 4.98
F 10 4 1 625 625 313 15 USD 32,797.14 8.94 7.56
G 9 4 1 625 630 9 14 USD 32,794.64 8.03 9.02
H 8 3 1 625 633 339 12 USD 32,815.16 7.14 8.78
I 2 1 0 640 625 0 3 USD 32,925.76 1.87 5.3
J 5 0 4 640 0 359 9 USD 33,139.79 4.61 9.34
K 4 2 0 631 620 0 6 USD 32,921.87 3.71 5.51

The solutions labeled as solutions B to K, were produced using the proposed model of
this work, considering the three suppliers simultaneously. These solutions were generated
using the Modified Simulated Annealing algorithm (Section 4) and the parameters were set
at the values given in Section 5.4.

The results demonstrate that the majority of the solutions showed a better result
than solution A. This indicates that the proposed model is effective in optimizing the
Supplier Selection and Order Quantity Allocation Problem and can provide superior results
compared to the existing optimization model.

As can be seen, our model is easy to develop for the decision-maker and can obtain
good solutions in a reasonable amount of time. In contrast, the commercial software LINGO
can take several hours to obtain the solution (in LINGO, the stop criteria were set to run
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for 1 h). This demonstrates that the proposed model is not only effective in producing
high-quality solutions but also efficient in terms of computational time and ease of use.

Figure 7 shows the convergence graph for the best solution, E, using Modified Simu-
lated Annealing. In this graph, it is possible to observe that in the first iterations the MSA
algorithm performs explorations and obtained large values for the cost; afterwards, as the
iterations decrease, the total cost gradually decreased.
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The Original Simulated Annealing algorithm was applied with the purpose of com-
paring it to the proposed algorithm. The parameters were set as initial temperature T0 = 1,
final temperature Te = 1 × 10−10, and cooling factor ρ = 0.95. Some experimental results are
presented in Table 7.

Table 7. Solutions using Original Simulated Annealing algorithm.

Sol j1 j2 j3 Q1 Q2 Q3 M Total Cost
(USD/Month)

A 9 6 1 646 448 36 16 USD 33,451.12
B 10 1 4 238 101 250 15 USD 35,184.99
C 9 3 3 549 442 291 15 USD 33,594.07
D 10 1 3 214 464 231 14 USD 35,224.43
E 8 2 3 470 640 178 13 USD 33,931.84
F 10 3 1 634 800 441 14 USD 33,076.23
G 10 2 2 231 372 165 14 USD 34,910.71
H 8 5 2 160 72 106 15 USD 35,769.36
I 6 8 4 632 210 7 18 USD 33,640.92
J 1 7 10 34 144 151 18 USD 39,177.32

5.6. Statistical Analysis

In this section, we present a statistical analysis of the Original Simulated Annealing
results compared to the Modified Simulated Annealing results. The algorithms were run
30 independent times. A non-parametric statistical technique, the Mann–Whitney test, was
applied to test for significance. This statistical test analyzes the equality of medians in two
independent samples.

Table 8 shows the medians for the two algorithms; with these descriptive statistics,
we can observe that the median for the Modified Simulated Annealing algorithm obtained
better results. Table 9 compares the medians of the algorithms to verify if there was a
significant difference between the samples. It is possible to observe that the p-value results
were favorable, indicating a significant difference.
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Table 8. Descriptive statistics for SA and MSA.

Algorithm The Median for the Total Cost Confidence Interval for the Median
95%, Total Cost (USD/Month)

Original SA USD 33,522.6 USD 33,066–USD 34,668

Modified SA USD 32,821.6 USD 32,794–USD 32,911

Table 9. Mann–Whitney test statistics.

Comparison of the Total Cost

Method W-Value p-Value Confidence Interval for the Difference

Adjusted for ties 588 0.00000157
239.39–1134.7

No ties 588 0.00000158

The results of the Modified Simulated Annealing algorithm were compared against the
results obtained from the reference model. A Wilcoxon test was carried out, where results
of the 30 independent runs were compared to those of solution A in Table 6 (USD 32,912
presented in [31]).

The results are shown in Table 10; it is possible to observe a significant difference be-
tween the results from the Modified Simulated Annealing and the state-of-the-art algorithm.

Table 10. Wilcoxon test statistics.

Comparison of the Total Cost

Method Wilcoxon Statistic p-Value

Modified SA 49 0.019

6. Discussion and Future Work

The proposed SA algorithm provided better results in a very short period of time, and
while the modifications to the original SA algorithm may appear simple at first glance,
they impacted the results. It provided new solutions that were not reported in the previous
scientific literature that solved the same problem. Additionally, the results can be obtained
in minutes, while commercial software like LINGO may take hours to solve a problem
like the one studied in this article. Furthermore, the presented method represents a novel
approach and a unique perspective on the problem. While several multi-agent methods
are being developed, no attention has been put on adapting the SA algorithm to work in a
multi-agent manner.

Future research on this method includes proofs using different state-of-the-art prob-
lems, which have been solved with other methods, or the same problem with more variables
(for example, more suppliers). The problem solved in this article is a recently studied prob-
lem that was selected since its objective function is non-linear, non-differentiable, and
non-convex, for which solving this problem is a good proof of concept.

7. Conclusions

This paper proposed a modified Simulated Annealing method. The proposed ap-
proach utilizes two distinct mechanisms to enhance its effectiveness in solving complex and
multimodal objective functions. Firstly, instead of relying on a single agent, the algorithm
employs a population of agents. This allows for the simultaneous exploration of various
regions of the solution space, significantly improving the chances of identifying the global
optimum within a shorter period of time. Secondly, the method employs a novel solution
production scheme that involves perturbing solutions with an attraction towards the best
value obtained thus far rather than random generation. This innovative approach enables
the algorithm to efficiently navigate the search space and converge more rapidly on the
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global optimum. By integrating these two mechanisms, the proposed algorithm can effi-
ciently explore different regions of the solution space and determine the global optimum in
a shorter period of time. Therefore, it is a highly suitable tool for addressing complex and
multimodal objective functions.

To test the performance of the proposed method, it was applied to solve the Supplier
Selection and Order Quantity Allocation Problem. For comparison, an instance used in
the literature was taken as an example. The instance (with six dimensions) was previously
solved using the commercial software LINGO, and a solution was previously reported.

The numerical results showed that the proposed algorithm was able to find the solution
in a very short amount of time compared to the LINGO method. The proposed method
found solutions in the range of 5.3 to 9.34 s, while LINGO took one hour; the worst case in
the proposed method took only 0.26% of the time needed by the commercial software, and
some of the solutions were even cheaper than the previously reported solution, leading to
a better solution for the example problem.
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