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Abstract: The cut-free single-succedent Gentzen sequent calculus GKt for the minimal tense logic Kt

is introduced. This sequent calculus satisfies the displaying property. The proof proceeds in terms of
a Kolmogorov translation and three intermediate sequent systems. Finally, we show that tense logics
axiomatized by strictly positive implication have cut-free Gentzen sequent calculi uniformly.
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1. Introduction

Basic tense logic is the extension of classical propositional logic with tense operators
(cf. e.g., [1]). The minimal tense logic Kt can be formulated as the minimal modal logic
K with a past modality. Viewed as a kind of bimodal logic, tense logic is investigated
mainly by using tools and techniques from modal logic (cf. e.g., [2,3]). As far as the proof
theory of modal logic is concerned, some approaches have taken to consider cut-free
sequent calculi for modal logics. Since Gentzen sequent calculus for classical logic was
developed, it has been extended with rules for modal operators, and such sequent systems
are explored in the literature (cf. e.g., [4]). In particular, some aspects of Gentzen sequent
calculi for modal logics are explored by Poggiolesi [5]. Belnap’s display logic [6] provides
an alternative to Gentzen-type sequent calculi for various non-classical logics (cf. e.g., [7,8]).
Labelled sequent calculi are developed in terms of the relational semantics for modal logics
(cf. e.g., [9–11]). Deep inference (cf. e.g., [12]) calculi are developed where nested sequents
are used.

Proof theory for the basic tense logic Kt and its extensions has also been investigated in
the literature (cf. [13,14]). However, sequent calculi for tense logics in the sense of Gentzen
have not been well-developed. A fundamental problem lies in the elimination of the cut
rule. Inspired by the proof-theoretic study of Lambek calculus (cf. [15]), a cut-free Gentzen
sequent calculus for intuitionistic modal logic has been provided in [16], and such a sequent
calculus is also developed for intuitionistic tense logic in [17]. In these works, structural
operators for ∧ (conjunction), ♦ (future possibility) and � (past possibility) are introduced
such that formula structures instead of multisets of formulas are provided for defining
sequents. Eventually cut-free Gentzen sequent calculi for intuitionistic modal and tense
logics are developed. It is this road we take to provide cut-free sequent calculi for classical
tense logics.

Gentzen’s sequent calculus for classical propositional logic is multi-succedent. One
way of constructing a single-succedent sequent calculus is that the rule of excluded middle
is added to the G3-style sequent calculus for intuitionistic propositional logic (cf. [18],
p. 114). In the present paper, we take an alternative approach to this problem. The central
point is that we can eliminate cut by considering appropriate rules for negation. Double
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negation rules and two particular rules for negation are provided. Eventually, the proof of
cut elimination for GKt is not a direct induction on the cut height or the complexity of the
cut formula but an indirect proof in terms of two additional auxiliary sequent systems. It is
this machinery that allows uniform cut elimination for Gentzen sequent calculi for tense
logics axiomatized by strictly positive axioms.

The structure of this paper is as follows. Section 2 provides some preliminaries on
tense logics. Section 3 introduces a single-succedent sequent calculus GKt for the minimal
tense logic Kt. Section 4 provides a proof of the cut elimination for GKt. Section 5 proves
that all tense logics axiomatized by strictly positive implications have a single-succedent
sequent calculus obtained from GKt by adding structural rules, which are transformed
from the strictly positive axioms. Section 6 offers some concluding remarks.

2. Preliminaries on Tense Logics

Let Var = {pi : i < ω} be a denumerable set of propositional variables. Primitive
connectives are ⊥ (falsum), ¬ (negation) and ∧ (conjunction). We use four unary operators,
which are ♦ (future possibility), � (past possibility), � (future necessity) and � (past
necessity). The formula algebra F is defined inductively as follows:

F 3 α ::= p | ⊥ | ¬α | (α1 ∧ α2) | ♦α | �α | �α | �α

where p ∈ Var. We use abbreviations > := ¬⊥ (true), α ∨ β := ¬(¬α ∧ ¬β) (disjunction),
α→ β := ¬(α ∧ ¬β) (implication) and α↔ β := (α→ β) ∧ (β→ α), which are defined as
usual. The complexity c(β) of a formula β is defined inductively as follows:

c(β) = 0, if β ∈ Var∪ {⊥}.
c(β ∧ γ) = max{c(β), c(γ)}+ 1.

c(�β) = c(β) + 1, if � ∈ {¬,♦,�,�,�}.

A substitution is a homomorphism s : F → F . Let αs be the substitution of α under s.
For every formula α, let var(α) be the set of all variables appearing in α.

Let W 6= ∅ and Q ⊆ W ×W. For every w ∈ W, let Q(w) = {u ∈ W : wQu}.
The inverse of Q is defined as Q−1 = {〈w, u〉 : uRw}. For every X ⊆ W, let Q(X) =⋃

w∈X Q(w), [Q]X = {w ∈ W : Q(w) ⊆ X} and 〈Q〉X = Q−1(X). We use the Boolean
operations ∩,∪ and (.) (complementation) on the power set P(W).

Definition 1. A frame is a pair F = (W, R) where W 6= ∅ (the set of possible worlds) and R ⊆
W ×W (the accessibility relation). A valuation in F = (W, R) is a function V : Var → P(W).
For every formula α ∈ F , the truth set V(α) of α under a valuation V in F is defined inductively
as follows:

V(⊥) = ∅ V(¬α) = V(α)

V(α ∧ β) = V(α) ∩V(β) V(♦α) = 〈R〉V(α)

V(�α) = [R]V(α) V(�α) = 〈R−1〉V(α)

V(�α) = [R−1]V(α)

Note that V(>) = W, V(α ∨ β) = V(α) ∪V(β) and V(α → β) = V(α) ∪V(β). A formula α
is valid in a frame F (notation: F |= α) if V(α) = W for all valuations V in F. A formula α is valid
in a class of frames K (notation: K |= α) if F |= α for all F ∈ K. The logic of K is defined as the
set of formulas Th(K) = {α ∈ F : K |= α}. For a set of formulas Σ, we write F |= Σ if F |= α for
all α ∈ Σ. The class of all frames for Σ is defined as Fr(Σ) = {F : F |= Σ}.

Definition 2. A tense logic is a set of formulas L such that the following conditions hold:

(1) L contains the following formulas:
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(A1) p→ (q→ p)
(A2) (p→ (q→ r))→ ((p→ q)→ (p→ r))
(A3) (¬q→ ¬p)→ (p→ q)
(A4) ⊥ → p
(A5) ♦p↔ ¬�¬p
(A6) �p↔ ¬�¬p

(2) L is closed under the following rules:

α→ β α
(MP)

β

♦α→ β
(Adj♦�)α→ �β

�α→ β
(Adj��)α→ �β

(3) L is closed under substitution, i.e., if β ∈ L, then βs ∈ L for every substitution s.

We write `L β (β is a theorem of L) if β ∈ L.

Fact 1. For every tense logic L, the following hold:

(1) if `L α→ β, then `L �α→ �β for every � ∈ {♦,�,�,�}.
(2) `L ♦⊥ ↔ ⊥; `L �⊥ ↔ ⊥; `L �> ↔ > and `L �> ↔ >.
(3) for every � ∈ {♦,�}, `L �(α ∨ β)↔ �α ∨�β.
(4) for every � ∈ {�,�}, `L �(α ∧ β)↔ �α ∧�β and �(α→ β)→ (�α→ �β).
(5) `L α→ ��α and `L α→ �♦α.

Let {Li : i ∈ I} be a collection of tense logics. It is obvious that
⋂

i∈I Li is a tense
logic. The minimal tense logic is denoted by Kt =

⋂{L ⊆ F : L is a tense logic}. Let
L be a tense logic and Σ a set of formulas. The tense logic generated by Σ over L is
defined as L ⊕ Σ =

⋂{L′ : L ∪ Σ ⊆ L′ and L′ is a tense logic}. If Σ = {α1, . . . , αn}, we
write L ⊕ α1 ⊕ . . . ⊕ αn for L ⊕ Σ. Let Ext(L) be the set of all tense logics containing L.
Clearly, 〈Ext(L),∩,⊕, L,F〉 forms a bounded distributive lattice. The set of all tense logics
is Ext(Kt).

A tense logic L is consistent if ⊥ 6∈ L. The only inconsistent tense logic is F . A tense
logic L is Kripke-complete if L = Th(Fr(L)). Using the standard method of canonical
model, we obtain many results on the Kripke completeness (cf. e.g., [2]).

Theorem 1. Kt is Kripke-complete, i.e., `Kt α iff Fr(Kt) |= α.

Proof. See, e.g., ([2], Corollary 4.36).

3. A Gentzen Sequent Calculus for Kt

We introduce a single-succedent Gentzen sequent calculus GKt for the minimal tense
logic Kt. We follow the formulation of a sequent calculus for intuitionistic tense logic IKt
given in [17], and use formula structures to define a sequent.

Definition 3. Let the comma, ◦ and • be structural operators for ∧, ♦ and �, respectively. The set
of all formula structures FS is defined inductively as follows:

FS 3 Γ ::= α | (Γ1, Γ2) | ◦Γ | •Γ, where α ∈ F .

Let FS∗ = FS ∪ {ε}, where ε stands for the empty. For each ∆ ∈ FS , the formula ∆[ is
defined inductively as follows:

β[ = β (∆1, ∆2)
[ = ∆[

1 ∧ ∆[
2

(◦∆)[ = ♦∆[ (•∆)[ = �∆[

In particular, let ε[ = >. By d(∆), we denote the degree of a formula structure Γ, i.e., the
number of occurrences of structural operators in ∆. A sequent is an expression ∆ ⇒ β, where
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∆ ∈ FS∗ and β ∈ F . We write⇒ β instead of ε⇒ β. We use s, t, etc., with or without subscripts
to denote sequents. A sequent rule is a figure

s1 . . . sn

s0
(R)

where s1, . . . , sn are premises and s0 is the conclusion of (R).

Definition 4. Let − be the given symbol called the position. The set of all contexts C is defined
recursively as follows:

C 3 Γ[−] ::= − | (Γ1[−], Γ2) | (Γ1, Γ2[−]) | ◦Γ[−] | •Γ[−]

where Γ1, Γ2 ∈ FS . The set of all formula contexts FC is defined inductively as follows:

FC 3 β[−] ::= − | ¬β[−] | (β1[−] ∧ β2) | (β1 ∧ β2[−]) | ♦β[−] | �β[−] | �β[−] | �β[−]

where β1, β2 ∈ F . For every context Γ[−], we define Γ[−]] inductively as follows:

−] = − (Γ1[−], Γ2)
] = Γ1[−]] ∧ Γ[

2

(Γ1, Γ2[−])] = Γ[
1 ∧ Γ2[−]] (◦Γ)] = ♦Γ]

(•Γ)] = �Γ]

The degree of a context Γ[−], denoted by d(Γ[−]), is defined as the number of occurrences of
structural operators appearing in Γ[−]. For every context Γ[−] and formula structure ∆ ∈ FS , let
Γ[∆] be the formula structure obtained from Γ[−] by replacing − with ∆.

The degree of a formula context α[−], denoted by d(α[−]), is defined as the number of
occurrences of logical operators appearing in α[−]. For each α[−] and β ∈ F , let α[β] be the
formula obtained from α[−] by replacing − with β.

Obviously, Γ[−] can be considered as a formula structure with a position, and Γ[−]]
as a formula with a position. For each ∆, we have Γ[∆][ = Γ[−]](∆[/−) arising from Γ[−]]
by replacing − with ∆[.

Example 1. Let us provide examples of context and formula context. The expression Γ[−] =
◦(•(−,¬q), p ∧ q) is a context. If we replace the formula structure ∆ = •(p, (q, ◦q)) for the
position − in Γ[−], we obtain the formula structure Γ[∆] = ◦(•(•(p, (q, ◦q)),¬q), p ∧ q). The
expression α[−] = ¬(p ∧−)→ r is a formula context. If we replace the formula β = p ∧ q for the
position − in α[−], we obtain the formula α[β] = ¬(p ∧ (p ∧ q))→ r.

Definition 5. The sequent calculus GKt is defined by the following axiom and inference rules:

(1) Axiom:
(Id) ϕ⇒ ϕ

(2) Logical rules:
Θ⇒ ⊥

Π[Θ]⇒ ϕ
(⊥)

Π[ϕ1, ϕ2]⇒ ψ

Π[ϕ1 ∧ ϕ2]⇒ ψ
(∧L)

Π1 ⇒ ϕ1 Π2 ⇒ ϕ2

Π1, Π2 ⇒ ϕ1 ∧ ϕ2
(∧R)

Π⇒ ϕ

Π,¬ϕ⇒ ⊥ (¬L)
ϕ, Π⇒ ⊥
Π⇒ ¬ϕ

(¬R)

Π[ϕ]⇒ ψ

Π[¬¬ϕ]⇒ ψ
(¬¬L)

Π⇒ ϕ

Π⇒ ¬¬ϕ
(¬¬R)
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Π[◦ϕ]⇒ ψ

Π[♦ϕ]⇒ ψ
(♦L)

Π⇒ ϕ

◦Π⇒ ♦ϕ
(♦R)

Π[•ϕ]⇒ ψ

Π[�ϕ]⇒ ψ
(�L)

Π⇒ ϕ

•Π⇒ �ϕ
(�R)

Π[ϕ]⇒ ψ

Π[◦�ϕ]⇒ ψ
(�L)

◦Π⇒ ϕ

Π⇒ �ϕ
(�R)

Π[ϕ]⇒ ψ

Π[•�ϕ]⇒ ψ
(�L)

•Π⇒ ϕ

Π⇒ �ϕ
(�R)

The derived formula in the below sequent of a logical rule is called principal.
(3) Structural rules:

Π[Θ, Θ]⇒ ψ

Π[Θ]⇒ ψ
(Ctr)

Π[Θi]⇒ ψ

Π[Θ1, Θ2]⇒ ψ
(Wek)(i = 1, 2)

◦Π1, Π2 ⇒ ⊥
Π1, •Π2 ⇒ ⊥

(Dual◦•)
•Π1, Π2 ⇒ ⊥
Π1, ◦Π2 ⇒ ⊥

(Dual•◦)

(4) Cut rule:
Θ⇒ ϕ Π[ϕ]⇒ ψ

Π[Θ]⇒ ϕ
(Cut)

A derivation in GKt is a finite tree of sequents in which each node is either an axiom or
derived from child node(s) by a sequent rule. Derivations are denoted by D, E , etc., with or without
subscripts. The height of a derivationD, denoted by |D|, is defined as the maximal length of branches
in D. A single node derivation has height 0. A sequent s is derivable in GKt, notation GKt ` s,
if there exists a derivation in GKt with root node s. For every k ≥ 0, we write GKt `k s if there
exists a derivation of s in GKt with height at most k. A sequent rule with premises s1, . . . , sn and
conclusion s0 is admissible in GKt if GKt ` s0 whenever GKt ` si for all 1 ≤ i ≤ n. The prefix GKt
is omitted if no confusion can arise.

Lemma 1. The following sequent rules are admissible in GKt:

Π[Θ1, Θ2]⇒ ψ

Π[Θ2, Θ1]⇒ ψ
(Ex)

Π[Θ1, (Θ2, Θ3)]⇒ ψ

Π[(Θ1, Θ2), Θ3]⇒ ψ
(As1)

Π[(Θ1, Θ2), Θ3]⇒ ψ

Π[Θ1, (Θ2, Θ3)]⇒ ψ
(As2)

Proof. We have the following derivations:

Π[Θ1, Θ2]⇒ ψ
(Wek)

Π[(Θ2, Θ1), Θ2]⇒ ψ
(Wek)

Π[(Θ2, Θ1), (Θ2, Θ1)]⇒ ψ
(Ctr)

Π[Θ2, Θ1]⇒ ψ

Π[Θ1, (Θ2, Θ3)]⇒ ψ
(Wek)

Π[Θ1, ((Θ1, Θ2), Θ3)]⇒ ψ
(Wek)

Π[(Θ1, Θ2), ((Θ1, Θ2), Θ3)]⇒ ψ
(Wek)

Π[((Θ1, Θ2), Θ3), ((Θ1, Θ2), Θ3)]⇒ ψ
(Ctr)

Π[(Θ1, Θ2), Θ3]⇒ ψ

The admissibility of (As2) can be shown similarly.

Note that, in Lemma 1, (Ex) is the the rule of exchange, and (As1) and (As2) are rules
of associativity with respect to the structural operator of comma. Henceforth, applications
of these rules are so obvious that we skip them in derivations. A formula α is GKt-equivalent
to β (notation: GKt ` α⇔ β) if GKt ` α⇒ β and GKt ` β⇒ α.

Lemma 2. The following hold in GKt:

(1) ` β, Γ⇒ β.
(2) ` β⇔ ¬¬β and ` ⇒ β ∨ ¬β.
(3) ` β⇒ α iff ` ¬α⇒ ¬β.
(4) ` ¬β⇒ α iff ` ¬α⇒ β.
(5) ` β⇒ ¬α iff ` α⇒ ¬β.
(6) ` ♦β⇔ ¬�¬β and ` �β⇔ ¬�¬β.
(7) ` �β⇔ ¬♦¬β and ` �β⇔ ¬�¬β.
(8) ` ♦�β⇒ β and ` ��β⇒ β.
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(9) ` β⇒ ��β and ` β⇒ �♦β.
(10) if ` β⇒ α, then ` �β⇒ �α for every � ∈ {♦,�,�,�}.

Proof. For (1), it is obtained by (Wek). For (2), from (Id) by (¬¬L) and (¬¬R), we obtain
` β⇔ ¬¬β. We also have the following derivation:

¬β⇒ ¬β
(¬L)¬β,¬¬β⇒ ⊥
(∧L)¬β ∧ ¬¬β⇒ ⊥
(¬R)

⇒ ¬(¬β ∧ ¬¬β)

For (3), we have the following derivations:

β⇒ α
(¬L)¬α, β⇒ ⊥
(¬R)¬α⇒ ¬β

β⇒ ¬¬β

¬α⇒ ¬β
(¬L)¬α,¬¬β⇒ ⊥
(¬R)¬¬β⇒ ¬¬α
(Cut)

β⇒ ¬¬α ¬¬α⇒ α
(Cut)

β⇒ α

By (3), (2) and (Cut), we obtain (4) and (5). For (6), we have the following derivations:

β⇒ β
(¬L)¬β, β⇒ ⊥
(�L)•�¬β, β⇒ ⊥
(Dual•◦)

�¬β, ◦β⇒ ⊥
(♦L)

�¬β,♦β⇒ ⊥
(¬R)

♦β⇒ ¬�¬β

β⇒ β
(♦R)◦β⇒ ♦β

(¬L)◦β,¬♦β⇒ ⊥
(Dual◦•)

β, •¬♦β⇒ ⊥
(¬R)•¬♦β⇒ ¬β
(�R)¬♦β⇒ �¬β
(4)¬�¬β⇒ ♦β

The proof of (7) is similar. For (8) and (9), we have the following derivations:

β⇒ β
(�L)◦�β⇒ β
(♦L)

♦�β⇒ β

β⇒ β
(�L)•�β⇒ β
(�L)

��β⇒ β

β⇒ β
(�R)•β⇒ �β
(�R)

β⇒ ��β

β⇒ β
(♦R)◦β⇒ ♦β
(�R)

β⇒ �♦β

For (10), assume ` β ⇒ α. By (♦R), ` ◦β ⇒ ♦α. By (♦L), ` ♦β ⇒ ♦α. By (�L),
` •�β⇒ α. By (�R), ` �β⇒ �α. The cases of � and � are similar.

Lemma 3. If GKt ` α ⇔ β, then GKt ` χ ⇔ χ(α/β), where χ(α/β) is obtained from χ by
replacing one or more occurrences of α in χ by β.

Proof. The proof proceeds by induction on the complexity of χ. The case χ ∈ Var∪ {⊥} or
χ = α is trivial. Let χ 6= α. Suppose χ = χ1 ∧ χ2. By induction hypothesis, ` χ1 ⇔ χ1(α/β)
and ` χ2 ⇔ χ2(α/β). It is easy to obtain ` χ ⇔ χ(α/β). Suppose χ = ¬ξ. By induction
hypothesis, ` ξ ⇔ ξ(α/β). By Lemma 2 (3), ` ¬ξ ⇔ ¬ξ(α/β). Suppose χ = ♦ξ. By
induction hypothesis, ` ξ ⇔ ξ(α/β). By Lemma 2 (10), ` ♦ξ ⇔ ♦ξ(α/β). The remaining
cases for χ = �ξ with � ∈ {�,�,�} can be shown similarly.

Lemma 4. The following hold in GKt:

(1) if ` α⇒ γ and ` β⇒ γ, then ` α ∨ β⇒ γ.
(2) if ` α⇒ β1 or ` α⇒ β2, then ` α⇒ β1 ∨ β2.
(3) ` α,¬α ∨ β⇒ β.
(4) ` α ∧ β⇒ γ iff ` α⇒ ¬β ∨ γ.
(5) ` α ∧ ¬β⇒ γ iff ` α⇒ β ∨ γ.
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Proof. For (1), we have the following derivation:

α⇒ γ
Lemma 2 (3)¬γ⇒ ¬α

β⇒ γ
Lemma 2 (3)¬γ⇒ ¬β
(∧R)¬γ,¬γ⇒ ¬α ∧ ¬β

(Ctr)¬γ⇒ ¬α ∧ ¬β
Lemma 2 (4)

¬(¬α ∧ ¬β)⇒ γ

For (2), by ` ¬β1 ∧¬β2 ⇒ ¬βi, where i = 1, 2 and Lemma 2 (5), ` βi ⇒ ¬(¬β1 ∧¬β2).
Assume ` α⇒ βi. By (Cut), ` α⇒ ¬(¬β1 ∧ ¬β2). For (3), we have the derivation:

α,¬β⇒ α
(¬¬R)

α,¬β⇒ ¬¬α α,¬β⇒ ¬β
(∧R)

α,¬β, α,¬β⇒ ¬¬α ∧ ¬β
(Ctr)

α,¬β⇒ ¬¬α ∧ ¬β
(¬L)

α,¬β,¬(¬¬α ∧ ¬β)⇒ ⊥
(¬R)

α,¬(¬¬α ∧ ¬β)⇒ ¬¬β ¬¬β⇒ β
(Cut)

α,¬(¬¬α ∧ ¬β)⇒ β

For (4), we have the following derivations:

α⇒ α β⇒ β
(∧R)

α, β⇒ α ∧ β α ∧ β⇒ γ
(Cut)

α, β⇒ γ
(¬L)

α, β,¬γ⇒ ⊥
(¬¬L)

α,¬¬β,¬γ⇒ ⊥
(∧L)

α,¬¬β ∧ ¬γ⇒ ⊥
(¬R)

α⇒ ¬(¬¬β ∧ ¬γ)

α⇒ ¬β ∨ γ β,¬β ∨ γ⇒ γ
(Cut)

α, β⇒ γ
(∧L)

α ∧ β⇒ γ

Note that ` β,¬β ∨ γ⇒ γ by (3). For (5), by (4), ` α ∧ ¬β⇒ γ iff ` α⇒ ¬¬β ∨ γ. By
Lemma 3, ` ¬¬β ∨ γ⇔ β ∨ γ. Hence, ` α ∧ ¬β⇒ γ iff ` α⇒ β ∨ γ.

Remark 1. Every formula structure Θ can be replaced by a corresponding formula Θ[. Clearly,
GKt ` Π[Θ]⇒ α iff GKt ` Π[Θ[]⇒ α. Then, by Lemma 4 (4), one obtains GKt ` α, Θ⇒ β iff
GKt ` Θ⇒ ¬α ∨ β.

Definition 6. We define the displaying formula FD(∆[−] : α) with respect to a formula context
∆[−] and a formula α recursively as follows:

FD(− : α) = α

FD(∆1[−], ∆2 : α) = FD(∆1[−] : ¬∆[
2 ∨ α)

FD(∆1, ∆2[−] : α) = FD(∆2[−] : ¬∆[
1 ∨ α)

FD(◦∆[−] : α) = FD(∆[−] : �α)

FD(•∆[−] : α) = FD(∆[−] : �α)

Theorem 2 (Displaying). GKt ` Γ[∆]⇒ α iff GKt ` ∆⇒ FD(Γ[−] : α).

Proof. We proceed by the induction on d(Γ[−]). Basic cases for d(Γ[−]) = 0 are trivial. We
consider the following cases for the induction:

(1) Γ[−] = (Γ1[−], Γ2) or (Γ1, Γ2[−]). We prove only the former one and the other
can be treated similarly. Clearly, FD(Γ[−] : β) = FD(Γ1[−] : ¬Γ[

2 ∨ β). By induction
hypothesis, ` Γ1[∆]⇒ ¬Γ[

2 ∨ β iff ` ∆⇒ FD(Γ1[−] : ¬Γ[
2 ∨ β). It needs only to show that
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` Γ1[∆], Γ2 ⇒ β iff ` Γ1[∆]⇒ ¬Γ[
2 ∨ β. Let ` Γ1[∆], Γ2 ⇒ β. Hence, ` Γ1[∆], Γ[

2 ⇒ β. Then,
` Γ1[∆]⇒ ¬Γ[

2 ∨ β. Suppose ` Γ1[∆]⇒ ¬Γ[
2 ∨ β. Clearly, ` Γ1[∆], Γ[

2 ⇒ β. Consequently,
` Γ1[∆], Γ2 ⇒ β.

(2) Γ[−] = •Σ[−] or ◦Σ[−]. We prove only the former one and the other can be treated
similarly. Clearly, FD(Γ[−] : β) = D(Σ[−] : �β). According to induction hypothesis,
` Σ[∆] ⇒ �β iff ` ∆ ⇒ FD(Σ[−] : �β). It needs only to show that ` •Σ[∆] ⇒ β iff
` Σ[∆] ⇒ �β. Let ` ◦Σ[∆] ⇒ β. By (�R), ` Σ[∆] ⇒ �β. Let ` Σ[∆] ⇒ �β. By (�R),
` ◦Σ[∆]⇒ ��β. By Lemma 2 (8), ` ��β⇒ β. By (Cut), ` •Σ[∆]⇒ β.

A sequent Γ⇒ β is valid in a frame F (notation: F |= Γ⇒ β) if F |= ¬Γ[ ∨ β. A sequent
s is valid in a class of frames K (notation: K |= s) if F |= s for all F ∈ K. An inference rule
(R) preserves validity if the validity of premise(s) implies that of the conclusion. Now, we
shall prove the soundness and completeness of GKt.

Lemma 5. For every frame F, F |= Γ[∆]⇒ β iff F |= ∆⇒ FD(Γ[−] : β).

Proof. We proceed by induction on d(Γ[−]). The basic cases are trivial. Assume Γ[−] =
(Γ1[−], Γ2) or (Γ1, Γ2[−]). We prove only the former case. Obviously, FD(Γ[−] : β) =
FD(Γ1[−] : ¬Γ[

2 ∨ β). By induction hypothesis, F |= Γ1[∆] ⇒ ¬Γ[
2 ∨ β iff F |= ∆ ⇒

FD(Γ1[−] : ¬Γ[
2 ∨ β). Clearly, F |= Γ1[∆], Γ2 ⇒ β iff F |= Γ1[∆] ⇒ ¬Γ[

2 ∨ β. Let Γ[−] =
◦Σ[−] or •Σ[−]. We prove only the former case. Obviously, FD(Γ[−] : β) = FD(Σ[−] :
�β). By induction hypothesis, F |= Σ[∆] ⇒ �β iff F |= ∆ ⇒ FD(Σ[−] : �β). Clearly,
F |= ◦Σ[∆]⇒ β iff F |= Σ[∆]⇒ �β.

Theorem 3 (Soundness). If GKt ` Γ⇒ β, then Fr(Kt) |= Γ⇒ β.

Proof. Assume `k Γ ⇒ β. The case k = 0 holds obviously. Suppose k > 0 and Γ ⇒ β
is derived by a rule (R). Right rules for ∧,¬,♦,�,� and � preserve validity obviously.
Other logical rules, (Ctr), (Wek) and (Cut) preserve validity by Lemma 5. For (Dual◦•),
assume F |= ◦∆1, ∆2 ⇒ ⊥. Then, F |= ♦∆[

1 ∧ ∆[
2 ⇒ ⊥. Let V be any valuation in F. Then,

V(♦∆[
1 ∧ ∆[

2) = ∅ and so V(♦∆[
1) = ∅ = V(∆[

2). Then, V(∆[
1) = ∅ = V(�∆[

2). Then,
F |= ∆1,�∆2 ⇒ ⊥. The case for (Dual•◦) is similar.

Lemma 6. If `Kt α, then GKt ` ⇒ α.

Proof. Assume `Kt α. By Lemma 2, Lemma 4 and Remark 1, for every instance χ of axioms
(A1)–(A6), we have GKt ` ⇒ χ. Assume GKt ` ⇒ β and GKt ` ⇒ ¬β ∨ γ. By Lemma 4
(3), GKt ` β,¬β ∨ γ⇒ γ. By (Cut), GKt ` ⇒ γ. Assume GKt ` ⇒ ¬♦α ∨ β. By Remark 1,
GKt ` ♦α ⇒ β. By Lemma 2 (9) and (10), using (Cut), GKt ` α ⇒ �β. By Remark 1,
GKt ` ⇒ ¬α ∨�β. The case for (Adj��) is shown similarly.

Theorem 4 (Completeness). If Fr(Kt) |= Γ⇒ β, then GKt ` Γ⇒ β.

Proof. Assume Fr(Kt) |= Γ⇒ β. Then, Fr(Kt) |= ¬Γ[ ∨ β. By Theorem 1, `Kt ¬Γ[ ∨ β. By
Lemma 6, GKt ` ⇒ ¬Γ[ ∨ β. Then, GKt ` Γ[ ⇒ β and so GKt ` Γ⇒ β.

4. Cut Elimination

In this section, we show the cut elimination of GKt. Let GK∗t be the sequent calculus
obtained from GKt by removing the rule (Cut) and replacing the rules (¬L) and (¬R) by
the following four rules:

Γ⇒ ¬α

α, Γ⇒ ⊥ (¬L1)
Γ⇒ δ

¬δ, Γ⇒ ⊥ (¬L2) where δ 6= ¬δ′ for any formula δ′

¬α, Γ⇒ ⊥
Γ⇒ α

(¬R1)
δ, Γ⇒ ⊥
Γ⇒ ¬δ

(¬R2) where δ 6= ¬δ′ for any formula δ′
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The cut elimination of GKt is obtained by showing that GKt is equivalent to GK∗t .

Lemma 7. If GK∗t ` Γ⇒ β, then GKt ` Γ⇒ β.

Proof. Note that (¬L2) and (¬R2) are special cases of (¬L) and (¬R), respectively. Assume
GKt ` Γ ⇒ ¬α. Clearly, GKt ` ¬α, α ⇒ ⊥. By (Cut), GKt ` α, Γ ⇒ ⊥. Hence, (¬L1) is
admissible in GKt. Assume GKt ` ¬α, Γ⇒ ⊥. By (¬R), GKt ` Γ⇒ ¬¬α. By GKt ` ¬¬α⇒
α and (Cut), GKt ` Γ⇒ α. Hence, (¬R1) is admissible in GKt.

The converse of Lemma 7 shall be shown in three steps. First, GK†
t is the sequent

calculus obtained from GKt by removing the rules (¬¬L) and (¬¬R). We shall define a
translation ko such that, for every sequent s, GKt |= s iff GK†

t ` ko(s). Second, we show the
cut elimination of GK†

t and so obtain a sequent calculus GK‡
t , which is obtained from GK†

t

by removing the rule (Cut). Third, we show that GK‡
t ` ko(s) implies GK∗t ` s.

GK∗t

GKt GK†
t

GK
‡
t

Lemma 7

ko
Theorem 5

Cut elimination (Theorem 6)

Theorem 7

Lemma 8. If GK†
t ` Γ1[α], Γ2 ⇒ ⊥, then GK†

t ` Γ1[¬¬α], Γ2 ⇒ ⊥.

Proof. Let GK†
t ` Γ1[α], Γ2 ⇒ ⊥. We prove GK†

t ` Γ1[¬¬α], Γ2 ⇒ ⊥ by induction on
d(Γ1[−]). Suppose Γ1[α] = α. Then, GK†

t ` α, Γ2 ⇒ ⊥. By (¬R) and (¬L), GK†
t `

¬¬α, Γ2 ⇒ ⊥. Suppose Γ1[−] = (Σ1[−], Σ2) or (Σ2, Σ1[−]). We prove only the former case.
Clearly, GK†

t ` Σ1[α], Σ2, Γ2 ⇒ ⊥. By induction hypothesis, GK†
t ` Σ1[¬¬α], Σ2, Γ2 ⇒ ⊥.

Suppose Γ1[−] = ◦Σ[−] or •Σ[−]. We prove only the former cases. Clearly, GK†
t `

◦Σ[α], Γ2 ⇒ ⊥. By (Dual◦•), GK†
t ` Σ[α], •Γ2 ⇒ ⊥. By induction hypothesis, GK†

t `
Σ[¬¬α], •Γ2 ⇒ ⊥. By (Dual•◦), GK†

t ` ◦Σ[¬¬α], Γ2 ⇒ ⊥.

Lemma 9. For every formula α, GK†
t ` α⇒ ¬¬α and GK†

t ` ¬¬¬α⇔ ¬α.

Proof. Apply (¬L) and (¬R) to α⇒ α.

Lemma 10. If GK†
t ` Γ[α]⇒ ¬β, then GK†

t ` Γ[¬¬α]⇒ ¬β.

Proof. Assume GK†
t ` Γ[α] ⇒ ¬β. By (¬L) and Lemma 8, GK†

t ` Γ[¬¬α],¬¬β ⇒ ⊥.
By (¬R), GK†

t ` Γ[¬¬α] ⇒ ¬¬¬β. By Lemma 9, GK†
t ` ¬¬¬β ⇒ ¬β. By (Cut), GK†

t `
Γ[¬¬α]⇒ ¬β.

Definition 7. The Kolmogorov translation kol : F → F is recursively defined as follows:

kol(p) = ¬¬p where p ∈ Var.

kol(⊥) = ¬¬⊥
kol(α ∧ β) = ¬¬(kol(α) ∧ kol(β))

kol(¬α) = ¬ko(α)

kol(�α) = ¬¬� kol(α) where � ∈ {♦,�,�,�}.

For every formula structure Γ, by kol(Γ), we denote the formula structure obtained from Γ by
replacing each formula β in Γ by kol(β). For every context Γ[−], kol(Γ[−]) is defined natrually.

Lemma 11. For every formula α, GK†
t ` kol(¬¬α)⇒ kol(α).
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Proof. Clearly, kol(¬¬α) = ¬¬kol(α) and kol(α) = ¬δ for some δ. By Lemma 9, GK†
t `

¬¬¬δ⇒ ¬δ. Then, GK†
t ` kol(¬¬α)⇒ kol(α).

Theorem 5. GKt ` Γ⇒ β iff GK†
t ` kol(Γ)⇒ kol(β).

Proof. Let GK†
t ` kol(Γ) ⇒ kol(β). Then, GKt ` kol(Γ) ⇒ kol(β). Obviously, GKt ` α ⇔

kol(α) for any α. Due to Lemma 3 and (Cut), GKt ` Γ⇒ β. The opposite direction is proved
by induction on the derivation of Γ ⇒ β. Let Γ ⇒ β be obtained by rule (R). We provide
only details of proof for the case (R) = (Dual◦•) or (Dual•◦). Other cases are analogous
to the proof of [17], Lemma 5.5. We prove only the former case. Let the premise and the
conclusion of (R) be GKt `k−1 ◦∆1, ∆2 ⇒ ⊥ and GKt `k ∆1, •∆2 ⇒ ⊥, respectively. By
induction hypothesis, GK†

t ` ◦kol(∆1), kol(∆2) ⇒ ¬¬⊥. By GK†
t ` ¬¬⊥ ⇒ ⊥ and (Cut),

GK†
t ` ◦kol(∆1), kol(∆2)⇒ ⊥. By (Dual◦•), GK†

t ` kol(∆1), •kol(∆2)⇒ ⊥.

Now, we prove the cut elimination holds for GK†
t . For every n ≥ 0, let Γ[∆]n be the

formula structure in which ∆ appears at n places. In particular, if n = 0, then Γ[∆]n denotes
a formula structure in which ∆ does not appear. We introduce the following mix rule:

∆⇒ α Γ[α]n ⇒ β

Γ[∆]n ⇒ β
(Mix)

Clearly, (Mix) is admissible in GK†
t , and (Cut) is a special case of (Mix). Thus, the cut

elimination is equivalent to the mix elimination of GK†
t .

Theorem 6. If GK†
t ` Γ⇒ χ, then GK†

t ` Γ⇒ χ without any application of (Mix).

Proof. Let D be a derivation of Γ ⇒ χ in GK†
t . It suffices to show that (Mix) can be

eliminated from D. Let an application of (Mix) in D be as follows:

`k ∆⇒ α `m Σ[α]n ⇒ β

` Σ[∆]n ⇒ β
(Mix)

We prove the elimination of (Mix) by induction on c(α) and k + m. Let k = 0 or
m = 0. Then, ∆ ⇒ α or Σ[α]n ⇒ β is an instance of (Id). Hence, ∆ = α or Σ[α] = β.
Therefore, the conclusion is just the right or left premise of (Mix). Suppose that k > 0 and
m > 0. Assume the last rules for deriving the left and right premises of (Mix) are (Rl) and
(Rr), respectively. We have the following cases:

(1) At least one of (Rl) and (Rr) is a structural rule. We have the following cases:
(1.1) (Rl) is (Ctr). Let the derivation end with

∆[Θ, Θ]⇒ α
(Ctr)

∆[Θ]⇒ α Σ[α]n ⇒ β
(Mix)

Σ[∆[Θ]]n ⇒ β

By induction hypothesis, the above subtree can be transformed into

∆[Θ, Θ]⇒ α Σ[α]n ⇒ β
(Mix)

Σ[∆[Θ, Θ]]n ⇒ β
(Ctr)n

Σ[∆[Θ]]n ⇒ β

where (Ctr)n means n times application of (Ctr).
(1.2) (Rl) is (Wek). Let the derivation end with

∆[Θi]⇒ α
(Wek)

∆[Θ1, Θ2]⇒ α Σ[α]n ⇒ β
(Mix)

Σ[∆[Θ1, Θ2]]
n ⇒ β
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By induction hypothesis, the above subtree can be transformed into

∆[Θi]⇒ α Σ[α]n ⇒ β
(Mix)

Σ[∆[Θi]]
n ⇒ β

(Wek)n

Σ[∆[Θ1, Θ2]]
n ⇒ β

where i = 1, 2 and (Wek)n means n times application of (Wek).
(1.3) (Rl) is (Dual◦•). Let ∆ = (∆1, •∆2), α = ⊥ and the derivation end with

◦∆1, ∆2 ⇒ ⊥
(Dual◦•)∆1, •∆2 ⇒ ⊥ Σ[⊥]n ⇒ β

(Mix)
Σ[∆1, •∆2]

n ⇒ β

The above subtree can be transformed into

◦∆1, ∆2 ⇒ ⊥
(Dual◦•)∆1, •∆2 ⇒ ⊥
(⊥)

Σ[∆1, •∆2]
n ⇒ β

(1.4) (Rl) is (Dual◦•). The proof is quite analogous to (1.3).
(1.5) (Rr) is (Ctr). Let Σ[α]n = Θ[Π[α]n1 ][α]n2 and the derivation end with

∆⇒ α

Θ[Π[α]n1 , Π[α]n1 ][α]n2 ⇒ β
(Ctr)

Θ[Π[α]n1 ][α]n2 ⇒ β
(Mix)

Θ[Π[∆]n1 ][∆]n2 ⇒ β

By induction hypothesis, the above subtree can be transformed into

∆⇒ α Θ[Π[α]n1 , Π[α]n1 ][α]n2 ⇒ β
(Mix)

Θ[Π[∆]n1 , Π[∆]n1 ][∆]n2 ⇒ β
(Ctr)

Θ[Π[∆]n1 ][∆]n2 ⇒ β

(1.6) (Rr) is (Wek). Let Σ[α]n = Θ[Σ1[α]
n1 , Σ2[α]

n2 ][α]n3 and the derivation end with

∆⇒ α

Θ[Σi[α]
ni ][α]n3 ⇒ β

(Wek)
Θ[Σ1[α]

n1 , Σ2[α]
n2 ][α]n3 ⇒ β

(Mix)
Θ[Σ1[∆]n1 , Σ2[∆]n2 ][α]n3 ⇒ β

By induction hypothesis, the above subtree can be transformed into

∆⇒ α Θ[Σi[α]
ni ][α]n3 ⇒ β

(Mix)
Θ[Σi[∆]ni ][α]n3 ⇒ β

(Wek)
Θ[Σ1[∆]n1 , Σ2[∆]n2 ][α]n3 ⇒ β

(1.7) (Rr) is (Dual◦•). Let the derivation end with

∆⇒ α

◦Σ1[α]
n1 , Σ2[α]

n2 ⇒ ⊥
(Dual◦•)

Σ1[α]
n1 , •Σ2[α]

n2 ⇒ ⊥
(Mix)

Σ1[∆]n1 , •Σ2[∆]n2 ⇒ ⊥

By induction hypothesis, the above subtree can be transformed into

∆⇒ α ◦Σ1[α]
n1 , Σ2[α]

n2 ⇒ ⊥
(Mix)

◦Σ1[∆]n1 , Σ2[∆]n2 ⇒ ⊥
(Dual◦•)

Σ1[∆]n1 , •Σ2[∆]n2 ⇒ ⊥
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(1.8) (Rr) is (Dual◦•). The proof is quite analogous to (1.7).
(2) Both (Rl) and (Rr) are logical rules.
(2.1) α is not principal in (Rl). We have the following cases.
(2.1.1) (Rl) is (⊥). Let the derivation end with

Θ⇒ ⊥
(⊥)

∆[Θ]⇒ α Σ[α]n ⇒ β
(Mix)

Σ[∆[Θ]]n ⇒ β

The above subtree can be transformed into

Θ⇒ ⊥
(⊥)

Σ[∆[Θ]]n ⇒ β

(2.1.2) (Rl) is a left logical rule. We apply (Mix) to the premise(s) of (Rl) and Σ[α]n ⇒ β,
and then apply (Rl). Take (Rl) = (♦L) as an example. Other cases are addressed similarly.
Let the derivation end with

∆[◦γ]⇒ α
(♦L)

∆[♦γ]⇒ α Σ[α]n ⇒ β
(Mix)

Σ[∆[♦γ]]n ⇒ β

By induction hypothesis, the above subtree can be transformed into

∆[◦γ]⇒ α Σ[α]n ⇒ β
(Mix)

Σ[∆[◦γ]]n ⇒ β
(♦L)n

Σ[∆[♦γ]]n ⇒ β

where (♦L)n means n times application of (♦L).
(2.2) α is not principal in (Rr). We have the following cases:
(2.2.1) (Rr) is (⊥). Let the derivation end with

∆⇒ α

Θ[α]n1 ⇒ ⊥
(⊥)

Σ[Θ[α]n1 ][α]n2 ⇒ β
(Mix)

Σ[Θ[∆]n1 ][∆]n2 ⇒ β

If n1 = 0, then we obtainΣ[∆[Θ]]n ⇒ β from Θ⇒ ⊥ by (⊥). Let n1 > 0. By induction
hypothesis, the above subtree can be transformed into

∆⇒ α Θ[α]n1 ⇒ ⊥
(Mix)

Θ[∆]n1 ⇒ ⊥
(⊥)

Σ[Θ[∆]n1 ][∆]n2 ⇒ β

(2.2.2) (Rr) is a right logical rule. Apply (Mix) to ∆ ⇒ α and the premise(s) of (Rr)
and then apply (Rr). Take (Rr) = (∧R) as an example. Let the derivation end with

∆⇒ α

Σ1[α]
n1 ⇒ β1 Σ2[α]

n2 ⇒ β2
(∧R)

Σ1[α]
n1 , Σ2[α]

n2 ⇒ β1 ∧ β2
(Mix)

Σ1[∆]n1 , Σ2[∆]n2 ⇒ β1 ∧ β2

By induction hypothesis, the above subtree can be transformed into

∆⇒ α Σ1[α]
n1 ⇒ β1 (Mix)

Σ1[∆]n1 ⇒ β1

∆⇒ α Σ2[α]
n2 ⇒ β1 (Mix)

Σ2[∆]n2 ⇒ β1
(∧R)

Σ1[∆]n1 , Σ2[∆]n2 ⇒ β1 ∧ β2
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(2.2.3) (Rr) is a left logical rule. We apply (Mix) to ∆⇒ α and the premise(s) of (Rr),
and then apply (Rr). Take (Rr) = (¬L) as an example. Let the derivation end with

∆⇒ α

Σ[α]n ⇒ ξ
(¬L)

¬ξ, Σ[α]n ⇒ ⊥
(Mix)

¬ξ, Σ[∆]n ⇒ ⊥

By induction hypothesis, the above subtree can be transformed into

∆⇒ α Σ[α]n ⇒ ξ
(Mix)

Σ[∆]n ⇒ ξ
(¬L)

¬ξ, Σ[∆]n ⇒ ⊥

(2.3) α is principal in both (Rl) and (Rr). The proof proceeds by induction on the
complexity of α. We have the following cases:

(2.3.1) α = α1 ∧ α2. Let the derivation end with

∆1 ⇒ α1 ∆2 ⇒ α2
(∧R)

∆1, ∆2 ⇒ α1 ∧ α2

Σ[α1, α2][α1 ∧ α2]
n−1 ⇒ β

(∧L)
Σ[α1 ∧ α2][α1 ∧ α2]

n−1 ⇒ β
(Mix)

Σ[∆1, ∆2]
n ⇒ β

By induction hypothesis, the above subtree can be transformed into

∆1 ⇒ α1

∆2 ⇒ α2

∆1, ∆2 ⇒ α1 ∧ α2 Σ[α1, α2][α1 ∧ α2]
n−1 ⇒ β

(Mix)
Σ[α1, α2][∆1, ∆2]

n−1 ⇒ β
(Mix)

Σ[α1, ∆2][∆1, ∆2]
n−1 ⇒ β

(Mix)
Σ[∆1, ∆2]

n ⇒ β

(2.3.2) α = ¬ξ. Let the derivation end with

ξ, ∆⇒ ⊥
(¬R)

∆⇒ ¬ξ

Σ[¬ξ]n−1 ⇒ ξ
(¬L)

¬ξ, Σ[¬ξ]n−1 ⇒ ⊥
(Mix)

Σ[∆]n−1, ∆⇒ ⊥

By induction hypothesis, the above subtree can be transformed into

∆⇒ ¬ξ Σ[¬ξ]n−1 ⇒ ξ
(Mix)

Σ[∆]n−1 ⇒ ξ ξ, ∆⇒ ⊥
(Mix)

Σ[∆]n−1, ∆⇒ ⊥

(2.3.3) α = ♦ξ. Let the derivation end with

∆⇒ ξ
(♦R)◦∆⇒ ♦ξ

Σ[◦ξ][♦ξ]n−1 ⇒ β
(♦L)

Σ[♦ξ][♦ξ]n−1 ⇒ β
(Mix)

Σ[◦∆]n ⇒ β

By induction hypothesis, the above subtree can be transformed into

∆⇒ ξ

◦∆⇒ ♦ξ Σ[◦ξ][♦ξ]n−1 ⇒ β
(Mix)

Σ[◦ξ][◦∆]n−1 ⇒ β
(Mix)

Σ[◦∆]n ⇒ β

(2.3.4) α = �ξ. The proof is quite analogous to (2.3.3).



Axioms 2023, 12, 620 14 of 19

(2.3.5) α = �ξ. The derivation ends with

◦∆⇒ ξ
(�R)

∆⇒ �ξ

Σ[ξ][�ξ]n−1 ⇒ β
(�L)

Σ[◦�ξ][�ξ]n−1 ⇒ β
(Mix)

Σ[◦∆][∆]n−1 ⇒ β

By induction hypothesis, the above subtree can be transformed into

◦∆⇒ ξ

∆⇒ �ξ Σ[ξ][�ξ]n−1 ⇒ β
(Mix)

Σ[ξ][∆]n−1 ⇒ β
(Mix)

Σ[◦∆][∆]n−1 ⇒ β

(2.3.6) α = �ξ. The proof is quite analogous to (2.3.5).

Now, let GK‡
t be GK†

t , eliminating (Cut). Next, we shall prove that GKt ` s implies
GK∗t ` s.

Remark 2. We clearly have GK∗t ` ¬¬α⇔ α. Furthermore, GK∗t ` α⇒ β iff GK∗t ` ¬β⇒ ¬α.
The regular proof is omitted.

Lemma 12. GK∗t ` α[¬¬β]⇔ α[β], where α[−] is a formula context.

Proof. Suppose d(α[−]) = 0. Then, ` ¬¬β ⇔ β. Suppose d(α[−]) > 0. Assume α[−] =
¬χ[−]. By induction hypothesis, ` χ[¬¬β] ⇔ χ[β]. By Remark 2, ` ¬χ[¬¬β] ⇔ ¬χ[β].
Assume α[−] = α1[−] ∧ α2 or α1 ∧ α2[−]. We prove only the former case. According to
induction hypothesis, ` α1[¬¬β]⇔ α1[β]. By (∧R) and (∧L), ` α1[¬¬β]∧ α2 ⇔ α1[β]∧ α2.
Assume α[−] = ♦χ[−] or �χ[−].We prove only the former case. According to induction
hypothesis, ` χ[¬¬β] ⇔ χ[β]. By (♦R) and (♦L), ` ♦χ[¬¬β] ⇔ ♦χ[β]. Assume α[−] =
�χ[−] or �χ[−]. We prove only the former case. According to induction hypothesis,
` χ[¬¬β]⇔ χ[β]. By (�R) and (�L), ` �χ[¬¬β]⇔ �χ[β].

Lemma 13. The following hold in GK∗t :

(1) if GK∗t ` Γ[α[¬¬β]]⇒ χ, then GK∗t ` Γ[α[β]]⇒ χ.
(2) if GK∗t ` Γ⇒ α[¬¬β], then GK∗t ` Γ⇒ α[β].

Proof. Assume `k Γ[α{¬¬β}] ⇒ χ and `k Γ ⇒ α[¬¬β]. We prove (1) and (2) simultane-
ously by induction on k ≥ 0. Suppose k = 0. By Lemma 12, (1) and (2) hold. Suppose k > 0.
For (1), suppose Γ[α[¬¬β]]⇒ χ is derived by a rule (R). We have the following cases:

(1.1) (R) is a structural rule. We have the following cases:
(1.1.1) (R) = (Ctr). Let `k−1 Σ[∆, ∆]⇒ χ and `k Σ[∆]⇒ χ, where Σ[∆] = Γ[α[¬¬β]].

Suppose α[¬¬β] does not occur in ∆. By (Ctr), ` Γ[α[¬¬β]]⇒ χ. Suppose ∆ = ∆[α[¬¬β]].
By induction hypothesis, ` Σ[∆[α[β]], ∆[α[β]]]⇒ χ. By (Ctr), ` Γ[α[β]]⇒ χ.

(1.1.2) (R) = (Wek). Let `k−1 Σ[∆i] ⇒ χ and `k Σ[∆1, ∆2] ⇒ χ, where Σ[∆1, ∆2] =
Γ[α[¬¬β]]. Suppose α[¬¬β] does not occur in ∆i. By (Ctr), ` Γ[α[¬¬β]] ⇒ χ. Suppose
∆i = ∆i[α[¬¬β]]. According to induction hypothesis, ` Σ[∆i[α[β]]] ⇒ χ. By (Wek),
` Γ[α[β]]⇒ χ.

(1.1.3) (R) = (Dual◦•) or (Dual•◦).We prove only the former. Let `k−1 ◦∆1, ∆2 ⇒ χ
and `k ∆1, •∆2 ⇒ χ, where ∆1, •∆2 = Γ[α[¬¬β]]. By induction hypothesis and (Dual◦•),
` Γ[α[β]]⇒ χ.

(1.2) (R) is a logical rule. If (R) is one of the rules (¬R1), (¬R2), (¬¬R), (♦R), (�R),
(�R) and (�R), we obtain immediately ` Γ[α[β]] ⇒ χ by induction hypothesis and the
rule (R). We have the following remaining cases:
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(1.2.1) (R) = (⊥). Let `k−1 ∆ ⇒ ⊥ and `k Σ[∆] ⇒ χ, where Σ[∆] = Γ[α[¬¬β]].
Suppose α[¬¬β] does not occur in ∆. By (⊥), ` Γ[α[¬¬β]]⇒ χ. Suppose ∆ = ∆[α[¬¬β]].
By induction hypothesis, ` ∆[α[β]]⇒ ⊥. By (⊥), ` Γ[α[β]]⇒ χ.

(1.2.2) (R) = (∧L). Let `k−1 Σ[ξ1, ξ2] ⇒ β and `k−1 Σ[ξ1 ∧ ξ2] ⇒ β, where Σ[ξ1 ∧
ξ2] = Γ[α[¬¬β]]. Suppose α[¬¬β] = ξ1 ∧ ξ2, and then ξ1 = ξ1[¬¬β] or ξ2 = ξ2[¬¬β]. In
each case, by induction hypothesis and (∧L), we obtain ` Γ[α[β]]⇒ χ. If α[¬¬β] 6= ξ1 ∧ ξ2,
then we obtain immediately ` Γ[α[β]]⇒ χ by induction hypothesis and (∧L).

(1.2.3) (R) = (¬L1). Let `k−1 Σ⇒ ¬ξ and `k ξ, Σ⇒ ⊥, where Γ[α[¬¬β]] = ξ, Σ and
χ = ⊥. Suppose ξ = α[¬¬β]. By `k−1 Σ ⇒ ¬α[¬¬β] and induction hypothesis, ` Σ ⇒
¬α[β]. By (¬L1), ` α[β], Σ ⇒ ⊥. Suppose Σ = Σ[α[¬¬β]]. By `k−1 Σ[α[¬¬β]] ⇒ ¬ξ and
induction hypothesis, ` Σ[α[β]]⇒ ¬ξ. By (¬L1), ` ξ, Σ[α[β]]⇒ ⊥.

(1.2.4) (R) = (¬L2). Let `k−1 Σ ⇒ ξ and `k ¬ξ, Σ ⇒ ⊥, where Γ[α[¬¬β]] = ¬ξ, Σ
and ξ 6= ¬ζ for any formula ζ. Suppose α[¬¬β] = ¬ξ. Suppose α[−] = − or α[−] = ¬[−].
Then, ¬ξ = ¬¬β or ¬ξ = ¬¬¬β. Then, ξ = ¬β or ξ = ¬¬β, which is impossible.
Hence, ξ = ξ[¬¬β]. By `k−1 Σ ⇒ ξ[¬¬β] and induction hypothesis, ` Σ ⇒ ξ[β]. By
(¬L2), ` ¬ξ[β], Σ ⇒ ⊥. Suppose Σ = Σ[α[¬¬β]]. By `k−1 Σ[α[¬¬β]] ⇒ ξ and induction
hypothesis, ` Σ[α[β]]⇒ ξ. By (¬L2), ` ¬ξ, Σ[α[β]]⇒ ⊥.

(1.2.5) (R) = (¬¬L). Let `k−1 Σ[ξ] ⇒ χ and `k Σ[¬¬ξ] ⇒ χ, where Γ[α[¬¬β]] =
Σ[¬¬ξ]. Let ¬¬ξ = α[¬¬β]. Assume α[−] = − or α[−] = ¬[−]. Then, ¬¬ξ = ¬¬β or
¬¬ξ = ¬¬¬β. Then, ξ = β or ξ = ¬β. Then, ` Σ[β] ⇒ χ or ` Σ[¬β] ⇒ χ. Assume
ξ = ξ[¬¬β]. By `k−1 Σ[ξ[¬¬β]]⇒ χ and induction hypothesis, ` Σ[ξ[β]]⇒ χ. By (¬¬L),
` Σ[¬¬ξ[β]]⇒ χ. Let ¬¬ξ 6= α[¬¬β]. By induction hypothesis and (¬¬L), ` Γ[α[β]]⇒ χ.

(1.2.6) (R) = (♦L) or (�L). We prove only the former. Let `k−1 Σ[◦ξ] ⇒ χ and
`k Σ[♦ξ] ⇒ χ, where Γ[α[¬¬β]] = Σ[♦ξ]. Suppose α[¬¬β] = ♦ξ. Then, ξ = ξ[¬¬β].
According to induction hypothesis, ` Σ[◦ξ[β]] ⇒ χ. By (♦L), ` Σ[♦ξ[β]] ⇒ χ. Suppose
α[¬¬β] 6= ♦ξ. According to induction hypothesis and (♦L), ` Γ[α[β]]⇒ χ.

(1.2.7) (R) = (�L) or (�L). We prove only the former. Let `k−1 Σ[ξ] ⇒ χ and
`k Σ[•�ξ] ⇒ χ, where Γ[α[¬¬β]] = Σ[•�ξ]. Suppose α[¬¬β] = �ξ. Then, ξ = ξ[¬¬β].
According to induction hypothesis, ` Σ[ξ[β]] ⇒ χ. By (�L), ` Σ[•�ξ[β]] ⇒ χ. Suppose
α[¬¬β] 6= �ξ. According to induction hypothesis and (�L), ` Γ[α[β]]⇒ χ.

For (2), suppose Γ⇒ α[¬¬β] is derived by a rule (R). We have the following cases:
(2.1) (R) is (Ctr) or (Wek). In each case, we obtain ` Γ⇒ α[β] by induction hypothesis

and (R).
(2.2) (R) is a logical rule. Note that α[¬¬β] 6= ⊥. Then, (R) cannot be (¬L1) or (¬L2).

If (R) is one of the rules (∧L), (¬¬L), (♦L), (�L), (�L) and (�L), by induction hypothesis
and (R), we obtain ` Γ⇒ α[β]. We have the following remaning cases:

(2.2.1) (R) = (⊥). Let `k−1 ∆ ⇒ ⊥ and `k Γ[∆] ⇒ α[¬¬β]. From ` ∆ ⇒ ⊥ by (⊥),
we have ` Γ[∆]⇒ α[β].

(2.2.2) (R) = (∧R). Let `k−1 Γ1 ⇒ χ1; `k−1 Γ2 ⇒ χ2 and `k Γ1, Γ2 ⇒ χ1 ∧ χ2,
where Γ = (Γ1, Γ2) and α[¬¬β] = χ1 ∧ χ2. Then, χ1 = χ1[¬¬β] or χ2 = χ2[¬¬β]. Then,
` Γ1, Γ2 ⇒ α[β].

(2.2.3) (R) = (¬R1). Let `k−1 ¬α[¬¬β], Γ ⇒ ⊥ and `k Γ ⇒ α[¬¬β]. By induction
hypothesis, ` ¬α[β], Γ⇒ ⊥. By (¬R1), ` Γ⇒ α[β].

(2.2.4) (R) = (¬R2). Let `k−1 ξ, Γ ⇒ ⊥ and `k Γ ⇒ ¬ξ, where α[¬¬β] = ¬ξ and
ξ 6= ¬δ for any formula δ. Clearly, α[−] 6= − and α[−] 6= ¬[−]. Then, ξ = ξ[¬¬β]. By
induction hypothesis, ` ξ[β], Γ⇒ ⊥. By (¬R2), ` Γ⇒ ¬ξ[β].

(2.2.5) (R) is one of the rules (♦R), (�R), (�R) and (�R). We prove only the case
(R) = (♦R). Let `k−1 Σ ⇒ ξ and `k ◦Σ ⇒ ♦ξ, where Γ = ◦Σ and ♦ξ = α[¬¬β]. Then,
ξ = ξ[¬¬β]. According to induction hypothesis and (♦R), ` ◦Σ⇒ ♦ξ[β].

Lemma 14. The following hold in GK∗t :

(1) if GK∗t ` Γ⇒ α, then GK∗t ` ¬α, Γ⇒ ⊥.
(2) if GK∗t ` α, Γ⇒ ⊥, then GK∗t ` Γ⇒ ¬α.
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Proof. (1) Assume GK∗t ` Γ⇒ α. Suppose α = ¬χ. By (¬L1) and (¬¬L), GK∗t ` ¬¬χ, Γ⇒
⊥. Suppose α 6= ¬χ for any formula χ. By (¬L2), GK∗t ` ¬α, Γ⇒ ⊥.

(2) Assume GK∗t ` α, Γ⇒ ⊥. Suppose α = ¬χ. By (¬R1) and (¬¬R), GK∗t ` Γ⇒ ¬¬χ.
Suppose α 6= ¬χ for any formula χ. By (¬R2), GK∗t ` Γ⇒ ¬α.

Lemma 15. If GK‡
t ` Γ⇒ α, then GK∗t ` Γ⇒ α.

Proof. By Lemma 14, (¬L) and (¬R) are admissible in GK∗t .

Lemma 16. If GK∗t ` kol(Γ)⇒ kol(α), then GK∗t ` Γ⇒ α.

Proof. Let GK∗t ` kol(Γ) ⇒ kol(α). By Lemma 13, the double negation ¬¬ in kol(Γ) ⇒
kol(α) are eliminable. Hence, GK∗t ` Γ⇒ α.

Theorem 7. If GKt ` Γ⇒ α, then GK∗t ` Γ⇒ α.

Proof. Let GKt ` Γ ⇒ α. By Theorem 5, GK†
t ` kol(Γ) ⇒ kol(α). By Theorem 6, GK‡

t `
ko(Γ)⇒ ko(α). By Lemma 15, GK∗t ` kol(Γ)⇒ kol(α). By Lemma 16, GK∗t ` Γ⇒ α.

By Theorem 7, every derivation in GKt can be transformed into a cut-free derivation in
GK∗t . This result provides the cut elimination of GKt.

5. Strictly Positive Formulas

In this section, as in [17], we introduce strictly positive formulas and show that tense
logics axiomatized by a set of such formulas have cut-free sequent calculi. The fundamental
idea is that each strictly positive formula can be transformed into a structural rule, which is
added to GKt without affecting the cut elimination.

Definition 8 (cf. [17]). The strictly positive formulas (‘sp-formulas’ for short) are defined recursivly
as follows:

SP 3 ψ ::= p | ⊥ | > | (ψ1 ∧ ψ2) | ♦ψ | �ψ

where p ∈ Var and SP are the set of sp-formulas. A sp-axiom is a formula ϕ → ψ, where
ϕ, ψ ∈ SP.

An expression Π[−1] . . . [−n] is called a generalized context if it is built from n posi-
tions −1, . . . ,−n by only structural operators. For Θ1, . . . , Θn ∈ FS , Π[Θ1] . . . [Θn] is the
formula structure arised from Π[−1] . . . [−n] by replacing each −i with Θi for 1 ≤ i ≤ n.

Definition 9. For any sp-formula ψ ∈ SP and var(ψ) = {q1, . . . , qn}, let Πψ[−1] . . . [−n] be the
generalized context arised from ψ by (i) replacing each qi with−i for 1 ≤ i ≤ n, and (ii) replacing each
occurrence of ∧,♦ or � by the comma, ◦ or •, respectively. If var(ψ) = ∅, we obtain Πψ only by (ii).

Let ϕ → χ be a sp-axiom, where var(ϕ) = {q1, . . . , qn} and var(χ) = {p1, . . . , pm}. We
define the structural rule Rϕ,χ as follows:

Π[Ξχ[Θ1] . . . [Θm]]⇒ γ

Π[Ξϕ[Ψ1] . . . [Ψn]]⇒ γ
(Rϕ,β)

where Π[−] is a context, Θ1, . . . , Θm, Ψ1, . . . , Ψn ∈ FS and γ ∈ F .

Many tense logics are axiomatizable by sp-axioms. Table 1 provides some examples of
formulas, the corresponding sp-axioms and structural rules.
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Table 1. Some sp-axioms and structural rules.

Formulas sp-Axioms Structural Rules

�q→ ♦q > → ♦> Θ[◦>]⇒ α

Θ[>]⇒ α

�q→ q q→ ♦q Θ[◦Π]⇒ α

Θ[Π]⇒ α

♦q→ �q �♦q→ q Θ[Π]⇒ α

Θ[• ◦Π]⇒ α

q→ �♦q �q→ ♦q Θ[◦Π]⇒ α

Θ[•Π]⇒ α

�q→ ��q ♦♦q→ ♦q Θ[◦Π]⇒ α

Θ[◦ ◦Π]⇒ α

♦q→ �♦q �♦q→ ♦q Θ[◦Π]⇒ α

Θ[• ◦Π]⇒ α

Let S be a set of sp-axioms and R(S) the set of all rules (Rϕ,ψ), where ϕ → ψ ∈ S.
The tense logic S is Kt ⊕ S, and the sequent calculus GS is the extension of GKt with rules
in R(S). Every sp-axiom in S is a simple Sahlqvist formula (cf. e.g., [2]), and so S is
characterized by the frame class Fr(S).

Theorem 8. For any set of sp-axioms S, GS ` Γ⇒ α iff Fr(S) |= Γ⇒ α.

Proof. The left-to-right direction is obvious since all rules in R(S) preserve validity in
Fr(S). The other direction is shown as the proof of Theorem 4. Note that, if ϕ → ψ ∈ S,
then GS ` ⇒ ϕ→ ψ by the structural rule (Rϕ,ψ).

Let GS∗, GS† and GS‡ be extensions of GK∗t , GK†
t and GK

‡
t with rules R(S), respectively.

Repeating the cut elimination proof provided in Section 4, it follows that these sequent
calculi are equivalent.

Lemma 17. If GS∗ ` Γ⇒ α, then GS ` Γ⇒ α.

Proof. The proof is analogous to Lemma 7.

Theorem 9. GS ` Γ⇒ α iff GS† ` kol(Γ)⇒ kol(α).

Proof. The proof is analogous to Theorem 5. Structural rules in R(S) pass the proof.

Theorem 10. If GS† ` Γ⇒ χ, then GS† ` Γ⇒ χ without any applications of (Mix).

Proof. The proof proceeds as the proof of Theorem 10 by adding cases of rules in R(S).
Suppose the derivation ends with

∆[Ξχ2 [Π1] . . . [Πm]]⇒ α
(Rχ1,χ2 )∆[Ξχ1 [Θ1] . . . [Θh]]⇒ α Σ[α]n ⇒ β

(Mix)
Σ[∆[Ξχ1 [Θ1] . . . [Θh]]

n ⇒ β

By induction hypothesis, the above subtree can be transformed into

∆[Ξχ2 [Π1] . . . [Πm]]⇒ α Σ[α]n ⇒ β
(Mix)

Σ[Ξχ2 [Π1] . . . [Πm]]n ⇒ β
(Rχ1,χ2 )

n

Σ[∆[Ξχ1 [Θ1] . . . [Θh]]
n ⇒ β



Axioms 2023, 12, 620 18 of 19

where (Rχ1,χ2)
n means n times application of (Rχ1,χ2).

Suppose the derivation ends with

∆⇒ α

Θ[Ξχ2 [Π1[α]
n1 . . . Πm[α]nm ]][α]nm+1 ⇒ β

(Rχ1,χ2 )
Θ[Ξχ1 [Θ1[α]

k1 . . . Θj[α]
kj ]][α]kj+1 ⇒ β

(Mix)
Θ[Ξχ1 [Θ1[∆]k1 . . . Θj[∆]

kj ]][∆]kj+1 ⇒ β

By induction hypothesis, the above subtree can be transformed into

∆⇒ α Θ[Ξχ2 [Π1[α]
n1 . . . Πm[α]nm ]][α]nm+1 ⇒ β

(Mix)
Θ[Ξχ2 [Π1[∆]n1 . . . Πm[∆]nm ]][∆]nm+1 ⇒ β

(Rχ1,χ2 )
Θ[Ξχ1 [Θ1[∆]k1 . . . Θj[∆]

kj ]][∆]kj+1 ⇒ β

This completes the proof.

Lemma 18. The following hold in GS∗:

(1) if GS∗ ` Γ[ϕ[¬¬ψ]]⇒ χ, then GS∗ ` Γ[ϕ[ψ]]⇒ χ.
(2) if GS∗ ` Γ⇒ ϕ[¬¬ψ], then GS∗ ` Γ⇒ ϕ[ψ].

Proof. The proof is analogous to Lemma 13. Note that rules in R(S) pass the proof.

Lemma 19. The following hold:

(1) if GS‡ ` Γ⇒ α, then GS∗ ` Γ⇒ α.
(2) if GS∗ ` kol(Γ)⇒ kol(α), then GS∗ ` Γ⇒ α.

Proof. The proofs are quite similar to Lemmas 15 and 16.

Theorem 11. If GS ` Γ⇒ α, then GS∗ ` Γ⇒ α.

Proof. Let GS ` Γ ⇒ α. By Theorem 17, GS† ` kol(Γ) ⇒ kol(α). By Theorem 10, GS‡ `
kol(Γ)⇒ kol(α). By Lemma 19, GS∗ ` kol(Γ)⇒ kol(α), and so GS∗ ` Γ⇒ α.

It follows that GS for each sp-axioms set S admits cut elimination. This provides a
modular result in the study of proof theory for tense logic.

6. Concluding Remarks

The present work generalizes the Gentzen proof theory for intuitionistic tense logics
provided in [17] to classical tense logics. We present a cut-free single-succedent Gentzen
sequent calculus for the minimal tense logic Kt. Then, we show that all sp-axioms can be
transformed into structural rules, which allow obtaining cut-free sequent calculi uniformly.
There are still some questions for further exploration. First, we may consider formulas
that are equivalent to sp-axioms, and describe tense logics axiomatized by these sp-axioms.
Second, we could consider the proof-theoretic approach to the decidability of these tense
logics axiomatized by sp-axioms. Third, the approach provided in the present work can
be explored further for the proof of some results on the finite model property in tense
logics. Finally, the sequent calculi we have developed can be appropriately extended to
multimodal logics.
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