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Abstract: We establish a new fixed point theorem in the setting of convex b-metric spaces that ensures
the existence of fixed point for Cirić contraction with the assumption k < 1

s2 . Also, the fixed point is
approximated by Krasnoselskij iterative procedure. Moreover, we discuss the stability of fixed point
for the aforesaid contraction. As a consequence, we develop a common fixed point and coincidence
point result. Finally, we provide a number of examples to illustrate the findings presented here and
incorporate these findings to solve an initial value problem.
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1. Introduction and Preliminaries

In the field of fixed point theory, the most useful and widely applied fixed point
theorem was proved by Stefan Banach [1] in 1922, where he ensured the existence of fixed
point for a contraction defined on a complete metric space. In the literature, this result is
also known as the Banach contraction principle. Moreover, as this result played a pivotal
role in solving various real-life problems of nonlinear analysis, it has been extended by the
researchers either by weakening the contractive condition or by enlarging the structure
of the ambient space. In 1974, pursuing the former course of action, Cirić [2] weakened
the contractive condition of Banach [1] by defining the notion of quasi contraction (also
called Cirić contraction) and succeeded in obtaining a generalization of not only the Banach
contraction principle but also the Kannan fixed point theorem and Chatterjea fixed point
theorem existing in the literature. On the other hand, in lieu of extending this contraction
principle, the notion of b-metric spaces was introduced by Bakhtin [3] in 1989. One can
refer to [4–8] and references therein to learn more about this space. In the recent years,
Chen et al. [9] introduced the notion of convex b-metric spaces by utilizing the concept of
convex structure of Takahashi [10] in b- metric space which is given as under:

Definition 1 ([9]). Let Ξ 6= φ and s ≥ 1 (a real number). A mapping ρb : Ξ× Ξ→ [0, ∞) is said
to be a b-metric if the following holds for every σ, µ, ξ ∈ Ξ

1. ρb(σ, µ) = 0 iff σ = µ
2. ρb(σ, µ) = ρb(µ, σ)
3. ρb(σ, µ) ≤ s[ρb(σ, ξ) + ρb(ξ, µ)]

Further, a function ∆ : Ξ× Ξ× I → Ξ(where I=[0,1]) is said to have convex structure on Ξ if

ρb(ξ, ∆(σ, µ; α) ≤ αρb(ξ, σ) + (1− α)ρb(ξ, µ) for each ξ, σ, µ ∈ Ξ.

The triplet (Ξ, ρb, ∆) is called a convex b-metric space.
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Additionally, they extended the Mann’s iterative algorithm in convex b-metric space
and employed it to establish the Banach contraction principle in the framework of this
newly introduced space. In 2022, Rathee et al. [11] extended this result by establishing a
fixed point theorem for Cirić contraction which is stated as under:

Theorem 1 ([11]). Suppose Υ : (Ξ, ρb, ∆)→ (Ξ, ρb, ∆) is a quasi-contraction, that is, Υ satisfies

ρb(Υσ, Υµ) ≤ k max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}, (1)

for all σ, µ ∈ Ξ and some k ∈ (0, 1), where (Ξ, ρb, ∆) is a complete convex b-metric space with
s > 1. Let σn = ∆(σn−1, Υσn−1; αn−1) be a sequence defined by choosing an initial point σ0 ∈ Ξ
with the property ρb(σ0, Υσ0) < ∞, where 0 ≤ αn−1 < 1 for each n ∈ N. If k < min

{
1

s2(s+1) , 1
s4

}
and 0 ≤ αn−1 < min

{
1
s2 − (s + 1)k,

1
s4−k
1
s2−k

}
for each n ∈ N, then Υ has a fixed point in Ξ that

is unique.

The main aim of this work is to improve the above theorem by stretching the domain
of constant k from

[
0, 1

s4

)
to
[
0, 1

s2

)
by motivating with the idea of Djafari-Rouhani and

Moradi [12]. Furthermore, the fixed point is approximated by means of Krasnoselskij
iteration, and then, we discuss the stability of the obtained fixed point. Moreover, some
examples are presented to clarify the universality of the proven results over Theorem 1 as
well as over the similar results existing in the literature.The obtained results can be utilized
in various branch of mathematics, such as the theory of differential equation and integral
equation, in numerical methods and in the theory of fractal. For example, we applied the
main result of this paper to the initial value problem (27) and ensured that there is a unique
solution to the given initial value problem. Hence, it can be said that these results can be
helpful for solving real-life problems of nonlinear analysis, which can be formulated in
any of the above-mentioned classes. Besides, as a consequence of main result, we obtained
some coincidence and common fixed point theorem and hence the obtained results play a
crucial role in the further development of fixed point theory.

2. Main Results

We start this section with the following lemma that is required in the sequel to assure
the existence, approximation and stability of fixed point.

Lemma 1. Let Υ : Ξ → Ξ be a self mapping defined on (Ξ, ρb), a complete b-metric space with
parameter s ≥ 1, such that for all σ, µ ∈ Ξ and some κ ∈ [0, 1), it satisfies

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}. (2)

If κ < 1
s2 , then the following statements are equivalent:

1. Υ has a unique fixed point.
2. Υ has approximate fixed point property, i.e., inf{ρb(σ, Υσ); σ ∈ Ξ} = 0.

Proof. (1) =⇒ (2)
Firstly, presume that a unique fixed point of Υ, say σ, exists, i.e., Υσ = σ . Then,

ρb(σ, Υσ) = 0,

=⇒ inf{ρb(σ, Υσ); σ ∈ Ξ} = 0.

Thus, Υ exhibits approximate fixed point property.

(2) =⇒ (1)
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Conversely, presume that Υ exhibits approximate fixed point property, i.e.,
inf{ρb(σ, Υσ); σ ∈ Ξ} = 0. This indicates the existence of 〈σn〉n∈N, a sequence in Ξ
satisfying limn→∞ ρb(σn, Υσn) = 0 and by using (2) and triangle inequality for all m, n ∈ Ξ,
we have,

ρb(Υσn, Υσm) ≤ κ max{ρb(σn, σm), ρb(σn, Υσn), ρb(σm, Υσm),

ρb(σn, Υσm), ρb(σm, Υσn)}
≤ κ max{sρb(σn, Υσn) + sρb(Υσn, σm), ρb(σn, Υσn),

ρb(σm, Υσm), sρb(σn, Υσn) + sρb(Υσn, Υσm),

sρb(σm, Υσm) + sρb(Υσm, Υσn)}
≤ κ max{sρb(σn, Υσn) + s2ρb(Υσn, Υσm)

+s2ρb(Υσm, σm), sρb(σn, Υσn) + sρb(Υσn, Υσm),

sρb(σm, Υσm) + sρb(Υσm, Υσn)}
= κ[sρb(σn, Υσn) + s2ρb(Υσn, Υσm) + s2ρb(Υσm, σm)]

=⇒ (1− κs2)ρb(Υσn, Υσm) ≤ κ[sρb(σn, Υσn) + s2ρb(Υσm, σm)].

Now, since limn→∞ ρb(σn, Υσn) = 0 and κ < 1
s2 , we are left with a Cauchy sequence

〈Υσn〉n∈N as n→ ∞. Also, the space (Ξ, ρb), being complete, proposes the existence of an
element σ ∈ Ξ satisfying limn→∞ Υσn = σ.
Again using triangle inequality

ρb(σn, σ) ≤ s[ρb(σn, Υσn) + ρb(Υσn, σ)].

Taking limit as n→ ∞, we get

lim
n→∞

ρb(σn, σ) = 0 =⇒ σn → σ.

Also, consider

ρb(Υσn, Υσ) ≤ κ max{ρb(σn, σ), ρb(σn, Υσn), ρb(σ, Υσ), ρb(σn, Υσ),

ρb(σ, Υσn)}.

Now taking limit as n→ ∞, we get

1
s

ρb(σ, Υσ) ≤ κ max{0, 0, ρb(σ, Υσ), sρb(σ, Υσ), 0}

= κsρb(σ, Υσ)

=⇒ ρb(σ, Υσ) ≤ κs2ρb(σ, Υσ)

(1− κs2)ρb(σ, Υσ) ≤ 0.

Since κ < 1
s2 , i.e., 1− κs2 < 1, we get

ρb(σ, Υσ) = 0 =⇒ Υσ = σ

and σ ∈ Ξ. Thus Υ has a fixed point in Ξ.
Now, if possible, let us consider two fixed points of Υ, say σ and µ, exist and thus

ρb(σ, µ) 6= 0. By using inequality (2), we get

ρb(σ, µ) = ρb(Υσ, Υµ)

≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}
= κ max{ρb(σ, µ), ρb(σ, σ), ρb(µ, µ), ρb(σ, µ), ρb(µ, σ)}
= κρb(σ, µ)
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which is a contradiction since κ ∈ [0, 1).
=⇒ ρb(σ, µ) = 0 and thus σ = µ, i.e., the fixed point is unique.

Theorem 2. Let Υ : Ξ → Ξ be a self mapping defined on (Ξ, ρb, ∆), a complete convex b-metric
space with parameter s ≥ 2 such that for all σ, µ ∈ Ξ and some κ ∈ [0, 1), it satisfies

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)} (3)

If κ < 1
s2 , then Υ has approximate fixed point property.

Proof. For every σ ∈ Ξ, we have

ρb(Υ
n+1σ, Υnσ) ≤ κ max{ρb(Υ

nσ, Υn−1σ), ρb(Υ
nσ, Υn+1σ),

ρb(Υ
n−1σ, Υnσ), ρb(Υ

nσ, Υnσ), ρb(Υ
n−1σ, Υn+1σ)}

= κ max{ρb(Υ
n−1σ, Υnσ), ρb(Υ

nσ, Υn+1σ),

ρb(Υ
n−1σ, Υn+1σ)}

≤ κ max{ρb(Υ
n−1σ, Υnσ), ρb(Υ

nσ, Υn+1σ),

sρb(Υ
n−1σ, Υnσ) + sρb(Υ

nσ, Υn+1σ)}
= κs[sρb(Υ

n−1σ, Υnσ) + sρb(Υ
nσ, Υn+1σ)]

=⇒ (1− κs)ρb(Υ
n+1σ, Υnσ) ≤ κsρb(Υ

n−1σ, Υnσ)

ρb(Υ
n+1σ, Υnσ) ≤ κs

1− κs
ρb(Υ

n−1σ, Υnσ)

< ρb(Υ
n−1σ, Υnσ),

since κ < 1
s2 . Thus the sequence 〈ρb(Υn+1σ, Υnσ)〉n∈N is non-increasing and for λ ∈ N,

ρb(Υ
λ+1σ, Υλσ) < ρb(Υ

λσ, Υλ−1σ) < · · · < ρb(Υ
2σ, Υσ) < ρb(Υσ, σ).

Now, consider

ρb(Υ
λσ, Υλ+2σ) ≤ κ max{ρb(Υ

λ−1σ, Υλ+1σ), ρb(Υ
λ−1σ, Υλσ), ρb(Υ

λ+1σ, Υλ+2σ),

ρb(Υ
λ−1σ, Υλ+2σ), ρb(Υ

λ+1σ, Υλσ)} (4)

< κ max{ρb(Υ
λ−1σ, Υλ+1σ), ρb(σ, Υσ), ρb(Υ

λ−1σ, Υλ+2σ)}.

Then, the following cases exist:

Case 1. If max{ρb(Υλ−1σ, Υλ+1σ), ρb(σ, Υσ), ρb(Υλ−1σ, Υλ+2σ)} = ρb(Υλ−1σ, Υλ+1σ),
then by using inequality (5), we get

ρb(Υ
λσ, Υλ+2σ) ≤ κρb(Υ

λ−1σ, Υλ+1σ)

≤ κ2ρb(Υ
λ−2σ, Υλσ)

... (5)

≤ κλρb(σ, Υ2σ)

≤ κλs[ρb(σ, Υσ) + ρb(Υσ, Υ2σ)]

< 2κλsρb(σ, Υσ).

Case 2. If max{ρb(Υλ−1σ, Υλ+1σ), ρb(σ, Υσ), ρb(Υλ−1σ, Υλ+2σ)} = ρb(σ, Υσ), then by using
inequality (5), we get

ρb(Υ
λσ, Υλ+2σ) ≤ κρb(σ, Υσ). (6)
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Case 3. If max{ρb(Υλ−1σ, Υλ+1σ), ρb(σ, Υσ), ρb(Υλ−1σ, Υλ+2σ)} = ρb(Υλ−1σ, Υλ+2σ),
then by using inequality (5), we get

ρb(Υ
λσ, Υλ+2σ) ≤ κρb(Υ

λ−1σ, Υλ+2σ)

≤ κs[ρb(Υ
λ−1σ, Υλσ) + ρb(Υ

λσ, Υλ+2σ)]

=⇒ (1− κs)ρb(Υ
λσ, Υλ+2σ) ≤ κsρb(Υ

λ−1σ, Υλσ) (7)

ρb(Υ
λσ, Υλ+2σ) ≤ κs

1− κs
ρb(Υ

λ−1σ, Υλσ)

≤ κs
1− κs

ρb(σ, Υσ).

Therefore, using inequalities (6)–(8), we get

ρb(Υ
λσ, Υλ+2σ) ≤ ηρb(σ, Υσ) (8)

where η = 2κs since

max{2κλs, κ,
κs

1− κs
} ≤ max{2κs, κ,

κs
1− κs

} = max{2κs,
κs

1− κs
} = 2κs = ρ, say,

for κ < 1
2s and κ < 1

s2 ≤ 1
2s for s ≥ 2 here.

We let inf{ρb(σ, Υσ); σ ∈ Ξ} = γ. We need to prove that this γ = 0. For this, let 〈σn〉 be a
sequence such that limn→∞ ρb(σn, Υσn) = γ, i.e., by (8), we have, for every n ∈ N and some
λ(n) ∈ N,

ρb(Υ
λ(n)σn, Υλ(n)+2σn) ≤ ηρb(σn, Υσn). (9)

Now, (Ξ, ρb, ∆) being a complete convex b-metric space, defining ζn =
∆(Υλ(n)+1σn, Υλ(n)+2σn, α) leads to a well defined ζn belonging to Ξ, where α ∈ (0, 1)
and we have,

ρb(ζn, Υζn) ≤ αρb(Υ
λ(n)+1σn, Υζn) + (1− α)ρb(Υ

λ(n)+2σn, Υζn)

≤ κα max{ρb(Υ
λ(n)σn, ζn), ρb(Υ

λ(n)σn, Υλ(n)+1σn), ρb(ζn, Υζn),

ρb(Υ
λ(n)σn, Υζn), ρb(ζn, Υλ(n)+1σn)}

+κ(1− α)max{ρb(Υ
λ(n)+1σn, ζn), ρb(Υ

λ(n)+1σn, Υλ(n)+2σn),

ρb(ζn, Υζn), ρb(Υ
λ(n)+1σn, Υζn), ρb(ζn, Υλ(n)+2σn)}

≤ κα max{ρb(Υ
λ(n)σn, ζn), ρb(σn, Υσn), ρb(ζn, Υζn),

sρb(Υ
λ(n)σn, ζn) + sρb(ζn, Υζn), ρb(ζn, Υλ(n)+1σn)}

+κ(1− α)max{ρb(Υ
λ(n)+1σn, ζn), ρb(σn, Υσn), ρb(ζn, Υζn),

sρb(Υ
λ(n)+1σn, ζn) + sρb(ζn, Υζn), ρb(ζn, Υλ(n)+2σn)}

= κα max{ρb(σn, Υσn), sρb(Υ
λ(n)σn, ζn) + sρb(ζn, Υζn),

ρb(ζn, Υλ(n)+1σn)}+ κ(1− α)max{ρb(σn, Υσn),

sρb(Υ
λ(n)+1σn, ζn) + sρb(ζn, Υζn), ρb(ζn, Υλ(n)+2σn)} (10)

≤ κα max{ρb(σn, Υσn), sαρb(Υ
λ(n)σn, Υλ(n)+1σn)

+s(1− α)ρb(Υ
λ(n)σn, Υλ(n)+2σn) + sρb(ζn, Υζn),

(1− α)ρb(Υ
λ(n)+2σn, Υλ(n)+1σn)}+ κ(1− α)max{ρb(σn, Υσn),

s(1− α)ρb(Υ
λ(n)+1σn, Υλ(n)+2σn) + sρb(ζn, Υζn),

αρb(Υ
λ(n)+1σn, Υλ(n)+2σn)}

≤ κα max{ρb(σn, Υσn), sαρb(σn, Υσn) + s(1− α)ηρb(σn, Υσn)

+sρb(ζn, Υζn), (1− α)ρb(σn, Υσn)}+ κ(1− α)max{ρb(σn, Υσn),

s(1− α)ρb(σn, Υσn) + sρb(ζn, Υζn), αρb(σn, Υσn)}
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= κα max{ρb(σn, Υσn), sαρb(σn, Υσn) + s(1− α)ηρb(σn, Υσn)

+sρb(ζn, Υζn)}+ κ(1− α)max{ρb(σn, Υσn), s(1− α)ρb(σn, Υσn)

+sρb(ζn, Υζn)}.

Now suppose that limn→∞ ρb(ζn, Υζn) = β and using inequality (11), we find that β is
finite. By definition of γ and β, the inequality γ ≤ β holds. We shall now prove that β = 0,
which in turn, shall prove that γ = 0.

For this, take lim sup as n→ ∞ on both sides of inequality (11) and using the inequality
γ ≤ β, we must have,

β ≤ κα max{β, sαβ + s(1− α)ρβ + sβ}+ κ(1− α)max{β, s(1− α)β + sβ}
= κα[sαβ + s(1− α)ρβ + sβ] + κ(1− α)[2sβ− sαβ] (11)

= κ[sα2 + sρα− sα2η + sα + 2s− sα− 2sα + sα2]β

= κ[2sα2 + sρα− sα2η + 2s− 2sα]β.

If possible, suppose that β > 0. Then, by inequality (12), we get

1 ≤ κ[2sα2 + sρα− sα2η + 2s− 2sα]

≤ κs[(ρ− 2)α(1− α) + 2]

< 2κs

=⇒ κ >
1
2s

,

which is a contradiction since κ < 1
s2 ≤ 1

2s , η = 2κs < 2
s ≤ 1 for s ≥ 2 and α, (1− α) ∈ (0, 1)

implying (ρ− 2)α(1− α) < 0.
Thus our supposition is wrong, i.e., β = 0 and, in turn, γ = inf{ρb(σ, Υσ); σ ∈ Ξ} = 0.

Therefore, Υ has approximate fixed point property.

Let Υ : Ξ → Ξ be a self mapping defined on (Ξ, ρb, ∆), a convex b-metric space. We
state the following Lemma to show the relation between the set of fixed points of the self
mappings Υ and Υα : Ξ→ Ξ defined by

Υασ = ∆(σ, Υσ; α), σ ∈ Ξ.

Here, set of fixed points of the mappings Υ and Υα are denoted by Fix(Υ) and Fix(Υα),
respectively.

Lemma 2. Let Υ : Ξ → Ξ be a self mapping defined on (Ξ, ρb, ∆), a convex b-metric space with
parameter s ≥ 1. Define another self mapping Υα : Ξ→ Ξ by

Υασ = ∆(σ, Υσ; α), σ ∈ Ξ.

Then, for any α ∈ [0, 1),
Fix(Υ) = Fix(Υα).

Proof. By definition,
Υασ = ασ + (1− α)Υσ.

If α = 0, then

Υασ = Υσ ∀ σ ∈ Ξ

i.e., Υα = Υ

=⇒ Fix(Υ) = Fix(Υα).
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Now assume that α ∈ (0, 1) and let a fixed point of Υ, say σ∗, exists i.e., σ∗ = Υσ∗ and
therefore,

ρb(σ
∗, Υασ∗) = ρb(σ

∗, ∆(σ∗, Υσ∗; α))

≤ αρb(σ
∗, σ∗) + (1− α)ρb(σ

∗, Υσ∗) = 0

=⇒ σ∗ = Υασ∗

i.e., σ∗ is a fixed point of Υα.
Conversely, suppose that σ∗ is a fixed point of Υα, i.e., ρb(σ

∗, Υασ∗) = 0, then

ρb(σ
∗, ∆(σ∗, Υσ∗; α)) = 0

αρb(σ
∗, σ∗) + (1− α)ρb(σ

∗, Υσ∗) = 0

(1− α)ρb(σ
∗, Υσ∗) = 0.

Since α 6= 1, this implies that ρb(σ
∗, Υσ∗) = 0, i.e., Υσ∗ = σ∗. Therefore σ∗ is a fixed

point of Υ.

Lemma 1 and Theorem 2 imply the following result, extending the Cirić fixed point
theorem in the case of Convex b-metric spaces by Rathee et al. [11].

Theorem 3. Let Υ : Ξ → Ξ be a self mapping defined on (Ξ, ρb, ∆), a complete convex b-metric
space with parameter s ≥ 2 such that for all σ, µ ∈ Ξ and some κ ∈ [0, 1), it satisfies

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)} (12)

If κ < 1
s2 , then

1. A fixed point of Υ, say σ, exists that is unique.
2. The sequence 〈σn〉n∈N converges to σ for any σ0 ∈ Ξ that is obtained from the iterative

procedure
σn+1 = ∆(σn, Υσn; α); n ≥ 0.

3. The error estimate
1
s

ρb(σn+i−1, σ) ≤ δi

1− δ
ρb(σn, σn−1)

holds for n = 1, 2, · · · ; i = 1, 2, · · · .

Proof. 1. With the given conditions, by Theorem 2, we arrive at the conclusion that Υ
has approximate fixed point property. By Lemma 1, a fixed point of Υ, say σ, exists
that is unique.

2. We observe that Krasnoselskij iterative procedure is nothing but the Picard iteration
associated with Υα and defined by σn+1 = ∆(σn, Υσn; α), i.e.,

σn+1 = Υασn; n ≥ 0.

Now, in inequality (12), taking σ = σn and µ = σn−1, we get

ρb(σn+1, σn) ≤ κ max{ρb(σn, σn−1), ρb(σn, σn+1), ρb(σn−1, σn),

ρb(σn, σn), ρb(σn−1, σn+1)}
≤ κ max{ρb(σn, σn−1), ρb(σn, σn+1), sρb(σn−1, σn)

+sρb(σn, σn+1)}
= κs[ρb(σn−1, σn) + ρb(σn, σn+1)].
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This implies

ρb(σn+1, σn) ≤
κs

1− κs
ρb(σn, σn−1)

≤ κs2ρb(σn, σn−1)

= δρb(σn, σn−1), say, κs2 = δ

≤ δ(δρb(σn−1, σn−2)) (13)

= δ2ρb(σn−1, σn−2)

...

≤ δnρb(σ1, σ0)

As δ ∈ [0, 1), we have
lim

n→∞
ρb(σn+1, σn) = 0. (14)

We shall now verify that the sequence 〈σn〉n∈N is Cauchy. For this, consider the points
σ and µ as σn+k and σn, respectively, in inequality (12).

ρb(σn+k+1, σn+1) ≤ κ max{ρb(σn+k, σn), ρb(σn+k, σn+k+1),

ρb(σn, σn+1), ρb(σn+k, σn+1), ρb(σn, σn+k+1)}
≤ κ max{sρb(σn+k, σn+k+1) + sρb(σn+k+1, σn),

ρb(σn+k, σn+k+1), ρb(σn, σn+1), sρb(σn+k, σn+k+1)

+sρb(σn+k+1, σn+1), sρb(σn, σn+1) + sρb(σn+1, σn+k+1)}
≤ κ max{sρb(σn+k, σn+k+1) + s2ρb(σn+k+1, σn+1)

+s2ρb(σn+1, σn), sρb(σn+k, σn+k+1) + sρb(σn+k+1, σn+1),

sρb(σn, σn+1) + sρb(σn+1, σn+k+1)}
= κ[sρb(σn+k, σn+k+1) + s2ρb(σn+k+1, σn+1)

+s2ρb(σn+1, σn)].

This implies

(1− κs2)ρb(σn+k+1, σn+1) ≤ κsρb(σn+k, σn+k+1) + κs2ρb(σn+1, σn)

< κs2ρb(σn+k, σn+k+1) + κs2ρb(σn+1, σn)

=⇒ (1− δ)ρb(σn+k+1, σn+1) ≤ δ[ρb(σn+k, σn+k+1) + ρb(σn+1, σn)] (15)

and ρb(σn+k+1, σn+1) ≤
δ

1− δ
[ρb(σn+k, σn+k+1) + ρb(σn+1, σn)].

In inequality (16), taking limit as n→ ∞ and using condition (14), we get,

lim
n→∞

ρb(σn+k+1, σn+k) = 0.

This shows that the aforementioned sequence 〈σn〉n∈N is Cauchy and owing to
completeness of the space (Ξ, ρb, ∆), converges to some point, say µ. Now, consider
the inequality (14),

ρb(σn+1, σn) ≤ δnρb(σ1, σ0)

=⇒ ρb(Υασn, σn) ≤ δnρb(σ1, σ0).

Now taking limit as n→ ∞, we get,

1
s

ρb(Υαµ, µ) = 0

=⇒ ρb(Υαµ, µ) = 0.
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Thus, Υαµ = µ, and therefore µ is a fixed point of Υα. But by using Lemma 2, we must
have

Fix(Υ) = Fix(Υα),

and Fix(Υ) = {σ}, i.e., Fixed point of Υ is σ, which is unique.
So, µ = σ and thus 〈σn〉n∈N obtained from the above iteration converges to σ.

3. Using inequalities (16) and (14), we have

ρb(σn+m, σn) ≤
δ

1− δ
[ρb(σn+m−1, σn+m) + ρb(σn, σn−1)]

≤ δ

1− δ
[δn+m−1ρb(σ1, σ0) + δn−1ρb(σ1, σ0)]

=
δn(δm + 1)

1− δ
ρb(σ1, σ0).

Now letting m→ ∞, we get,

1
s

ρb(σ, σn) ≤
δn

1− δ
ρb(σ1, σ0) (16)

and

ρb(σn+m, σn) ≤
δ

1− δ
[ρb(σn+m−1, σn+m) + ρb(σn, σn−1)]

≤ δ

1− δ
[δm−1ρb(σn−1, σn) + ρb(σn, σn−1)]

=
δ(δm−1 + 1)

1− δ
ρb(σn−1, σn).

Now letting m→ ∞, we get,

1
s

ρb(σ, σn) ≤
δ

1− δ
ρb(σn−1, σn). (17)

Thus, we get the following error estimate after merging inequalities (16) and (17),

1
s

ρb(σn+i−1, σ) ≤ δi

1− δ
ρb(σn, σn−1).

The following example illustrates the importance of the above theorem.

Example 1. Let the set of non-negative real numbers be Ξ = R+
0 and ρb(σ, µ) = (σ− µ)2 for all

σ, µ ∈ Ξ. Here, we perceive that

1. ρb(σ, µ) ≥ 0 for all σ, µ ∈ Ξ;
2. ρb(σ, µ) = 0 ⇐⇒ σ = µ;
3. ρb(σ, µ) = ρb(µ, σ);
4. ρb(σ, µ) ≤ 2[ρb(σ, ξ) + ρb(ξ, µ)], ξ ∈ Ξ as

ρb(σ, µ) = (σ− µ)2

= [(σ− ξ) + (ξ − µ)]2

≤ 2
[(

(σ− ξ)2 + (ξ − µ)2
)]

= 2[ρb(σ, ξ) + ρb(ξ, µ)].
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We define the convex structure ∆ : Ξ× Ξ× [0, 1]→ Ξ as

∆(σ, µ; α) = ασ + (1− α)µ,

for any σ, µ ∈ Ξ and α ∈ [0, 1]. As a consequence,

ρb(ξ, ∆(σ, µ; α)) = (ξ − (ασ + (1− α)µ))2

≤ (α|ξ − σ|+ (1− α)|ξ − µ|)2

≤ α2(ξ − σ)2 + (1− α)2(ξ − µ)2 + 2α(1− α)|ξ − σ| · |ξ − µ|
≤ α2(ξ − σ)2 + (1− α)2(ξ − µ)2 + α(1− α)((ξ − σ)2 + (ξ − µ)2)

= α(ξ − σ)2 + (1− α)(ξ − µ)2

= αρb(ξ, σ) + (1− α)ρb(ξ, µ).

Thus, for s ≥ 2, (Ξ, ρb, ∆) is a convex b-metric space . However, the metric triangle inequality
is not satisfied by ρb, for example,

ρb(1, 5) = 16 > ρb(1, 3) + ρb(3, 5) = 8.

Therefore, (Ξ, ρb) is not a metric space and hence it is not a convex metric space.
Let the mapping Υ : Ξ→ Ξ be defined as

Υ(σ) =


σ√
5

, σ ∈ Λ = [0, 1)
σ√
7

, σ ∈ Σ = [1, ∞).

Thereafter, to prove that Υ satisfies inequality (2), the following four cases exist:

1. If both σ, µ ∈ Λ, then

ρb(Υσ, Υµ) = (Υσ− Υµ)2

=

(
σ√
5
− µ√

5

)2

=
1
5
(σ− µ)2

=
1
5

ρb(σ, µ).

2. If σ ∈ Λ and µ ∈ Σ, then

ρb(Υσ, Υµ) = (Tσ− Tµ)2

=

(
σ√
5
− µ√

7

)2

=
1
5

(
σ−

√
5
7

µ

)2

≤ 1
5

(
σ− 1√

7
µ

)2

=
1
5

ρb(σ, Υµ).

3. If σ ∈ Σ and µ ∈ Λ, then as in the former case, we get

ρb(Υσ, Υµ) ≤ 1
5

ρb(µ, Υσ).
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4. If both σ, µ ∈ Σ = [1, ∞)

ρb(Υσ, Υµ) = (Υσ− Υµ)2

=

(
σ√
7
− µ√

7

)2

=
1
7
(σ− µ)2

<
1
5
(σ− µ)2

=
1
5

ρb(σ, µ).

which infers that for all σ, µ ∈ Ξ

ρb(Υσ, Υµ) ≤ 1
5

max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}.

Therefore, for k = 1
5 < 1

s2 , Υ satisfies the inequality (6).
Next, we choose σ0 as an initial point in Ξ and generate the sequence by Krasnoselskij’s

iteration σn = Υασn−1 =∆(σn−1, Υσn−1; α) with 0 < α = 3
4 < 1. There are two possibilities

for σ0:

1. If σ0 < 1, then

Υσ0 =
σ0√

5

σ1 = Υασ0 =
3
4

σ0 +
1
4

Υσ0 =

(
3
4
+

1
4
√

5

)
σ0

σ2 = Υασ1 =
3
4

σ1 +
1
4

σ1 =

(
3
4
+

1
4
√

5

)2
σ0

...

σn = Υασn−1 =
3
4

σn−1 +
1
4

Υσn−1 =

(
3
4
+

1
4
√

5

)n
σ0.

Certainly, σn → 0 as n→ ∞.
2. If σ0 ≥ 1, then

Υσ0 =
σ0√

7

σ1 = Υασ0 =
3
4

σ0 +
1
4

Tσ0 =

(
3
4
+

1
4
√

7

)
σ0.

If σ1 ∈ Λ, as n→ ∞, σn → 0 as in the former case. If σ1 ∈ Σ = [1, ∞), then σ2
σ1

= 3
4 + 1

4 ·
Υσ1
σ1

= 3
4 + 1

4
√

7
. Continuing in comparable manner, we presume that σn−1 ∈ Σ = [1, ∞)

yielding
σn

σn−1
=

3
4
+

1
4
· Υσn−1

σn−1
=

3
4
+

1
4
√

7
,

and
σn

σ0
=

σ1

σ0
· σ2

σ1
· · · σn

σn−1
=

(
3
4
+

1
4
√

7

)n
,

and hence limn→∞ σn = 0.
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Now, if σ0 < 1, consider

ρb(σn, Υσn) = (σn − Υσn)
2

=

[(
3
4
+

1
4
√

5

)n
σ0 −

(
3
4
+

1
4
√

5

)n+1
σ0

]2

=
1

16

(
3
4
+

1
4
√

5

)2n(
1− 1√

5

)2
σ2

0 .

Clearly,
lim

n→∞
ρb(σn, Υσn) = 0. (18)

Also, if σ0 ≥ 1, then

ρb(σn, Υσn) = (σn − Υσn)
2

=

[(
3
4
+

1
4
√

7

)n
σ0 −

(
3
4
+

1
4
√

7

)n+1
σ0

]2

=
1

16

(
3
4
+

1
4
√

7

)2n(
1− 1√

7

)2
σ2

0 .

Clearly,
lim

n→∞
ρb(σn, Υσn) = 0. (19)

Thus, from (18) and (19), we get

inf{ρb(σ, Υσ); σ ∈ Ξ} = 0.

Thus, Υ has approximate fixed point property and, hence, a unique fixed point exists which is
equal to the limit of sequence obtained by applying Mann’s iteration, i.e., 0.

Remark 1. If we take σ = 0 and µ = 1
2 , then Υσ = 0 and Υµ = 1

5
√

2
which yields

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ, ρb(µ, Υσ))}
1

20
= κ max

{
1
4

, 0,
6− 2

√
5

20
,

1
20

,
1
4

}
(20)

=⇒ 1
20

≤ κ

4

which is true for all κ ≥ 1
5 < 1

s2 and κ ≥ 1
5 > 1

s4 and therefore, Theorem 2 of Rathee et al. [11] does
not guarantee the existence and uniqueness of a fixed point in this scenario. Thus, results provided
by Theorem 3 extend the Cirić fixed point theorem proved by Rathee et al. [11].

Theorem 4. Let Π : Ξ→ Ξ be a self mapping defined on (Ξ, ρb, ∆), a complete convex b-metric
space with parameter s ≥ 2 such that a natural cardinal N exists for all σ, µ ∈ Ξ and some
κ ∈ [0, 1), it satisfies

ρb(Π
Nσ, ΠNµ) ≤ κ max{ρb(σ, µ), ρb(σ, ΠNσ), ρb(µ, ΠNµ), ρb(σ, ΠNµ),

ρb(µ, ΠNσ)} (21)

If κ < 1
s2 , then

1. A unique fixed point of Π, say σ exists that is unique.
2. The sequence 〈σn〉n∈N obtained from the iterative procedure

σn+1 = ∆(σn, ΠNσn; α); n ≥ 0
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converges to σ for any σ0 ∈ Ξ.

Proof. 1. Applying Theorem 3 for the mapping Υ = ΠN , we obtain that ΠN has a
unique fixed point, say σ. Also, we have

ΠN(Π(σ)) = ΠN+1(σ) = Π(ΠN(σ)) = Π(σ).

This shows that Π(σ) is a fixed point of ΠN . However, there is a unique fixed point of
ΠN , σ. This implies that Π(σ) = σ and thus, Π has a unique fixed point, σ.

2. Applying Theorem 3,we observe that the sequence 〈σn〉n∈N obtained from the iterative
procedure

σn+1 = ∆(σn, ΠNσn; α); n ≥ 0

converges to σ for any σ0 ∈ Ξ.

As far as approximation of fixed points is concerned, we prove that the convergence
of every orbit of self mapping Υ is to its unique fixed point that too for κ < 1

s2 , even in the
case of any complete b-metric space.

Theorem 5. Let Υ : Ξ→ Ξ be a self mapping defined on a complete b-metric space (Ξ, ρb) with
parameter s ≥ 2 such that for all σ, µ ∈ Ξ and some κ ∈ [0, 1), it satisfies

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)} (22)

Then, if κ < 1
s2 , a fixed point of Υ exists that is unique. Besides, the sequence 〈Υnσ0〉n∈N of

Picard iterates, for each σ0 ∈ Ξ, converges to this fixed point.

Proof. Let the sequence 〈σn〉n∈N be defined by

σn+1 = Υσn = Υnσ0,

where σ0 is arbitrary in Ξ.
Preserving generality, assume that, for every n ∈ N, σn+1 6= σn , as the result holds

trivially if σn+1 = σn.
Now, we have

ρb(σn+1, σn) ≤ κ max{ρb(σn, σn−1), ρb(σn, σn+1), ρb(σn−1, σn),

ρb(σn, σn), ρb(σn−1, σn+1)}
≤ κ max{ρb(σn, σn−1), ρb(σn, σn+1), sρb(σn−1, σn)

+sρb(σn, σn+1)}
= κs[ρb(σn−1, σn) + ρb(σn, σn+1)].

This implies

ρb(σn+1, σn) ≤
κs

1− κs
ρb(σn, σn−1)

≤ κs2ρb(σn, σn−1)

= δρb(σn, σn−1), say, κs2 = δ

≤ δ2ρb(σn−1, σn−2)

...

≤ δnρb(σ1, σ0).

This shows that the aforementioned sequence 〈σn〉n∈N is Cauchy and owing to
completeness of the space, is convergent too. Let σ be its limit.
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Consider now

ρb(σn+1, Υσ) ≤ κ max{ρb(σn, σ), ρb(σn, σn+1), ρb(σ, Υσ), ρb(σn, Υσ), ρb(σ, σn+1)}

Taking limit as n→ ∞, we get

1
s

ρb(σ, Υσ) ≤ κ max{0, 0, ρb(σ, Υσ), sρb(σ, Υσ), 0}

= κsρb(σ, Υσ)

=⇒ ρb(σ, Υσ) ≤ κs2ρb(σ, Υσ)

< ρb(σ, Υσ)

since κ < 1
s2 .

Thus, ρb(σ, Υσ) = 0, i.e., Υσ = σ and this proves that Υ has a fixed point σ.
For uniqueness, let us suppose that Υ has two distinct fixed points, say σ and µ, such

that ρb(σ, µ) 6= 0, then

ρb(σ, µ) = ρb(Υσ, Υµ)

≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}
= κ max{ρb(σ, µ), 0, 0, ρb(σ, µ), ρb(σ, µ)}
= κρb(σ, µ) (23)

which is a contradiction since κ ∈ [0, 1). Thus, the fixed point so obtained is unique.

Example 2. The pair (Ξ, ρb), in Example 1, makes a complete b-metric space. If we take the
sequence of Picard iterates , then

1. for σ0 < 1, we have

σ1 = Υσ0 =

(
1√
5

)
σ0

σ2 = Υ2σ0 =

(
1√
5

)2
σ0

...

σn = Υnσ0 =

(
1√
5

)n
σ0,

2. and for σ0 ≥ 1, we have

σ1 = Υσ0 =

(
1√
7

)
σ0

If σ1 ∈ [0, 1), then the sequence can be evaluated as in the above case. If σ1 ∈ Σ = [1, ∞),
then σ2

σ1
=
(

1√
7

)
. Continuing in a comparable manner, presume that σn−1 ∈ Σ = [1, ∞),

yielding
σn

σn−1
=

(
1√
7

)
,

and
σn

σ0
=

σ1

σ0
· σ2

σ1
· · · σn

σn−1
=

(
1√
7

)n
.

Hence limn→∞ σn = 0 for both the cases. Therefore, the sequence of Picard iterates converge
to fixed point 0.
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3. Stability of Fixed Point

This section is concerned with the stability results for fixed points of mappings
satisfying the Cirić contraction.

Definition 2. Let 〈Υn〉n∈N be a sequence of self mapping defined on a convex b-metric space.
Then stability is nothing but a relation between the convergence of the sequence 〈Υn〉n∈N and their
fixed points.

Theorem 6. Let (Ξ, ρb) be a complete b-metric space with parameters ≥ 1 and suppose 〈Υn〉n∈N
be a sequence of self mappings Υn : Ξ → Ξ such that for all σ, µ ∈ Ξ; n ∈ N and κn ∈ [0, 1),
it satisfies

ρb(Υnσ, Υnµ) ≤ κn max{ρb(σ, µ), ρb(σ, Υnσ), ρb(µ, Υnµ), ρb(σ, Υnµ), ρb(µ, Υnσ)}

Also, let Υ : Ξ→ Ξ be a self mapping satisfying

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}

for all n ∈ N and σ, µ ∈ Ξ, where κ ∈ [0, 1). Let Υ has a fixed point ζ and for every n, ζn be the
fixed points of Υn. Presuming Υn → Υ pointwise and κn → κ, then ζn → ζ if κ, κn < 1

s2 .

Proof. For every n ∈ N, we have

ρb(ζ, ζn) ≤ s[ρb(ζ, Υnζ) + ρb(Υnζ, ζn)]

≤ s[ρb(ζ, Υnζ) + ρb(Υnζ, Υnζn)]

≤ s[ρb(ζ, Υnζ) + κn max{ρb(ζ, ζn), ρb(ζ, Υnζ), ρb(ζn, Υnζn),

ρb(ζ, Υnζn), ρb(ζn, Υnζ)}]
= s[ρb(ζ, Υnζ) + κn max{ρb(ζ, ζn), ρb(ζ, Υnζ), ρb(ζ, ζn),

ρb(ζn, Υnζ)}]
= s[ρb(ζ, Υnζ) + κn max{ρb(ζ, ζn), ρb(ζ, Υnζ), ρb(ζn, Υnζ)}]
≤ s[ρb(ζ, Υnζ) + κn max{ρb(ζ, ζn), ρb(ζ, Υnζ), sρb(ζn, ζ)

+sρb(ζ, Υnζ)}]
= s[ρb(ζ, Υnζ) + κns[ρb(ζn, ζ) + ρb(ζ, Υnζ)]]

= κns2ρb(ζn, ζ) + (κns2 + s)ρb(ζ, Υnζ).

This implies

(1− κns2)ρb(ζn, ζ) ≤ (κns2 + s)ρb(ζ, Υnζ).

Taking limit as n→ ∞, we get

lim
n→∞

(1− κns2)ρb(ζn, ζ) ≤ lim
n→∞

s(κns + 1)ρb(ζ, Υnζ)

(1− κs2) lim
n→∞

ρb(ζn, ζ) ≤ s2(κs + 1)ρb(ζ, Υζ) = 0

=⇒ lim
n→∞

ρb(ζn, ζ) = 0 as κ <
1
s2

i.e., ζn → ζ.

Theorem 6 can also be restated as
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Theorem 7. Let a sequence 〈Υn〉n∈N of self mappings Υn : Ξ → Ξ be defined on a complete
b-metric space (Ξ, ρb) with s ≥ 1 having fixed points ζn and for all σ, µ ∈ Ξ; n ∈ N, satisfying

ρb(Υnσ, Υnµ) ≤ κn max{ρb(σ, µ), ρb(σ, Υnσ), ρb(µ, Υnµ), ρb(σ, Υnµ), ρb(µ, Υnσ)},

where κn < 1
s2 and κn ∈ [0, 1). Also for all σ, µ ∈ Ξ, presume a self mapping Υ : Ξ→ Ξ satisfying

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}

where κ < 1
s2 and κ ∈ [0, 1). If Υn → Υ pointwise and κn → κ, then 〈ζn〉n∈N is convergent if Υ

has a fixed point ζ and in that case, ζn → ζ as n→ ∞.

Proof. We presume that a fixed point ζ of map Υ exists i.e., ζ = Υζ.
Now as proved in Theorem 6, ρb(ζn, ζ) → 0 as n → ∞, i.e., 〈ζn〉n∈N is convergent

sequence and ζn → ζ as n→ ∞.

Theorem 8. Let a sequence 〈Υn〉n∈N of self mappings Υn : Ξ → Ξ be defined on a complete
b-metric space (Ξ, ρb) with s ≥ 1 having fixed points ζn and for all σ, µ ∈ Ξ; n ∈ N, satisfying

ρb(Υnσ, Υnµ) ≤ κn max{ρb(σ, µ), ρb(σ, Υnσ), ρb(µ, Υnµ), ρb(σ, Υnµ), ρb(µ, Υnσ)}

where κn < 1
s2 and κn ∈ [0, 1). Also, for all σ, µ ∈ Ξ, presume a self mapping Υ : Ξ → Ξ

satisfying

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}

where κ < 1
s2 and κ ∈ [0, 1). If Υn → Υ pointwise and κn → κ, then a fixed point of Υ, say ζ,

exists if 〈ζn〉n∈N is convergent and in that case, ζn → ζ as n→ ∞.

Proof. Presume that 〈ζn〉n∈N is convergent and ζn → ζ as n→ ∞. Then,

ρb(Υnζ, ζn) = ρb(Υnζ, Υnζn)

≤ κn max{ρb(ζ, ζn), ρb(ζ, Υnζ), ρb(ζn, Υnζn), ρb(ζ, Υnζn), ρb(ζn, Υnζ)}
= κn max{ρb(ζ, ζn), ρb(ζ, Υnζ), ρb(ζn, ζn), ρb(ζ, ζn), ρb(ζn, Υnζ)}
= κn max{ρb(ζ, ζn), ρb(ζ, Υnζ), ρb(ζn, Υnζ)}.

Now taking limit as n→ ∞

1
s

ρb(Υζ, ζ) ≤ κ max{0, sρb(ζ, Υζ), sρb(ζ, Υζ)}

=⇒ ρb(ζ, Υζ) ≤ κs2sρb(ζ, Υζ)

(1− κs2)ρb(ζ, Υζ) ≤ 0

=⇒ ρb(ζ, Υζ) = 0 as κ <
1
s2 .

Thus, Υζ = ζ.

Therefore, a fixed point ζ of map Υ exists.

Theorem 7 and 8 can be combined to get the subsequent outcome:

Theorem 9. Let a sequence 〈Υn〉n∈N of self mappings Υn : Ξ → Ξ be defined on a complete
b-metric space (Ξ, ρb) with s ≥ 1 having fixed points ζn and for all σ, µ ∈ Ξ; n ∈ N, satisfying

ρb(Υnσ, Υnµ) ≤ κn max{ρb(σ, µ), ρb(σ, Υnσ), ρb(µ, Υnµ), ρb(σ, Υnµ), ρb(µ, Υnσ)}
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where κn < 1
s2 and κn ∈ [0, 1). Also, let Υ : Ξ → Ξ be a self mapping and for all σ, µ ∈ Ξ,

satisfying

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}

where κ < 1
s2 and κ ∈ [0, 1). If Υn → Υ pointwise and κn → κ, then a fixed point of Υ, say ζ,

exists if and only if 〈ζn〉n∈N is convergent and in that case, ζn → ζ as n→ ∞.

By virtue of fixed points of sequence of self-mappings 〈Υn〉n∈N; Υn : Ξ→ Ξ defined
on a complete metric space (Ξ, ρb) and satisfying Círic contractive condition, we provide an
approximation result for fixed points of self-mapping Υ : Ξ→ Ξ satisfying Círic contractive
condition where Υn → Υ pointwise.

Corollary 1. Let a self mapping Υ : Ξ→ Ξ be defined on (Ξ, ρb, ∆), a complete convex b-metric
space with s ≥ 1, such that for all σ, µ ∈ Ξ and κ ∈ [0, 1), it satisfies

ρb(Υσ, Υµ) ≤ κ max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}, (24)

where κ < 1
s2 . Also suppose that a sequence 〈Υn〉n∈N of self mappings Υn : Ξ→ Ξ exists and for

all σ, µ ∈ Ξ, it satisfies

ρb(Υnσ, Υnµ) ≤ κn max{ρb(σ, µ), ρb(σ, Υnσ), ρb(µ, Υnµ), ρb(σ, Υnµ), ρb(µ, Υnσ)},

where 〈κn〉n∈N is a sequence such that ∀ n ∈ N, κn < 1
s2 ∈ [0, 1). Presume Υn → Υ pointwise

and κn → κ. Then, the sequence of fixed points 〈ζn〉n∈N of mappings Υn is convergent and its limit
is the fixed point ζ of Υ.

Proof. By Theorem 3, Υ has a fixed point ζ which is unique.
By Theorem 5, Υn have fixed points ζn which are unique for all n ∈ N.
Finally, by Theorem 9, ζn → ζ.

Example 3. In Example 1, we consider the sequence 〈Υn〉n∈N of self mappings Υn : Ξ → Ξ
such that

Υn(σ) =


1

25n + σ√
5

, σ ∈ Λ = [0, 1)
1

26n + σ√
7

, σ ∈ Σ = [1, ∞).

Thereafter, to prove that Υn satisfies the inequality (24), the following four cases exist:

1. If both σ, µ ∈ Λ, then

ρb(Υnσ, Υnµ) = (Υnσ− Υnµ)2

=

(
1

25n
+

σ√
5
− 1

25n
− µ√

5

)2

=
1
5
(σ− µ)2

=
1
5

ρb(σ, µ)

<

(
1
5
+

1
25n

)
ρb(σ, µ).

2. If σ ∈ Λ and µ ∈ Σ, then

ρb(Υnσ, Υnµ) = (Υnσ− Υnµ)2

=

(
1

25n
+

σ√
5
− 1

26n
− µ√

7

)2
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<

(
1

25n
+

σ√
5
− µ√

7

)2

=

(
µ√
7
− 1

25n
− σ√

5

)2

=
1
7

(
µ−
√

7
25n
−
√

7
5

σ

)2

≤ 1
7

(
µ− 1

25n
− σ√

5

)2

=
1
7
(µ− Υnσ)2

=
1
7

ρb(µ, Υnσ)

<

(
1
5
+

1
25n

)
ρb(µ, Υnσ)

3. If σ ∈ Σ and µ ∈ Λ, then as in the former case, we get

ρb(Υnσ, Υnµ) ≤
(

1
5
+

1
25n

)
ρb(σ, Υnµ).

4. If both σ, µ ∈ Σ

ρb(Υnσ, Υnµ) = (Υnσ− Υnµ)2

=

(
1

26n
σ√
7
− 1

26n
− µ√

7

)2

=
1
7
(σ− µ)2

<
1
5
(σ− µ)2

<

(
1
5
+

1
25n

)
ρb(σ, µ).

which infers that for all σ, µ ∈ Ξ,

ρb(Υnσ, Υnµ) ≤
(

1
5
+

1
25n

)
max{ρb(σ, µ), ρb(σ, Υnσ), ρb(µ, Υnµ), ρb(σ, Υnµ),

ρb(µ, Υnσ)}.

Therefore, for k = 1
5 + 1

25n < 1
s2 , Υn satisfies the inequality (24).

We observe that Υn → Υ pointwise and κn → κ. Also, the sequence of fixed points of Υn given
by 〈 1

5
√

5(
√

5−1)n
〉n∈N is convergent and this sequence converges to 0 which is the fixed point of self

mapping Υ.

4. Consequence

Presume self mappings Υ and I : Ξ → Ξ defined on a non-empty set Ξ. For the
mappings Υ and I, a point σ ∈ Ξ for which Υσ = Iσ (σ = Υσ = Iσ) is termed a
coincidence point (common fixed point). Moreover, if the mappings Υ and I commute at
every coincidence point, then the mappings Υ and I are termed weakly compatible.

Lemma 3. Let Ξ be a nonempty set and Υ : Ξ→ Ξ be a self mapping defined on it. Then a subset
of Ξ, say Θ, exists such that the mapping Υ : Θ→ Ξ is one-to-one and Υ(Θ) = Υ(Ξ).



Axioms 2023, 12, 646 19 of 23

Subsequently, a common fixed point theorem is obtained in continuation of the primary
results established in the former section.

Theorem 10. Let Υ and I : Ξ→ Ξ be self mappings defined on a convex b-metric space (Ξ, ρb, ∆)
with parameter s ≥ 2 such that for all σ, µ ∈ Ξ and κ < 1, they satisfy

bm(Υσ, Υµ) ≤ κ max{ρb(Iσ, Iµ), ρb(Iσ, Υσ), ρb(Iµ, Υµ), ρb(Iσ, Υµ), ρb(Iµ, Υσ)}. (25)

If κ < 1
s2 , I(Ξ) is complete and Υ(Ξ) ⊆ I(Ξ) then a unique coincidence point of mappings Υ

and I exists . Besides, if Υ and I are weakly compatible mappings, then a common fixed point of
these mappings exists that is unique.

Proof. By lemma 3, a subset of Ξ, say Θ, exists such that the mapping I : Θ → Ξ is
one-to-one and I(Θ) = I(Ξ). Further, let π : I(Θ)→ I(Θ) be another self mapping defined
by π(Iσ) = Υσ. Then, since the mapping I is one-to-one, π is clearly well defined. Thus,
for all Iσ, Iµ ∈ I(Θ) = I(Ξ), we arrive that

ρb(π(Iσ), π(Iµ)) = ρb(Υσ, Υµ)

≤ κ max{ρb(Iσ, Iµ), ρb(Iσ, Υσ), ρb(Iµ, Υµ), ρb(Iσ, Υµ), ρb(Iµ, Υσ)}
= κ max{ρb(Iσ, Iµ), ρb(Iσ, π(Iσ)), ρb(Iµ, π(Iµ)), ρb(Iσ, π(Iµ)), ρb(Iµ, π(Iσ))}.

As κ < 1 with κ < 1
s2 , then π is a Cirić contraction on I(Ξ). Besides, a unique point

σ∗ ∈ Π ⊆ Ξ exists on account of Theorem 3 since I(Ξ) is complete yielding p(Iσ∗) = Iσ∗

implying Iσ∗ = Υσ∗. Thus, a coincidence point σ∗ of mappings Υ and I exists that
is unique.

Let ζ = Iσ∗ = Υσ∗. Furthermore, let Υ and I be weakly compatible mappings
following Υζ = ΥIσ∗ = IΥσ∗ = Iζ. As a result,

ρb(Υζ, ζ) = ρb(Υζ, Υσ∗)

≤ κ max{ρb(Iζ, Iσ∗), ρb(Iζ, Υζ), ρb(Iσ∗, Υσ∗), ρb(Iζ, Υσ∗), ρb(Iσ∗, Υζ)} (26)

= κρb(Υζ, ζ),

which is true for κ ∈ [0, 1) if ζ = Υζ = Iζ and hence a common fixed point ζ of mappings
Υ and I exists that is unique.

5. Application to Initial Value Problem

In this section, the existence of unique solution to an Initial Value Problem containing
a differential equation of second order with two initial conditions is discussed.

d2µ(τ)

dτ2 + φ(τ)
dµ(τ)

dτ
+ ψ(τ)µ(τ) = θ(τ),

with µ(β) = c1

and
dµ(β)

dτ
= c2,

 (27)

where φ(τ), ψ(τ), θ(τ) and µ(τ) are continuous functions in [β, δ] and φ(τ) is differentiable
in [β, δ].

First we shall convert this Initial Value Problem (27) into Voltera Integral Equation of
the second kind.

Lemma 4. The Initial Value Problem (27) is equivalent to Voltera Integral Equation of the
second kind

µ(τ) = Φ(τ) +
∫ τ

β
Ψ(τ, γ, µ(γ)) dγ,
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where Φ(τ) is continuous and Ψ : [β, δ]× [β, δ]×R→ R.

Proof. Integrating first equation of (27) from β to τ and using remaining two initial
conditions, we have,

dµ(τ)

dτ
− dµ(β)

dτ
+ |φ(γ)µ(γ)|τβ −

∫ τ

β

dφ(γ)

dγ
µ(γ) dγ +

∫ τ

β
ψ(γ)µ(γ) dγ =

∫ τ

β
θ(γ) dγ

dµ(τ)

dτ
− c2 + φ(τ)µ(τ)− φ(β)µ(β) +

∫ τ

β

{
ψ(γ)− dφ(γ)

dγ

}
µ(γ) dγ =

∫ τ

β
θ(γ) dγ.

Integrating again from β to τ,

µ(τ) − µ(β)− [c2 + c1φ(β)](τ − β) +
∫ τ

β
φ(γ)µ(γ) dγ

+
∫ τ

β

∫ γ

β

{
ψ(γ)− dφ(γ)

dγ

}
dγ1 dγ =

∫ τ

β

∫ γ

β
θ(γ1) dγ1 dγ

µ(τ) = c1 + [c2 + c1φ(β)](τ − β) +
∫ τ

β
(τ − γ)θ(γ) dγ

+
∫ τ

β

{
(τ − γ)

(
dφ(γ)

dγ
− ψ(γ)

)
+ φ(γ)

}
µ(γ) dγ.

Thus, we have integral equation of the kind

µ(τ) = Φ(τ) +
∫ τ

β
Ψ(τ, γ, µ(γ)) dγ, (28)

where Φ(τ) = c1 + [c2 + c1φ(β)](τ − β) +
∫ τ

β
(τ − γ)θ(γ) dγ

and Ψ(τ, γ, µ(γ)) =

{
(τ − γ)

(
dφ(γ)

dγ
− ψ(γ)

)
+ φ(γ)

}
µ(γ)

Thus, the Initial Value Problem (27) is equivalent to the Voltera Integral Equation of
the second kind (28)

µ(τ) = Φ(τ) +
∫ τ

β
Ψ(τ, γ, µ(γ)) dγ ∀ τ, γ ∈ [β, δ],

where Φ(τ) ∈ C[β, δ] = {σ(τ); σ : [β, δ]→ R} = Ξ, say, and Ψ : [β, δ]× [β, δ]×R→ R.
Define ρb : Ξ× Ξ→ [0, ∞) by

ρb(σ, µ) = sup
τ∈[β,δ]

(σ(τ)− µ(τ))2 ∀ σ, µ ∈ Ξ

Define ∆ : Ξ× Ξ× [0, 1]→ Ξ as

∆(σ, µ; α) = ασ + (1− α)µ.

Additionally, presume a self mapping Υ : Ξ→ Ξ defined as

Υµ(τ) = Φ(τ) +
∫ τ

β
Ψ(τ, γ, µ(γ)) dγ ∀ τ, γ ∈ [β, δ].

Then, existence of unique fixed point of map Υ implies the existence and uniqueness
of solution of Voltera integral Equation of the second kind (28) and hence, the Initial Value
Problem (27).
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Lemma 5. Suppose Ξ = C[β, δ] = {σ(τ); σ : [β, δ]→ R} and define ρb : Ξ× Ξ→ [0, ∞) by

ρb(σ, µ) = sup
τ∈[β,δ]

(σ(τ)− µ(τ))2 ∀ σ, µ ∈ Ξ

Define the convex structure ∆ : Ξ× Ξ× [0, 1]→ Ξ as

∆(σ, µ; α) = ασ + (1− α)µ ∀ σ, µ ∈ Ξ.

Then, (Ξ, ρb, ∆) is a convex b-metric space with parameter s ≥ 2.

Proof. We perceive that

1. ρb(σ, µ) ≥ 0 ∀ σ, µ ∈ Ξ.
2. ρb(σ, µ) = 0 ⇐⇒ σ = µ.
3. ρb(σ, µ) = ρb(µ, σ).
4. ρb(σ, µ) ≤ 2[ρb(σ, ξ) + ρb(ξ, µ)] as

ρb(σ, µ) = sup
τ∈[β,δ]

(σ(τ)− µ(τ))2

= sup
τ∈[β,δ]

(σ(τ)− ξ(τ) + ξ(τ)− µ(τ))2

≤ 2

{
sup

τ∈[β,δ]
(σ(τ)− ξ(τ))2 + sup

τ∈[β,δ]
(ξ(τ)− µ(τ))2

}
= 2[ρb(σ, ξ) + ρb(ξ, µ)].

Also, for ∆(σ, µ; α) = ασ + (1− α)µ ∀ σ, µ ∈ Ξ, we have

ρb(ξ, ∆(σ, µ; α)) = sup
τ∈[β,δ]

(ξ(τ)− ∆(σ(τ), µ(τ); α))2

= sup
τ∈[β,δ]

(ξ(τ)− {ασ(τ) + (1− α)µ(τ)})2

≤ sup
τ∈[β,δ]

(α|ξ(τ)− σ(τ)|+ (1− α)|ξ(τ)− µ(τ)|)2

= sup
τ∈[β,δ]

[α2(ξ(τ)− σ(τ))2 + (1− α)2(ξ(τ)− µ(τ))2

+2α(1− α)|ξ(τ)− σ(τ)||ξ(τ)− µ(τ)|]
≤ sup

τ∈[β,δ]
[α2(ξ(τ)− σ(τ))2 + (1− α)2(ξ(τ)− µ(τ))2

+α(1− α){(ξ(τ)− σ(τ))2 + (ξ(τ)− µ(τ))2}]
≤ α sup

τ∈[β,δ]
(ξ(τ)− σ(τ))2 + (1− α) sup

τ∈[β,δ]
(ξ(τ)− µ(τ))2

= αρb(ξ, σ) + (1− α)ρb(ξ, µ)

Thus, for s ≥ 2, (Ξ, ρb, ∆) is convex b-metric space.

Theorem 11. Suppose that

|Ψ(τ, γ, σ(γ))−Ψ(τ, γ, µ(γ))| ≤ [κM(σ, µ)]
1
2

for all τ, γ ∈ [β, δ]; σ, µ ∈ Ξ and some κ < 1
(δ−β)2 ≤ 1

s2 where s ≥ 1 and

M(σ, µ) = max{ρb(σ, µ), ρb(σ, Υσ), ρb(µ, Υµ), ρb(σ, Υµ), ρb(µ, Υσ)}.

Then, a unique solution exists for Voltera Integral Equation of the second kind (28).
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Proof. Consider

(Υσ(τ)− Υµ(τ))2 ≤
(∫ τ

β
|Ψ(τ, γ, σ(γ))−Ψ(τ, γ, µ(γ))| dγ

)2

≤
(∫ τ

β
[κM(σ, µ)]

1
2 dγ

)2

≤ κM(σ, µ)

(∫ τ

β
dγ

)2

= κM(σ, µ)(τ − β)2

≤ κM(σ, µ)(δ− β)2,

and thus all the hypothesis of Theorem 3 are satisfied for κ < 1
(δ−β)2 ≤ 1

s2 implying Voltera
Integral Equation of the second kind (28) and hence, the Initial Value Problem (27) has a
solution that is unique.

6. Discussion, Conclusions and Open Problems

In the framework of convex b-metric spaces, we established a fixed point theorem
as an extension of the main result of Rathee et al. [11] that guarantees the availability of
fixed point for Cirić contraction. Additionally, the Krasnoselskij iterative process is used
for approximating the fixed point. Furthermore, we discussed about the fixed point’s
stability for the prior mentioned contraction. We constructed a common fixed point and
coincidence point result as a consequence. Finally, we provided several examples to
highlight the conclusions drawn here and use these conclusions to solve an initial value
problem. Following open problems may be worked upon in future:

1. Rathee et al. [11] ensured the existence of fixed point for Cirić contraction for the

constant κ ∈
[
0, 1

s4

)
. In addition, we extended the same for κ ∈

[
1
s4 , 1

s2

)
. Is it viable to

further relax the condition for κ ∈
[

1
s2 , 1

)
?

2. Besides, we proved that the fixed points so obtained are stable for κ ∈
[
0, 1

s2

)
. Can

the hypothesis be eased?
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