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Abstract: This paper proposes a higher-order blended compact difference (BCD) scheme on nonuni-
form grids for solving the three-dimensional (3D) convection—diffusion equation with variable
coefficients. The BCD scheme has fifth- to sixth-order accuracy and considers the first and second
derivatives of the unknown function as unknowns as well. Unlike other schemes that require grid
transformation, the BCD scheme does not require any grid transformation and is simple and flexible
in grid subdivisions. Concurrently, the corresponding high-order boundary schemes of the first and
second derivatives have also been constructed. We tested the BCD scheme on three problems that
involve convection-dominated and boundary-layer features. The numerical results show that the
BCD scheme has good adaptability and high resolution on nonuniform grids. It outperforms the BCD
scheme on uniform grids and the high-order compact scheme on nonuniform grids in the literature
in terms of accuracy and resolution.

Keywords: BCD scheme; nonuniform grids; 3D convection—diffusion equation; high-order accuracy;
boundary layers
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1. Introduction

In this work, we mainly study the following 3D convection-diffusion equation (CDE)
—(atyx + buyy + cuzz) + puy + quy +r1uy = fin Q 1)

where diffusive coefficients 4, b, ¢ are positive constants. The convection coefficients p, g, 7,
and the forcing term f, as well as the unknown function u, are functions of three variables
x,y, and z and assumed to be sufficiently smooth on Q) = [ag, a1] x [bg, b1] X [co,c1]. Qisa
cubic region in 3D space. A suitable Dirichlet condition is prescribed on the boundary 0Q).

The CDE is widely concerned by many researchers since it can describe many physical
phenomena, such as heat transfer, vorticity transport, mass, or concentration diffusion, etc.,
and it is also a simplified model of the incompressible Navier-Stokes equations used to
describe fluid flow [1-4]. We also focused on this mode equation because, within the realm
of computational fluid dynamics, there appears to be a predilection for the steady solutions
of many evolutionary partial differential equations, as they are key to understanding
complex fluid dynamics.

Because the analytic solution of CDE is very difficult to obtain in most cases, even
impossible, the development of accurate, stable, and efficient numerical methods for solving
it is of paramount importance. Over the past decades, high-order compact (HOC) finite
difference methods have attracted more and more attention due to their many advantages,
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such as high accuracy, high resolution, small calculation amount, and relatively easy
handling of boundary elements. A variety of specialized techniques have been developed
based on HOC schemes to solve partial differential equations [5-20]. Generally, there are
two classes of HOC schemes. One class is called explicit compact difference schemes [5-13],
where all the derivatives are explicitly discretized by the nodal values of the objective
function. That is, the difference equations do not include any derivatives. The other class is
called implicit compact difference schemes [15-20], which treat the objective function and its
derivatives together as unknown variables, and partial or all derivatives are involved in the
calculation. The advantage of implicit compact difference schemes is that it is easy to obtain
higher-accuracy compact difference schemes with high resolution. In 1998, Chu and Fan [17]
introduced the combination compact difference (CCD) scheme, which is a classic implicit
compact difference approach possessing sixth-order accuracy. Fourier analysis reveals that
the CCD scheme outperforms other existing high-order compact and non-compact schemes
in terms of spectral resolution. Unfortunately, the CCD scheme necessitates coupling all
difference equations for the unknown function and its various derivatives, which must be
solved in conjunction with the boundary scheme. This requirement inevitably leads to an
extensive and intricate coefficient matrix, thereby increasing the complexity of algorithm
design and programming. Recently, Ma and Ge [21] introduced a novel compact difference
scheme, known as the BCD scheme, which combines the merits of explicit and implicit
compact difference schemes for solving 3D CDEs. In comparison to the well-established
CCD scheme [17], the BCD scheme not only attains high accuracy in both interior and
boundary regions but also resolves the unknown function and its derivatives separately
through an iterative procedure. Furthermore, the derivation process and algorithm design
of the BCD scheme are straightforward and easily implemented.

The HOC schemes mentioned above are developed on uniform grids, which have
good stability, high accuracy, and high resolution when solving smooth solution problems.
However, when solving problems with large gradients and boundary layers, relatively poor
calculation results are encountered if an insufficient number of grid points are allocated to
regions with steep solution gradients [22,23]. To obtain higher-accuracy numerical results,
more grid points, storage space, and computational effort are required. A more judicious
strategy entails the utilization of nonuniform grids, wherein a greater number of grid
points are allocated to regions with large gradients, while fewer grid points are assigned
to regions with smaller gradients. In recent years, many compact difference schemes on
nonuniform grids have been proposed to solve problems with large gradients or boundary
layers [22-26]. Among them, the representative results based on the explicit compact
difference schemes on nonuniform grids are as follows: Spotz and Carey [27] first proposed
the HOC schemes for 1D and 2D CDEs without source terms on nonuniform grids in 1998.
Afterward, Zhang et al. [28] developed a HOC scheme for the 3D CDE without source terms
on nonuniform grids and performed direct numerical simulations for the problems with
boundary layers. The methodology proposed in Refs. [27,28], known as coordinate trans-
formation techniques; they convert nonuniform grids in the original physical domain into
uniform grids within the computational domain. Subsequently, the numerical results in the
computational domain are mapped back to the physical domain using inverse coordinate
transformation. This approach allows the direct application of existing schemes constructed
on uniform grids. However, a notable drawback of this method is that coordinate transfor-
mation often introduces additional terms into the transformed governing equation (e.g.,
cross-derivative terms), which inevitably increases the complexity of the equation [27,28].
Moreover, if the transformation is not explicitly known, it may necessitate the generation
of solutions to certain differential equations, thereby introducing additional computations
and potential errors. To avoid the above transformation, an alternative method was de-
veloped, which is to directly construct the difference scheme on nonuniform grids in the
physical domain. The merit of this method lies in the ability to directly allocate a specific
number of grids to boundary layers or regions with large gradients using straightforward
grid-stretching functions, with the uniform grid configuration considered a special case.
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Kalita et al. [23] initially proposed a HOC scheme for the 2D CDE with variable coeffi-
cients on nonuniform grids and subsequently applied it to solve the 2D incompressible
Navier-Stokes equations. Ge and Cao [24] developed a multigrid V-cycle algorithm based
on the HOC scheme on nonuniform grids for solving the 2D CDE and used it to solve the
classical lid-driven square cavity flow problem. Afterward, Ray and Kalita [29] proposed a
third-order compact difference scheme for solving the 2D incompressible Navier—Stokes
equations on nonuniform grids in polar coordinates and numerically simulated driven
square cavity flow and flow around a cylinder. The representative results of the implicit
compact difference schemes on nonuniform grids mainly include: Chu and Fan [30] devel-
oped a three-point fifth-order combined compact differences (CCD) on nonuniform grids.
Shukla and Zhong [31] developed HOC schemes on nonuniform grids for first and second
derivatives based on polynomial interpolation technology. Shukla et al. [32] extended the
method in [31] to solve the stream function—vorticity formulation of the Navier—Stokes
equations on nonuniform grids and numerically simulated-driven square cavity, flow
around a cylinder, and heat convection problem in a square cavity. In 2013, Ge et al. [33]
developed a transformation-free HOC scheme and the multigrid method on nonuniform
grids for solving the 3D Poisson equation. Later, Shanab et al. [34] extended the work of
Kalita et al. [23] to solve the 3D convection—diffusion equation with variable coefficients on
nonuniform grids. It is a pity that the above scheme only has three- to four-order accuracy.
In 2019, Ma and Ge [21] proposed a sixth-order BCD scheme on uniform grids to solve the
3D CDE with variable coefficients. As declared in the article, the BCD scheme on uniform
grids is more suitable for dealing with smooth-solution problems, but it is not good at
solving problems with boundary layers or local large gradients.

To the best of our knowledge, there have been no reported high-order BCD schemes
on nonuniform grids for the 3D CDE with variable coefficients. The primary objective of
this paper is to develop a transformation-free BCD method on nonuniform grids to solve
the convection-dominated diffusion problems and the problems with boundary layers.
The remainder of this article is structured as follows: Section 2 presents the high-order
BCD scheme on nonuniform grids for the 3D CDE with variable coefficients. Subsequently,
Section 3 provides a comparison of accuracy between the BCD scheme and other numerical
methods. Lastly, Section 4 offers concluding remarks.

2. BCD Scheme on Nonuniform Grids

We discuss a cubic region Q) = [ag,a1] X [by, b1] X [co,c1] and perform discretiza-
tion on a nonuniform 3D grid. Consequently, we partition the intervals [ag, a1],[bo, b1]
and [cp, ¢1] into sub-intervals, which are not necessarily of equal length, by the points
ag = X0, X1, , XN, = a1, bo = yo,y1,--- ,yn, = brand cp = z9,21,- -+ ,zN, = 1. Inx
direction, allowing hy, = (a1 — ag)/Ny and defining h.0, = x;.1 — x;, het) = x; — x;_1,
1 <i < Ni. Similarly, in y and z direction, allowing hy, = (b; — by) /Ny, h> = (c1 —co)/ N,
and defining hy0r = yj11 —y;, hyby = yj —yj-1, by = zgp1 — 2k, M6 = 2z — 241,
1 <j < Ny, 1 < k < N,. For convenience, we also set a1 = 6,0,,1 = 6, +6;,
Y1 =60, — 0,00 = Qbe, ﬁz = Gf + 6,72 = Qf — Opa3 = 9u9d,,33 =0,+64v =0, —0,.
Ifo,=06,=1 (Gf =0, = 1land 0; = 0, = 1), the result is a uniform grid.

We use the subscript notation u;;; = u(xi,yj,zk) and employ a local coordinate
system where the cubic grids are labeled as in Figure 1. For convenience, we symbolize
these derivatives by {u, uy, Uxx, by, Uyy, Uxy, Uz, Uzz, Uyz}, Tespectively. As the presented BCD
scheme involves independent calculations of first and second derivatives, achieving a
fifth-order BCD scheme for the 3D CDE on nonuniform grids necessitates approximating
all first and second derivatives to fifth-order accuracy. Therefore, we need to first derive
the fifth-order scheme for the first and second derivatives, and then derive the fifth-order
BCD scheme for the 3D CDE. Before deriving their formats above, we need to demonstrate
an expression of a combination of fifth and sixth derivatives as an auxiliary formula.
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Figure 1. Labeling of the 19 grid points on nonuniform grids.

For the smooth function u(x, y, z) in Q), Taylor series expansion at the point (i + 1, j, k)
is demonstrated as follows:

Uit1,jk = Wijj + O (tix); jp + (QVZX)Z (tx) e + (G'ZX)S (txxx ) j 2
O i gk O )+ G ), + 007
Similarly, at point (i — 1, j, k)
i1k = Wi — Ophx(ux); jp + (Wzlx)z (tex ) j e — (GZZX)3 (txx) .

4 5 6
+ O ), — G W)+ G (), + 00D

Equation (2) multiplied by 6? minus Equation (3) multiplied by 6, and rearranging it,
results in

h2 B, (4 ni 5
(ux); e = Oxij — alTx(uxxx)i,j,k — A (”J(c ))i,]',k - T (n®+ ’Xl)(ua(c ))i,j,k

a1 71h3 2 (6) 6 )
=5 (11® + 21) (ux ) + O(h3)

Equation (2) multiplied by 6; plus Equation (3) multiplied by 6,, and rearranging it,

results in
Ty 2 4
(txx) e = ik — 25 () e — 13 (BT — 3a) (ul ))i,j,k
K 2 (5) W (A 2, 2y(,,(6) 5 ©)
= (BT —2m)(ux); 1k — 565 (7] + 3y +aq) (s ) + O(h3)
where: 1
— 2. 02y .
Oxtjf = m(ez Uiy1ik + B1yitije — Optio1jk) (6)



Axioms 2023, 12, 651 50f 29

2
3 j) = W(G)lum,j,k — Batti i+ Orui_x) 7)
In addition,
arh? | (5 ahd . s
(txxx ) je = Ox(xx)j e — Tx(ua(c ))i,j,k Y} * ))z’,j,k +O(h3) )
4 Yihy (5 (v +a)h? (6
(ua(( ))i,j,k = 53%(uxx)i,j,k - 13 - (Ma(c ))i,j,k - %(ui ))i,j,k +0(h3) )

Here, we substitute Equations (8) and (9) into Equations (4) and (5), respectively. In
addition, a rearrangement of the sequence of terms results in

n2 3
(”x)i,j,k = ‘5xui,j,k - MTA‘Sx(uxx)i,j,k - “1% xéazc(”xx)i,j,k
470024200712 (5) 5 11a329,4+3a171° (6) 6 (10)
+hx(1Tol’h)(”x )i,j,k + hx(%)(”x )z’,j,k + O(hx)
h 2tap)h3
(ttxx) e = 07 (1), — 57 Ox (v ) j 1 — ! £07 (1) j )

47,3+18 B, (5 281712 +671 4 +6m 2t (6
4+ Un 366%171) 3 (M:(c ))i,j,k+ (2801711 14110 1% (u)(C ))i,j,k"'o(h?c)
From Equations (10) and (11), we can obtain the following expressions of the fifth and
sixth derivatives.

1l = Eahytigy — Totty + C1pdyt — Crahx6%u + [(261471 — Crom1 )2/ 6)6x 1y

(12)
+h3[C1a (73 + a1) /12 — Cia (71 + a1) /28] 6312y + O(R3)
6 ~ ~ ~ ~ ~ ~
ul® = Eyuy — Eahattey — 100 + C13hx02u + [(Cr1an — 261371)h% /6] 6xtinx 13)
+hy[Cr1a1y1 /24 — C13(7] + a1) /12]63uxe + O(H3)
where:
S~ 144043 +18a171)  ~  360(28a173+6714+61,2)
1= T30 azad) 1 12 T 13 (100372 +424%) 14
~ _ 144007a342m103)  ~ _ 360(11adyi+3m73)
€13 = Tig00ad 2142ty ¢ 14 T T ThE (1000214207

To derive the later formulas, we show the linear combination of the fifth and sixth
derivatives from Equation (2) and (3) as follows:

Trul + Toul® = (T11612 — Tio011)0xu + (TiaC1shy — TriiCrahy)62u + (Tioc11 — T11612)ux
[T11h% (261471 — C1201) /6 + Tioh3 (Cr1a1 — 261371) /6] 6xttxx + (Ti1C1ahy — T1oC1shy ) tinx (15)
{Tih3 (214 (a1 +93) — Crom171) /24 + Tioh3[Crimr 1 — 2615 (a1 + 73)] /24 } 621 x

In addition, we define

di = Tt — Tiaf1n, dig = —dh1, dip = Tio@ishy — Tinliahy, dis = —dia

d13 = [Tuh3 (2614 (a1 +73) — Epmr71) + T (Crnanyt — 2613(aq +93))] /24 (16)

dg = [T1yh3 (281471 — C1oe1) + Tioh2(Gaey — 281371)]/6

Then, the result is

Tllu)(c5) + leug(()) = dy10ut + d 19821 + d1362 1y + d140y ey + distiey + d1glix (17)
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2.1. The Fifth-Order Compact Schemes for the First Derivatives {ux, uy, uz}

Since
(Y2 +6a2)ht , (5 (i 3+7039)H . (6
(ux)i,j,k = 5x(“)i,j,k + %( gc ))i,j,k + %(“g ))i,j,k a8)
i 2

+a1;§ 5%(“xx)i,j,k - alT‘si(ux)i,j,k +O0(h%)

Substituting Equation (17) into Equation (18), we obtain
_ Ldyg o whi o d; 2
()i = g Oxthie = grpay O ()i e = T (e — O3 -

0171 h3+72d13

2 d 6
T 72(1+dq1) ‘Sx(”xx)i,j,k_ﬁ@(”xx)i,j,k“‘(hx)

Substituting Equations (6) and (7) into Equation (18), we obtain the fifth-to-sixth-order
scheme for the first derivative u, on nonuniform grids.

0 243dy; 6,
— L (u.): . 71 Ur): —r _ (u,). .
e ik T g ikt sty (i

07 (1+d11) 20,d;5 11 (1+d1) 2d;5
= ~—|Uji 11+ == — ~— |U; ;i

a1 Brhx(1—dye) “1ﬁ1h§(1+d11)] Lk [0‘117%(1_‘116) %1h§(1+d11)] Lk
O 2(1+dn)  20,dys Tu; 1 ix

a1Pihc(l—dig)  wpihd(1+dy) "

(20)

— - u . .
360{1‘B]h%(1+d11) txlﬁlhx(ler]l) ] ( XX)H_L],k

[91 (11 h3+72d13) 67d1s

_ | mdutaindis | sy 5+72d1s () :
Délhx(1+d11) 360(1}1’%(14'5111) l/]’k

63y _ 9r(04171h;3c+72§~13)](uxx>, ,
a1Bihy(1+d11) 361 B1h3(1+d11) i=Ljk

Similarly, we also obtain the fifth-to-sixth-order schemes for the first derivatives u,
and u; on nonuniform grids, as follows:

6, 2+3dy; Or
— (U .. + == .. —I— — (U ..
3ﬁz(1+d21)( Wijeik 3<1+d21>( Wij 3ﬁz(1+d21)( Wij-1k

02 (1+dy) 20,4 (1+da1) 2d;
b b425 T2 21 25
e - — Uu; ; + 3] — — Uu; :
o Bohy (1—do) “2ﬁ2h§(1+d21)] BitLk [“2hy(1*d26) ﬂ2h§(1+d21)] Lk
. 9}((1+d~21~) _ 29fd~25 _ ]u. .
azBohy(1—dye) ool (14dy )" 70
3 i 27 (21)
[eb(“272hy+72d23) _ 0d24 (ityy)
36ayPohf(14+dn)  axPohy(14dy) WY/ ij+1k
_ 721;24%62@0?25 “272h§+72§23 (it
aghy(14+dyy) 3601y (1+dy1) WY ijjk
+[ 9;5724 9f(“171h;+72323)](u )
wpohy(1+dy) ' 360pohf(14+dy) - Y/ ij—1k
where:
2 2
Syttije = (Oyuije1 i + Pavatijr — Ouij1x)/ a2Pohy (22)
2 2
Sythijk = 2(Opttijy1k — Paijx + 0puij1x)/ a2Pohy (23)
2 2
Szthiji = (Oguijpq1 + B3vathijx — Oulhijr—1)/ a3P3hz (24)

(53111‘/]',]{ = 2(9dui,]‘/k+1 — ‘Bzui/]',k + 9uui,]~,k,1)/oc3/33h§ (25)
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da1 = TnCa — T, dop = Taolashy — TorCashy, dos = —dp,
dys = [Toh3 (204 (@2 + 13) — Ct272) + Toolt (G122 — 2603 (a2 +73))]/24 (26)
oy = Tonh2(282472 — Cot2) /6 + T (Co1ta — 282372) /6, dos = —dn

~  1440(493+18a272)  ~  360(28a273+675+643)
€21 = TS A0ada2ad) ¢ 22 T T T Ri(10a30314243)
y (107 22405 y (LU Tas8 27)
e 1440(7a3+2037%) = _360(11a372434273)
28 = b3 (106373 +4203) 4= b (100373 +42a3)
To1 = (603 + ag73)hy /1080, Ty = (7a572 + g3 )hi) /4320
d31 = T31030 — T32€31, dp = TapCashz — T31C3ahz, das = —d3, (28)

d33 = [Ty h3 (284 (a3 +93) — Coaay3) + Taoh (Cnaays — 2833 (a3 +93))] /24,

d3y = T31h? (283472 — Caow3) /6 + Taph? (Ca1a3 — 2C33773) /6, dzs = —d1, (29)

s = 1440473 +18a3713)  ~  _ 360(28a373+673+603)
317 7B (0a3 2 42ad) 1 "2 T T T iA(10a303 142ed) 7 30)
= — _ 1440(7a3424373) T, = _360(11a373+34313)
3B 7 TR0ad 242ty 1 PH* T T ThE (104303 +4248) 7
(a2 2\7.4 _ (7.2 3115

T3 = (6063 + 0(3’)’3)]12/1080, T3 = (70(3’)/3 + 0(3’)/3)hz/4320. (31)

2.2. The Fifth-Order Compact Schemes for the Second Derivatives {uxx, Uyy, uzz}
It is noted that
_ 2041 2, (V3+a1) 20171 hy Hayy1 (3lag+392)  (5)
B - 7Ol — ap—773 Oxthy — 3w — )5"ux" T 360(a - 3y (32)

”l 041(10“1’}‘ +’)/ +u ) (6) 5
+= 360(0411 71) ' +O(h )

Substituting Equation (15) into Equation (33), the fifth-order compact scheme for the
second derivative 1y, on nonuniform grids is obtained as follows:

Ep0? 2E136, 1E 2F.
IR~ 2 (= 2 — 2

/

En62  2E136
+(“1.1521];x o alé3h§)(uxx)1 1,7k —

2E119[ E146[2 )
- (o B,
wpihE  arprh /L
(33)
(2511 + 51471) + (2511(% Eq46? Vitj_1
/]r ,Xllglh% Dé]ﬁlhx l_ll]Ik

Délhz 0(1]1
E 9 E 62
+a11ﬁ61hx (ux)iy1,jh+ ( alhl + Eng) (u ijk — o) ()i ik

Similarly, the fifth-order schemes for the second derivatives {uyy, uZZ} on nonuniform
grids are also obtained as follows:

h E2292+2E239b v E ZE
(_W)(“yy)i,jﬂ,k +(1- zxzzhzyz - aZ;g)(uW)i,j,k

EZZQ} _ 2E239f

(azﬁzhy m)(”w)i,j—l,k:

Zleeb _ E249§ .
(a2ﬁ2h§ w2 Bohy )ul,]-‘rl,k (34)

= o2
_(2Ey 524”72 2Ex ¢ Easby
(lxzhﬁ + ) ’]’ + (lxzﬁzh§ "‘ZABZhy )ul’]il’k

EZGGZ E269_%
+4xzﬁ2;1)y (M ) ij+1k + ( azh 2+ E24) (uy>1] k azﬁzhy (u]/)i,j—l,k
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E3p02 2E339, 13E; 2,
(_06353;; B usgihé)(uzz)irﬁk‘*‘l +(1- 0633}22 - ocslg )(uzz)i/frk

E3295 _ 2E339” 2?319,1 _ ES492

+(1x3f53hz 3Pkl ) (“zz)i,j/kq = (“353,@ 7%33;?2 )”i,j,k+1

_(2Ey | Eum 2E31 6y Eab? \
(1X3h2 + 063]’!2 ) /]/ + (0‘3/3317% + 063‘B3hz)ul/]/k*1

E3663 E3662
+,x3lg3ijz (” )1]k+1 + ( 1x3h 2+ E34)( )i,j,k - (%3563}12 )( )i,j,kfl
where: _ _ - _
’E“H _ dlzf’él*dlzﬁtzwl ”12 _ 3d14(“1*’¥%)*2h306171 ~13 _ _di
(a1—73)(1—dys5) 3 —3)(1—dis) 1—di5”
= d; = dq = #1473
Ey=-%6  Fe=- [, =9
14 1-dy5 15 1-dss5 16 (a1—3)(1—ds5)
= doty—dny3+2m & 3oy (t2—73)—2hyar s d;
By — iy o) —hytara Foo — A3
7 ) (1ds) 2T B (ds) BT i
= d; = d; a+73
Epy=-%6  Fpe=-%1 [, o= %2t
I A T (a3—73) (1—dps)
= dpaz—dpnri+2es 3dy(03—3) —2h=0373 3 ds
By = Zpo—dumt2n F ) Petsys Fo= dw
31 (a3—23) (1—d35) 2= 3(a3—73) (1—dss) BT 1y
= d- = d: = w3+3
Fay=-B6  Fpo= B Fp— 0%7H
BT T T 1y 6 (a3—73) (1—d35)
2.3. BCD Schemes of the 3D CDE on Nonuniform Grids
By Taylor series expansion, we obtain
2 (4 5
Uy = Oyt — Wy M0 XMJ(C) ﬂé1 (71 +oap)ul 4
" 6
— 9 (02 4 o0y )ul® + O ()
ahy aly (4)  aly (5)
Uy = Oytt — —g iy — —gt iy — g (73 + w2)uy
!Xz’Yzh 6
— a0 (73 2a2)uy {6) +O(h6)
h h h 5
Uy = 6zu — By, — B8 Zug ) (34 az)uz (5)
o h
S8 (13 + 23)ul”) + O(KE)
Substituting Equations (40)—(42) into Equation (1), we obtain
—auxy — buyy — Clzz + poxu + qéyu + rézu
2 (4 ni 5 2
Wl Uyy — le:/}l u}({) Pal (’Y +op)ul e P‘X;;(l) (71 + 201 ) o
qaoh quamohd (4)  qagh NON qua2hy o (6)
— Uy — g My — 120y (73 + a2)uy 720 (73 + 2a)uy
2 (4 I "2 6
Tﬂcg gy — 7’0432’)‘43 ug ) _ 7'131630 (,)/% + ws)ug ) _ 706?7’2)/8 (’Y% 4 20(3)1/!& )

O(KS + hf + he) = f(x,y,2)

With the differentiating Equation (1) concerning x, y, and z, we obtain

1
Uxxx = E(_buyyx — ClUzzyx + PUxx + Pxlx + quyx + qxUy T+ Tz + 1yl — fx)

tyyy = 3 (=@lhxxy = Cllzzy + Pllxy + Pyl + Gilyy + Gylly + riizy + ryilz — fy)

Al S

(_auxxz — buyyz + puxz + Py + qUyz + GzUy + 1Uzz + 12Uz — fz)

Uzzz =

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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Substituting Equations (44)—(46) into Equation (43), we obtain

(—a—1F “1h Nityy + (—b — qzziihi)uyy +(—c— rzvéihg)uzz + pdxu + qoyu + réu
+(— PPxévzllh% _ qpyg;zhy _ fng?h%)ux + (= Pﬂlxéf’;lhi _ Wyg‘bzhi _ ngghg)ux
(g ”Zzshf e <—% ~ Ty (- T~ Tl
_i_(_prg’llh% . rpa3h ) Uy + Xuyyx + ,1 lony + ﬂqazhy iz, 1 quhj lzzy y
+ﬂ70¢3hz Uy + br”‘3hz yys — p‘xlz')"llhx u§4) P‘th ('71 +oag)ul (5) P‘X;;/(l)h (,),1 + 201 ) (6) (46)
_‘1"‘22742hy u§4) _ qﬁoy (12 + az)uﬁs) W;;Y(z)h (B + 2a2)u§6)
1 ) — S (o3 + )l — R (13 + 2030l
O(HS + 1§ +18) = f — Ll p, Bl vl
In addition, after rearranging the sequence of terms, we obtain
Biuxx + Bottyy + B3tizz + péxut + goyu + ré;u + Byutx + Bsuy + Beuz + Byuiyy + Bgity,
+Botizy + BlO”yyx + Biittzzx + Blzuxxy + B13uzzy + Bialixxz + BlS“yyz + B165%uxx (47)
+B178yuyy + B1g0Zuizz + Wy + Wy + W3 + O(hS + hi + h%) = F
where:
B] = *LI*%, Bzszf%:y)qz, BgI 7C7%§r2,
B, — —fpps _ SMry sl po wiipe M9l sl
6a 6b 6c 75 6a 6b 6c ’

38:—%—MI By = — MG — S By — SH By, — AP

By — %, Bys — azh ahjge Bl = a3h B — zxg,h rb , Byg = ptxlzithi/ (48)

By = 7?“22’121131 B18 _ ra3ﬂr3h F= f XPIX] fx Wny h ragfz

Wy = ph§(2a§g§73a%)u§5) T phi(SaiZiJal'yl)u](f)

w, = gl et o

W5 = rh‘z*(2a§z873a§) ugS) + rhg(Stxgiziaru%’yg) M£6)

To obtain a fifth-order compact formulation for Equation (48), we consider the follow-
ing approximations.
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13 Saqy1(3lag +3'y%)

(5)
360(a—12)

200 2 (v +1X1)
,1 2 5xu .
1—77

20171h
Oylly — 3([11171 x) Oxlyyx +

Uxx = “

4 2 4 2
+ hxal(loal'ler’leral) M§C6) + O(l’l?{)

360(a1—7)
2, 52 (V+m) 2ay72hy hya272(31a24313)  (5)
My = 2O T g VMY T 3ty O T o )
Iyaz (100273 +73+43)  (6) 5
+ 360(a—73) + O(hy)
_ 2ny o (1itas) _ 2a373hs h3a173(31a14373)  (5)
. Ozu rx;—vé Oxttz 3(a3—7§)5zuzz + 360(a3—73) Fg
hzas(10a373+75+03) (6
R+ 00)
Uxy = éxuy + 5y1/lx - 5x5yu + O(hz + h; + hyh% + hxhﬁ)
Uyz = Oty + Sytty — 8;0yu + O(h2 + Iy, + hyhZ + hzhy)
Uyy = 53(1/[2 + 5Zux - 5x§zu + O(hi + hg + hzh% + hxh%)
Uxxy = 5;25uy + (Syuxx — (5y(532€u + O(hz + h; + hyzchy)
Uyyx = St + Sxttyy — SxSyu + O(h3 + Iy + hghy) (50)
Uyyz = 021y + Sty — 0,0%u + O(h3 4 W3 + h2hy)
Ugzy = (5§ux + Oyllyy — (Sx(5§u +0 hi + h3 h2h

( x)
Uyyz = 55“2 + Jzuyy - 525514 + O( ;’ + h3 hzh )
( y)

h
Uzzy = 5§uy + Syizz — (5y(5§u +O(h + h; + h2h
Substituting Equations (50) and (51) into Equation (48), and using the conclusion of
Equation (15) again, we obtain
( chllil +d12)0%u + (p + di)6rut + (2 20‘232 +dy) 6 + (q + 1 )Syu
+(2 233“3 +dz)0%u + (r+ dsy )0zu — B75x(5yu — Bgd:0yu — Bodydzu
—Bloéxé u — B116x02u — B138y03u — B13by62u — B140.63u — By50.65u
B ~
%ﬁ’j‘”(s ttx + (By + dig)itx + Bydyity + Bodity + BioS2ux + Byy 62ty
JF(‘F{M - %)&c”m + Bl2fsy”xx + B14d Uy + Bl6fsyzguxx + Jl?,éyzc”xx + lf:lvl5uxx
—Ba002t02) 5y 4 (B + dag )ity + Brdity + Bsdtty + Brod2uy + Bysd? o
w-r vy 5 26 ) Uy 70xUy 80z Uy 1205 Uy 1307 Uy

7 2B h

-~ 33(7§+0¢3)
a3—73

+(‘;lv34 %)5 Uzz + 3185 Uzz + B135 Uzz + B110xtz; + d335 Uzz + d35uzz

+O(BS + Iy + h2 + h3hy + h3h3 + hghs + hgh? + h2h3 + h2hs) =

S:11z + (Bg + dag) iz + Bgdyttz + Bodyltz + Brad2uz + 3155§uz
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where, the differential operators {My, 628y, 0285, 80z, 6202,626,6:0-, 5;52,5§5x} can

be referred to Appendix A. Neglecting the truncation error terms, the 19-point fifth-order
BCD scheme on nonuniform for the 3D CDE is demonstrated as follows:

é0”1’,]‘,k + 61le'+1,]',1< + 62”i,j+1,k + 63”i71,j,k + 54”1‘,]'71,1( + 65”i,j,k+1 + (Nfeui,j,kA

+é7ui+1,j+1,k + 68”1’-1,j+1,k + é9”1‘—1,]‘—1,k + 610”i+1,j—1,k + é11Mi+1,j,k+1 + 612”i,j+1,k+1

+513ui—1,j,k+1 + 614”i,j—l,k+l + 615Mz'+1,j,k—1 + é16”1’,]'+1,k—1 + 617”1‘—1,]‘,k—1 + 618”i,j—1,k—1

Cro(tx); i+ Cu () i1 i + Cra () g g + Cr3 (1) g i + Cra(tee) ;i1

+615(ux)i,j,k+l + 616(ux)i,]-’k_1 + EZO(”y)i,j,k + Ezl(uy),qu,j’k + 622(My>i,]‘+1,k

ty)pipt Cas (tty); 1 + 626(”y)i,j,k—1 + Cao(uz);

23 uy)i—l,]',k + E24(
31(Uz)iqj) + E32(”z)i,j+1,k + 633(”Z)i—1,j,k + 634(”Z)i,j71,k + E35(”7.)1',]‘,k+1
) (

+Ca
E (52)

+Ca(tz); j—1 + Cao(thxx); i + Car ()i j i + Can(thx) e + Caz () iy ik

thxx)ijryr + Cao(ax)i i1 + Coolttyy) ;s + Cor(ityy) g 1

—_—

uW)i—l]‘k + E54(”W)i]>1 k +655(uyy)ijk+1 + 656(”W)ijk71

(
(

+C44(”xx ij— 1k‘|‘C45
(

+C60(uZZ 1]k+C61(u22)1+1]k+C62(uzz)z]+1k+c63(u22)l 1]k+c64(u22)1] 1,k
(

)i

+Csp uyy)l]Jrl ;. +Cs3
)
)

+Ce5(tzz ) j 1 + Co6(Uz2); ;1 = Fijk

The above coefficients are placed in Appendix B. We noticed that the proposed BCD
scheme for the 3D CDE on nonuniform grids can achieve fifth-order accuracy on a compact
template with 19 grid points and include seven unknowns {u, Uy, Uy, Uzlyy, Uyy, Uzz } All
of the first and second derivatives {ux, Uy, Uz, Uxx, Uyy, uzz} can be approximated by the
difference Equations (20)—(22) and (34)—(36), respectively, with fifth-order accuracy.

2.4. The High-Order Boundary Schemes on Nonuniform Grids

Next, we will derive high-order boundary schemes for the first and second deriva-
tives. For problems with non-periodic boundaries, Ma and Ge [22] have developed sixth-
order boundary formulations for the first and second derivatives on uniform grids. This
derivation method can be extended to obtain boundary schemes for the first and second
derivatives on nonuniform grids. As an example, we consider the left boundary of the first
derivative. The discrete template for the left boundary scheme is depicted in Figure 2. We
assume that the unknown variable and its first derivative share the following relationship:

(ux)o,ik + 0 (tx) ji = (botojx + bruia j + batig j + bauz ji + baug i) /- (53)

bo+b1+by+b3+by=0

by +by(1+k)+b3(1+k1 +ka) +bs(1+ky+ko+ks) =1+«

b4 by(14k1)* +b3(1+ Kk +ko)* + ba(1 + Ky + ko + k3)? = 2
(54)

S pby(1+k 4k +k3)® =3a

o by

5 5 (

)

( ) )
by + by(1+k1)® + by(1+ k1 +ky)
b1+ bao(1+kp)* )

( ) )

)
)
+by(1+ky 4+ ky + k3)* = 4a
by 4 ba(1 4k )

(
+b3(1+k1 + ko
(

+b3 1+k1+k2 +b4 1+k1+k2+k35:5ﬂé
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Figure 2. Grid-point discretization for a left boundary on non-uniform grids.

The relationships among coefficients by, b1, by, b3, bs, bs,a are derived by matching the
Taylor series coefficients of various orders. We can also obtain linear equations as shown in
Equation (55). By solving the system of linear Equation (55), the left boundary fifth-order
scheme for the first derivative uy is easily obtained. With a similar method, we can also
get the fifth-order boundary schemes for the first derivatives {uy, u; } and the sixth-order
boundary schemes for the second derivatives {u xx, Uyy, Uzz }

() e+ 0n ()i e = (Outtijpe 4 bp—1tti1,ji + bu—2ti— ji + bu—31i—3 jk + bu—atti )/ hr,

(55)
i=Nyj=01,-- ,Njk=01,-,N,.
(”y)i,]-,k + @o (uy) e = (Do jk + byt g1k + battij o + batt; sk + batijyax)/hy 56
j: Or i= 0/1r"' ;Nx}k = Orlr"' rNZ‘
(”y)i,j,k + &y (”y)i,j—l,k = (En”i,j,k + En—lui,j—l,k + En72ui,j—2,k + En73ui,j—3,k + En—4ui,j—4,k) /hy (57)
j: Ny/ l:O/]-/ /Nx;k:O/]-/"' /NZ'
(12);j + &0 (Uz) j g = (ot i + brttiiesn + batty o + Dot jirs + batti jsa) /g 58)
i=0,1,-- ,Ngj=01,-- Nyk=0.
(uZ)i,j,k + &y (uz)i,j,kfl = (En”i,j,k + Enflui,j,k—l + ’En—2ui,j,k72 + fbvn—3“i,j,k73 + En74ui,j,k74)/hu 59)
i=01,--,Ngj=01,--,Njk=N..
(ttx) e R0t 1,i = (Do jr + briwig ji + baig g ji + b3z i) /02 + [ba(ux); )
+B5(ux)i+1,j,k + Bé(“x)gz,jrk]/hli =0,7=01,--- /Ny}k =01, ,N..
() j e + Qn(Pxx)iq i = (b j g+ by—qui_1 ik + bu—otti—o j + bu—sui_z ) /H2
+[En74(ux)i,j,k + Bn—S(ux)i—l,j,k + Bn—6(ux)i—2,j,k] /hy (61)
i=Ny;j=0,1,--- ,Ny;k: 0,1,---,N,.
(uyy)i,j,k + Eo(uyy)i,]'+l,k = boui,j,k +b 1Uijt1k + bzuilj+2/k + b3ui,]'+3,k)/h§ + [b4(uy)i,j,k -
62

+b5(uy); g+ Delity),yp ] /hoi = 0; i =0,1,2--- , Nisk = 0,1, N.

—~
—~

() g+ @n(ttyy)y g = (Dnttije+ bnathijrp+ buothijo)+ bu-3attij-3x) /7

+[ b ”—4(uy)i,j,k + bnfS(”y)i,j_Lk +b nfé(uy>i,]’_2lk] /hf (63)

j=0;i=0,1,2--- ,Ng;k=0,1,---,N,.

(z2); e+ &0 (tz2); jyr = (Vomijp + V1t jrsr + Vot jryo + V'3t i) /2 + [V'a(u2);

' . (64)
+b/5(uz)i/]',k+l + b/6(uz)i,]‘/k+2]/hzk = 0, 1= 0, 1, ce ,Nx,'] == O, 1, st /Ny
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(t22) e + &'n(Pzz); o1 = (Ut je + U uatty j1 + b'uottyjr o + Vst 3) /2
[V n—a(uz)ij + o5 (z); j 1 + 0'n—6(uz); ko] / iz (65)
1= Ny; ] =0,1,--- ,Ny,'k:O,l,' -+, N,

The above coefficients are placed in Appendix C.

3. Numerical Experiments

We utilize the following three test problems with exact solutions to verify the accuracy
and reliability of the BCD scheme on nonuniform grids. These test problems are defined on
the unit cube Q = [0, 1]3. Considering the asymmetry of the coefficient matrix induced by
the BCD scheme on nonuniform grids, we employ the BICGSTAB (k) iterative method with
k set to 2 to address the issue. This value (k = 2) has previously been demonstrated to be the
most efficient step count before a restart [35,36]. All iterative procedures are started with
zero initial guesses and are terminated when the Euclidean norm of the residual vector is
reduced by 10'°. All calculations are conducted on a personal computer with an Intel(R)
core (TM) i3-5005U double 2.0 GHz CPU and 4 GB memory. The numerical results of the
BCD scheme on nonuniform grids are compared with those in Refs. [33,34]. The maximum
absolute error and convergence rate are defined as follows:

log(Error(Ny)/Error(Ny))
log(N2/Ny)

Error(N) = O<Z>/]11]1(J<CN u(xi,yj,zx) — wijx| Rate =

where, the symbols u(x;, yj, z) and u; ;x represent the exact solution and the numerical solu-
tion at the point (x;,y;, zx), respectively. Error(Ny) and Error(N3) represent the maximum
absolute errors for two different numbers of grids with N1 and N, respectively.

3.1. Problem 1

Considering the 3D Poisson equation
—(Uxx +uyy +uzz) = f(x,y,2), 0<x,y,z<1

with the exact solution and source term
u(x,y,z) = (1— V7€)1 — y=D/e)(1 — p(z=D/e) /(1 — o= 1/e)°

1.3 — -1

f(x,y,2)=£*2(1—e‘?) T (1)1 -e)
+e' T (1= ) (1 =) 4o (1™ )(1—e%)]

The Dirichlet boundary condition is determined by the exact solution. We first discuss
the Poisson equation. It was used as a numerical example to test the performance of the
HOC schemes on nonuniform grids in Refs. [33,34], respectively. ¢ is a parameter that
adjusts the exact solution. When ¢ is significantly small, the solution of Problem1 exhibits
boundary layers along x = 1,y = 1, and z = 1. Consequently, a nonuniform grid along
three coordinate directions with clustering near x = 1,y = 1, and z = 1 is employed using
the following grid-stretching functions:

Y= SN = R S A= g+ sinG)
where Ny, Ny, and N, are the number of the sub-interval in the x, y, and z direction,
respectively. A is the stretching parameter controlling the density of grid points in the three
coordinate directions. When A = 0, the grids are converted to a uniform grid, and when A
is closer to 1, more grid points are distributed near x = 1,y = 1, and z = 1. Table 1 displays
the maximum absolute error and convergence rate with different e and A for Problem 1,
which are calculated by the BCD scheme on the uniform and nonuniform grids. We choose
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stretching parameters A = 0.5,0.7,0.9 according to the value of ¢ = 0.1,0.05, and 0.01,
respectively. It can be observed that for e = 0.1 and & = 0.05, the BCD schemes on both
uniform and nonuniform grids maintain their respective theoretical accuracy. However,
when ¢ is reduced to 0.05, the convergence rate of the BCD scheme on uniform grids
declines to almost half of their theoretical accuracy, while the theoretical convergence rate
of the BCD scheme on nonuniform grids is preserved. Furthermore, the computations
on nonuniform grids attain notably better accuracy compared to those on uniform grids.
Tables 2 and 3, respectively, demonstrate the maximum absolute error and convergence rate
obtained by solving Problem 1 with the BCD schemes on nonuniform grids and uniform
grids and are compared with the results of the HOC scheme on nonuniform grids with
A =0.3,0.5,0.8, and on uniform grids in Ref. [34]. The numerical results show that under
the nonuniform grids, the calculation results of the BCD scheme are more accurate than
those of the HOC scheme [34]. It is not difficult to find that schemes on uniform grids have
similar conclusions. Figure 3 shows grid distribution, the contours of the exact solution,
and the contours of the numerical solution on uniform grids and nonuniform grids with
323 grids when & = 0.01 and A = 0.9, while Figure 4 demonstrates the maximum absolute
errors of the presented BCD scheme under the same conditions. We can also observe that
for steeper boundary layers, the BCD schemes on nonuniform grids have higher accuracy
and resolution than the BCD scheme on uniform grids, and the maximum absolute errors
on nonuniform grids in the boundary layer are much smaller than that on uniform grids.

SO

25 XX AY "' Vi
25D "0’0’000’ B
2 :E::::t:::gs“'fﬂ
‘ o
> “\\ ‘

(c) (d)

Figure 3. The number results for Problem 1 on Gird 323, ¢ = 0.01 in the plane z = 0.8125 (for uniform
grid) and z = 0.8163 (for nonuniform grid): (a) Stencil of grids (A = 0.9); (b) Exact solution, as well as
the numerical solutions of (¢) Uniform grids; and (d) Nonuniform grids.
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Figure 4. When ¢ = 0.01 : (a) The absolute error on uniform grids in the plane z = 0.8125, (b) The
absolute error on nonuniform grids in the plane z = 0.8163 (A = 0.9) for Problem 1 with 323 grids.

Table 1. Comparison of the maximum absolute error and convergence rate of the BCD schemes

between uniform grids and nonuniform grids for Problem 1.

BCD on Uniform Grids BCD on Nonuniform Grids
Grid Number
Error Rate Error Rate
e=0.1
163 450 x 10~ 1.38 x 107°
243 433 x 1073 5.77 6.08 x 1077 7.70
328 7.54 x 107° 6.07 8.88 x 108 6.69
403 1.82 x 107 6.37 1.98 x 10~8 6.72
643 857 x 10~8 6.50 8.12 x 1010 6.79
e =0.05
16° 1.64 x 1072 3.94 x 1073
243 2.32 x 1072 4.82 447 x 10 5.37
328 492 x 107 5.39 8.83 x 1077 5.64
403 1.37 x 10~* 5.73 244 x 1077 5.76
643 7.82 x 107° 6.09 1.49 x 1078 5.95
e=0.01
16° 8.94 x 107! 359 x 10723
243 6.18 x 1071 0.91 421 x107* 5.28
323 374 x 1071 1.74 8.54 x 1073 5.54
403 2.17 x 1071 2.44 2.38 x 1073 5.73
643 445 x 1072 3.37 1.87 x 10~° 5.41

Table 2. Comparison of the maximum absolute error and convergence rate between the BCD scheme
and the HOC scheme in Ref. [34] on uniform grids for Problem 1.

Grid Numb HOC [34] on Uniform Grids BCD on Uniform Grids
" Hmber Error Rate Error Rate
e=0.1
16° 328 x 1074 450 x 1074
323 213 x 107> 3.94 754 x 1070 5.92
643 1.36 x 1076 3.97 8.57 x 1078 6.44
e =0.05
16° 501 x 1073 1.64 x 1072
323 3.26 x 1074 3.94 492 x 1074 5.06
643 212 x 107° 3.94 7.82 x 107 5.97
e=0.01
16° 6.65 x 1071 8.94 x 1071
323 1.45 x 1071 2.20 3.74 x 1071 1.26
643 1.38 x 1072 3.39 445 x 1072 3.07
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Table 3. Comparison of the maximum absolute error and convergence rate between the BCD scheme
and the HOC scheme [34] on nonuniform grids for Problem 1.

HOC [34] on Nonuniform Grids BCD on Nonuniform Grids
Grid Number
Error Rate Error Rate
e=0.1
16° 5.05 x 107> 1.38 x 107>
323 3.19 x 107° 3.98 8.88 x 108 7.28
643 2.00 x 10~7 4.00 8.12 x 10710 6.77
e =0.05
163 3.60 x 1074 394 x 107>
323 224 x 107° 401 8.83 x 1077 5.48
643 1.39 x 10~° 4.01 1.49 x 10~8 5.89
e =0.01
163 8.46 x 1073 3.59 x 1073
323 5.06 x 1074 4.06 854 x 1075 5.39
643 312 x 107° 4.02 1.87 x 10~° 5.50

3.2. Problem 2
Next, considering the 3D convection—diffusion equation with variable coefficients with
the exact solution and source term

1
—&(Uyy + Uyy + Uzz) + muy =f(xyz), 0<xyz<1

w(x,y,z) = z(V% +271/E(1 4 )+

z -1 1 1
= — y—x = eY=x € — — - —
f(x,y,z) 2ezeV ™ + 1+ye +2% (1+ S)(1+y)(1 z)8 1

The Dirichlet boundary condition is determined by the exact solution, where ¢ is the
diffusion coefficient and is also a parameter to adjust the exact solution. When ¢ is small, the
solution to Problem 2 produces a vertical boundary layer at y = 1. As a result, a uniform
grid along the x and z directions is employed, and a nonuniform grid with clustering near
y = 1is employed along the y direction by the following stretching function:

A i
yi = Niy + po Sln(;\]—y)
If A = 0, the grids are changed to uniform. Tables 4 and 5, respectively, display the
maximum absolute error and convergence rate obtained by solving Problem 2 with the BCD
scheme on nonuniform grids with A = 0.1,0.5,0.92 and on uniform grids, and compared
with the results of the HOC scheme on nonuniform grids with A = 0.1,0.2,0.55, and on
uniform grids in Ref. [34]. The numerical results show that under the nonuniform grids,
the calculated results of the presented BCD scheme are more accurate than those of the
HOC scheme [34]. In addition, the BCD scheme on uniform grids has similar conclusions.
When ¢ is equal to 0.1, 0.05, and 0.01, the maximum absolute error, convergence rate,
and CPU time, which are calculated by the presented BCD scheme on uniform grids and
nonuniform grids for Problem 2, are displayed in Table 6. It can be found that the computed
accuracy on uniform grids deteriorates dramatically with the decrease of €. Especially for
e = 0.01, a low-quality solution is obtained by the BCD scheme on uniform grids, while an
accurate solution is obtained by the BCD scheme on nonuniform grids, and the fifth-order
convergence rates are kept for all cases on nonuniform grids. However, the BCD scheme
on nonuniform grids consumes slightly more CPU time than that on uniform grids under
the same convergence conditions. To demonstrate the accuracy of the presented BCD
scheme, Figure 5 displays grid distribution, the contours of the exact solution, and the
contours of the numerical solution on uniform grids and nonuniform grids with 323 grids.
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To demonstrate the accuracy of the proposed BCD scheme, Figure 5 displays the grid
distribution, contours of the exact solution, and contours of the numerical solution on both
uniform and nonuniform grids, when ¢ = 0.01 and A = 0.85. We can also observe that the
BCD scheme on nonuniform grids exhibits higher accuracy and resolution compared to the
BCD scheme on uniform grids. Additionally, the maximum absolute errors in the boundary
layers on nonuniform grids are significantly smaller than those on uniform grids.

} t 15%10°®

Jaue anjosqy

10U ANjosqy

°©

Figure 5. When ¢ = 0.01 in the plane z = 0.5625 : (a) Stencil of the nonuniform grids (A = 0.92);
(b) The exact solution on nonuniform grids; (c) The absolute error on uniform grids, (d) The maximum
absolute error on nonuniform grids for Problem 2 with 323 grids.

Table 4. Comparison of the maximum absolute error and convergence rate between the BCD scheme
and the HOC scheme [34] on nonuniform grids for Problem 2.

HOC [34] on Nonuniform Grids BCD on Nonuniform Grids
Grid Number
Error Rate Error Rate
e=0.1
16° 1.23 x 107° 1.20 x 10~°
323 757 x 1078 4.02 1.27 x 1078 6.56
643 472 x 10~ 4.00 1.21 x 10710 6.71
e =0.05
16° 1.58 x 10> 1.71 x 107>
323 937 x 1077 4.08 7.73 x 1078 7.79
643 579 x 108 4.02 6.97 x 10710 6.79
¢ =0.01
163 1.24 x 1073 1.56 x 1074
323 6.08 x 107° 435 7.08 x 107 4.46

643 3.86 x 107° 3.98 1.39 x 107 5.67
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Table 5. Comparison of the maximum absolute error and convergence rate and convergence rate
between the BCD scheme and the HOC scheme [35] on uniform grids for Problem 2.

HOC [34] on Uniform Grids BCD on Uniform Grids
Grid Number
Error Rate Error Rate
e=0.1
16° 5.89 x 10~° 2.30 x 107°
323 3.67 x 1077 4.00 256 x 1078 6.49
643 2.29 x 108 4.00 246 x 10710 6.70
e =0.05
163 1.25 x 1074 357 x 1074
323 7.95 x 107 3.97 6.01 x 107 5.89
643 495 x 107 4.01 7.04 x 10710 6.42

Table 6. Comparison of the maximum absolute error, convergence rate, and CPU time of the BCD
scheme between uniform grids and nonuniform grids for Problem 2.

BCD on Uniform Grids BCD on Nonuniform Grids
Grid Number
Error Rate CPU Error Rate CPU
e=0.1
163 2.30 x 10~ 377.02 1.20 x 10~° 368.76
243 1.71 x 1077 6.41 945.70 8.65 x 1078 6.48 935.80
323 256 x 1078 6.60 1979.74 1.27 x 10~8 6.67 1938.75
403 5.84 x 1077 6.62 3294.52 2.88 x 10?7 6.65 3267.10
643 246 x 10710 6.73 11,497.21 1.21 x 10710 6.74 11,607.82
e=0.05
163 3.57 x 1074 370.28 1.71 x 1072 349.66
243 3.46 x 10 5.75 1434.50 5.28 x 1077 8.58 892.31
323 6.01 x 107 6.08 1881.50 7.73 x 1078 6.68 1948.70
403 1.48 x 10~° 6.28 3121.33 1.69 x 10~8 6.81 3184.98
643 7.04 x 1078 6.48 11,867.19 6.97 x 10710 6.78 12,392.76
e=0.01
163 259 x 10! 1.37 449 88 156 x 1074 7.59 534.23
243 9.99 x 102 2.35 1085.34 2.99 x 107° 4.07 1041.01
323 3.99 x 102 2.70 2191.68 7.08 x 107 446 2360.45
403 1.71 x 1072 3.80 3647.55 2.08 x 107° 549 3771.67
643 2.00 x 1073 432 21,577.83 1.39 x 1077 5.76 22,842.95

3.3. Problem 3
Last, considering the 3D convection—diffusion equation with variable coefficients

—(Uxx + thyy + tizz) + puy +quy +ru; = f(x,y,2), 0< x,y,z<1

in which

p=-x1-y)2-2)g=-y(1-2)2-x)r=-201-x)(2-y)

floy,z)=e 11— el/8) et e(em1 — p)
+€y/€(€*1 —q) +€Z/€(871 . 7”)]
for which the exact solution is

u:(eg—l—e%—l—e%—Z)/(e%—l)

The Dirichlet boundary condition is determined by the exact solution, where ¢ is a
parameter that adjusts the exact solution. When ¢ is small, this problem has thin boundary
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layers near x = 1, y = 1, and z = 1. Thus, a nonuniform grid along the three directions
with clustering near x = 1, y = 1, and z = 1 is used by the following stretching function:
i A AT joA LT kA . km
X = N + p= sm(ﬁx), yj= ﬁy + p= sin(=—), zx = N + p= s1n(ﬁz)

If A = 0, the grids result in uniform. Tables 7 and 8, respectively, display the maximum
absolute error and convergence rate obtained by solving Problem 3 with the presented BCD
scheme on nonuniform grids with A = 0.48,0.7,0.9, and on uniform grids, and compared
with the results of the HOC scheme on nonuniform grids with A = 0.4,0.6,0.8, and on
uniform grids in Ref. [34].

Table 7. Comparison of the maximum absolute error and convergence rate between the BCD scheme
and the HOC scheme [34] on nonuniform grids for Problem 3.

Grid Numb HOC [34] on Nonuniform Grids BCD on Nonuniform Grids
" umber Error Rate Error Rate
e=0.1
163 313 x 107° 1.30 x 107>
323 1.97 x 107° 3.99 1.25 x 1077 6.70
643 1.23 x 1077 4.00 1.12 x 1072 6.80
e =0.05
163 2.28 x 1074 438 x 107>
323 1.40 x 1075 4.03 9.09 x 107 5.59
643 8.68 x 107 4.01 1.82 x 10°8 5.64
¢ =0.01
163 554 x 1073 3.63 x 1073
323 337 x 1074 4.04 8.68 x 107° 5.39
643 211 x 107° 4.00 1.52 x 10~° 5.84

Table 8. Comparison of the maximum absolute error and convergence rate between the BCD scheme
and the HOC scheme [34] on uniform grids for Problem 3.

HOC [34] on Uniform Grids BCD on Uniform Grids
Grid Number
Error Rate Error Rate
e=0.1
16° 6.17 x 1074 5.09 x 1074
323 391 x 107> 3.98 8.01 x 107° 5.99
643 246 x 107° 3.99 896 x 1078 6.48
e =0.05
16° 990 x 1073 1.74 x 1072
323 6.48 x 1074 3.93 510 x 10~4 5.09
643 410 x 107> 3.98 8.01 x 1074 5.99

Table 9 demonstrates the maximum absolute error and convergence rate calculated by
the BCD scheme on uniform grids and nonuniform grids for Problem 3. As the parameter
¢ decreases, the boundary layer becomes thinner, necessitating a more clustered grid
arrangement to accurately capture the local singular behavior within the boundary layer.
The numerical results show that for ¢ = 0.1, ¢ = 0.05, the BCD scheme on both nonuniform
and uniform grids can achieve their theoretical accuracy, and the computed result of the
BCD scheme on nonuniform grids is the most accurate. Especially when ¢ = 0.01, the
accuracy of the two schemes on uniform grids decreases to almost less than half of their
theoretical accuracy, while the two schemes on nonuniform grids can keep their theoretical
accuracy for all cases. Figure 6 demonstrates grid distribution, the contours of the exact
solution, and the contours of the numerical solution on both uniform grids and nonuniform
grids with 323 grids when ¢ = 0.01 and A = 0.9, respectively. It is determined that the
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numerical results on uniform grids are unsatisfactory, whereas an extremely accurate
solution is achieved on nonuniform grids, which is nearly indistinguishable from the exact
solution. In addition, the maximum absolute error of the BCD scheme on nonuniform grids
is the smallest.

Table 9. Comparison of the maximum absolute error and convergence rate on uniform grids and
nonuniform grids for Problem 3.

BCD on Uniform Grids BCD on Nonuniform Grids
Grid Number
Error Rate Error Rate
e=0.1
16° 5.09 x 1074 1.30 x 105
243 4.66 x 107> 5.89 8.58 x 107 6.70
323 8.01 x 107° 6.12 1.25 x 1077 6.69
403 1.92 x 107° 6.40 2.74 x 1078 6.80
643 8.96 x 108 6.52 1.12 x 1072 6.80
e =0.05
163 1.74 x 1072 438 x 107>
243 235 x 1073 4.94 5.84 x 107° 4.97
323 510 x 1074 5.30 9.09 x 107 6.47
403 139 x 1074 5.82 1.77 x 1077 7.33
643 8.01 x 10 6.07 1.82 x 1078 484
e =0.01
16° 8.97 x 1071 3.63 x 1073
243 6.60 x 1071 0.76 445 x 1074 5.18
323 379 x 1071 1.93 8.68 x 107° 5.68
403 3.80 x 1071 0.01 252 x 107° 5.54
643 449 x 1072 4.54 152 x 10~® 5.97

>
3
g
H
]
H

Jou3 3jnjosqy

Figure 6. Results for Problem 3: when ¢ = 0.01 in the plane z = 0.8125 (for uniform grids) and
z = 0.8163 (for nonuniform grids): (a) Stencil of grids (A = 0.9); (b) Exact solution, the absolute errors
of (¢) Uniform grids; (d) Nonuniform grids with 323 grids.
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4. Concluding Remarks

In this paper, we have employed Taylor series expansion and remainder modification
techniques of Truncation error to devise a high-order BCD scheme for the 3D convection—
diffusion equation on nonuniform grids. The characteristics of the BCD scheme are easy
to understand and implemented, as the scheme only requires a stencil with 19 points to
enable it to achieve its theoretical accuracy (fifth-to-sixth order) for those problems with
boundary layers and local large gradients. To ensure consistency in accuracy with interior
points, we have formulated fifth- and sixth-order boundary schemes for first and second
derivatives, respectively. The resulting equations are efficiently solved using the hybrid
bi-conjugate gradient stabilized method.

To validate the efficacy and accuracy of the BCD scheme, we have solved three
numerical examples with exact solutions and compared the numerical results with those
in the literature. The numerical results indeed reveal the superiority of the BCD scheme,
which can reach fifth-to-sixth-order accuracy and is better than the BCD scheme on uniform
grids, as well as the high-order compact scheme on nonuniform grids in the literature. This
scheme is considered to be very effective in capturing the boundary layers or local large
gradients present in the solution domain.

In future research, we are planning to extend the BCD scheme to solve other 3D partial
differential equations, such as the 3D Helmholtz equation, 3D parabolic equations, 3D
incompressible Navier-Stokes equations, etc. These equations have various applications
in science and engineering, such as image reconstruction by hypoelliptic diffusion [37],
mathematical neuroscience [38], etc.

Furthermore, since all the computations discussed in this paper were conducted on
a personal computer, an exciting avenue for future research lies in exploring how these
techniques could be adapted or scaled to tackle more computationally demanding problems.
This would likely involve the use of multiprocessor computers, allowing for significant
increases in processing power and speed.
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Appendix A

The coefficients of the high-order BCD scheme on nonuniform grids for the 3D CDE
are demonstrated as follows:
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Ce1 = “ljlﬁllgm Ce2 = %, Ces = ,xl};llg Ces = %,
Cu = Ay 2,
Coo = 2 gy ¢ 2l
where: C, = zalBl +d12, C, = P+d11/ Cs = (Zasz +d ),
Ci=gq +d21, Cs = (2% +d32) Co = 1 +da1.
Appendix B

The coefficients of the high-order BCD scheme on nonuniform grids for the 3D CDE

are demonstrated as follows:
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6051 = m(gbgﬁui,j+l,k+l — 0,071 1 k-1 — 0071 j_1 1
+003u; 1)1 — B2B3Y3lijk — B203ui k1 + OpB3 Y3l i1k + P25 k1 (A8)
+0¢B3v3tij-1k),
6y62u;jk = W(Qd%”i,ﬁlwﬂ — 04071111 — 0uOFU; 51 k1
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Appendix C
The coefficients of the fifth-order left boundary scheme for the u,:
ao = (3ky + 2ko + k3 + 4kyko+2k1 k3 + koks + kik3+2k2ky + k3k3+3k3 + k3 + k3 + kykaks +1)
/ (kK3 42k3ky + k3k3 + k1k3 + kikoks),
bo = —(12ky + 8ky + 4k3 + 12kykp+6k1ks+3koks+2k1 k3 +4k3 ko +2k3ks+9k3+2k3 +3k3
+2k1koks 4+5) / (3ky 4 2ka + k3 + 4kika+2k1 k3 + koks +5)
/ (3k1 + 2ka + k3 + 4kyko+2k1ks + koks + k1k3+2k3ky + k3ks+3Kk2 + k3 + k3 + kykoks +1),
by = —(—2kS — 8KkSky — 4kSks — 3k; — 12k1k3 — 12k{koks — 10kTk, — 2k7k3 — 5kiks
+3k} — 8I3k3 — 12k3k3ks — 12k5k3 — 4iSkok3 — 12k3koks + 8kSky — 2K5K3 + 4k ks
+7k3 — 2K2k5 — 4k3k3ks — 6k3k3 — 2k3k3k3 — 9k3k3ks + 8Kk3kG — 3k3kokd + 8k3koks
+14k3ky + 2k3k3 + 7k3ks + 3k3 — kikj — 2k1k3ks + 4k1 k3 — k1k3k3 + 6k1k3ks + 9k1k3 (AL0)

+2k1kok3 + krkoks + dk1ky + 2k1k3 + 2kqks + k3 + 2k3ks + 2k3 + k3k3 + 3k3ks + k3
+kok3 + koks) / (KS + 4kSky + 2k3ks + 6k1k5 + 6kTkoks + kik3 + 4K3K3 + 6k k3ks
+2k3kok3 + kiks + 2kTk3ks + kik3k3),

by = (2ky + 2ky + k3 + 2k1ky + kiks + koks + k3 + k3 4+1) / (K3k3 + KSkaks + k33 + K2koks),

by = —(2ky + kp + k3 + kiky + kyks + k3 4+1) / (K3 koks+3k3k3ks + k2 koks+3k1k3ks+2kik3ks
+k3ks + k3k3),

by = (2ky + ka4 kiky + k3 +1) / (K koks + k3k3+-3k3k3 ks +6k3kok3 + k3 koks+3Kk3K3 + k2k3+3k1 k3ks
+9k1k3k3+2k1 k33 +9k1kyk3+4k1 ko k3+3k, k3 +2k, k3 + K3k, +4k3K3 + Kks+6k3k3+3k3K3
+4ky k3 +3kok3 + kS + K3).

The coefficients of the fifth-order right boundary scheme for the u,:
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ay = (301 4 20y + v3 + 4v102+201v3 + VU3 + vlv%—i—Zv%vz + 0%034-30% + v‘;’ + v% + 01003 +1)/
(0342030, + V303 + 0103 + v10503),

b, = (1201 4 8vy + 4v3 + 122}102—|—60103+3vzvg—l—ZUlz;%+4v%vz—|—27J%03+9U%+20§’+3v%+27)1 VU3 +5)
/(301 + 207 + v3 + 40102420103 + V203 + V1V3+2030; + V5U3+30F + U3 + U3 + 010,03 +1),

b1 = (—208 — 8vjv, — 4v3u;3 — 307 — 120103 — 12070,03 — 10070, — 20103 — 50fvs + 3v] — 80303
—120“;’0203 — 122)102 — 4010203 — 121)10203 + 80102 - 20103 + 40103 + 701 Zvlvz 4010203
—62}102 2010203 9010203 + 87}102 3010203 + 8010203 + 140102 + 201713 + 70103 =+ 32}1 — vlvé

—27)10203 + 40102 — 010203 + 6010203 + 92}102 + 2010203 + 901003 + 40107 + Zvlvg + 20103 + 042‘

+2’0203 + 202 + 0203 + 31)203 + 0203 + vz + vzvg)/(v1 + 40102 + 20103 + 60102 + 6010203 + 0103

+4vlvz =+ 62)1022)3 + 0102 + 2010203 + 22)10203 + 010203)

bp_p = — (201 + 20y + v3 + 20105 + V13 + VU3 + v% + v% —1—1)/(0%0% + U‘;”02"03 + v%v% + U%Uz?):;)
b3 = (201 + v3 + 03 + V102 + 0103 + V3 +1) / (V3020343030303 + V3020343010503 +201 0505 + U3V3 + V303),
bn_s = — (201 + v2 + 0105 + 03 +1) / (v3v203 + 030343030503 +6030,03 + V3003430303 + V30343010303 (A11)

+9v121203+2010203+9010203+4vl02034-301034—20103 + 0203 + 0203 + 02034—6?} U§+3vzv3+4vzv§

+30,03 + 03 + 13).

The coefficients of the sixth-order left boundary scheme for the uyy:
= —(3kq + ko+2k1ky + K3ko+3k3 + k3 +1) / (k3 + k3k2),

BO = —2(6k]+12k3ko+33k3 +6k2k3 451k ky+69k3 +18k1k3 +74k1 ky+63k1 +15k3 435k,

+21) / (k}+2k ko +4k3 + k3k3+6k3ko+6k3+2k1k3+6k1 ko +4ky + k3+2ky +1),
by = 2(6K]+18KkSko+9KS+18k3k3+-24k5 ko — 3k3-+6kTk3+21k k3 — 7kiky — 3k}

+6k3K5 — 7k3k3 — 6k3ky+9k3 — 3k3k3 — 2k3k3+15k3ky+6k3+11k1 k3 +8k1ko+3K3

+3k3) / (k7 +3kSko+3k3k3 + k1K3),

by = —2( — k3+5k3ky — 2k +6k1k3-+8k1ky — k1 +3k3+3ka) / (KSk3+2K5K3 + k‘{kg), (A1)

by = —2(k3+2ky +1) / (K3k3+5k} k3 +2k4 k3 -+10k3 k5 +8K3K3 + k3k3+10k3k5 +12k3k3

+3k3 K3 +5k1 k§+8k1k3+3k1 k3 + kj+2k§ + K3),
by = —2(9ky+5ky+3k1ko+3K2 +6) / (2k1 + ky + kiky + K3 +1),
bs=2( — 3K — 6ktky — 6k} — 333 — 10K kz — 4k2KE-+6Kk? + ki 3-+6k1Ko-+3Kk1 +2K3-+2k; )
/ (K3 +2k4ky + K3K3),

bo=2(k1 + ko +1)/ (kokt + kzki’).
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The coefficients of the sixth-order right boundary scheme for the u,:
by = — (301 + 02+20102 + V304307 4+ 03 +1) /(03 + v3vy),
b, = —2(6vl+120102+33vl+6vl02+510102+69vl+180102+740102+6301+1502
+350v,421) / (v} +20102+4vl + V303 46030y +605 420105 +60102+401 + V3420, +1),
by—1 = 2(60]+18v8v,+900+1805v3+24v3k, — 305 +60v 03 +210t03 — 7vtv,
3271 +60102 703 02 603 vz+9vl 30102 21)102+150102+6vl+110102
+8010,+303+303) / (0] 43080, 4-30303 + v]03),

by_o = —2( — v3+50%0; — 202 +60103+80102 — 01 +303+302) / (V803420303 + vlvz)

by_3= 291, +5vz+30102+30% +6)/(2v1 + vp + V102 + v% +1),
bys = —2(— 32)1 6vlk2 — 601 305’0% — 100‘1’02 — 4v%v%+6v% + vlv%
+60102+301+202+207) / (05 +201ka + v303), (A13)

by = —2(v1 +v2+1)/ (020} + vzv%).

where:
hy = x1 —xo,k1 = (x2 —x1)/hy, ko = (x3 — x2) /hy, k3 = (x4 — x3) /ly,
hy = xN, — *N,~1,01 = (XN, -1 — XNy —2) /Py, 02 = (XN, —2 — XN, —3) /I,
U3 = (xNX_3 — xNX—4)/hr~

If we assume
hy =y1—yo.k1 = (y2 = y1)/hp k2 = (y3 — y2) /hp, ks = (ya —y3)/he,
hy =yN, —yN,~1,01 = (YN,—1 — YN,—2)/hf, 02 = (YN,—2 — YN,—3)/hf, 03 = (YN,—3 — UN,—4) /hf,
and allow h; = hy,hy = h 3 substituting , and &, into (A10)-(A13), we obtain the coefficients of
high-order boundary schemes for the first and second derivatives {u, iy, }:

RO = “O/E}’l = an;EO = bO/El = bl/EZ = b2/E3 = b3/E4 = b4/ETl = bn/En—l = bn—ll

byo="by_2,by_3="0by3,by,_4="by_4;00==8, &y ==8&yn, bg="0y, b1 ="01,b="0,

—~ —~ —~

by=0by by=by, by="by by 1=by 1, by 2=by2 by3=by3b,a="b,4

Similarly, if we assume
hg =z1—20,k1 = (22 —z1)/hg, ko = (23 — 22) /hg, k3 = (24 — 23) /g,
hy = zN, —2zN,-1,01 = (ZN.-1 — ZN.—2)/hu, 02 = (2N, 2 — 2N, -3) /P, 03 = (2N, -3 — 2N, —4) /T,
and allow h; = hy, h, = hy, substituting h, and h, into (A10)-(A13) again, we also obtain the
coefficients of high-order boundary schemes for the first and second derivatives {u;, 1,5 }:

@ = (o, & = an; bg = bo, by = by, by = by, b3 = b3, by = by; by = by, by 1 = b,_1,
byo =by_2,by—3="by_3,by_s = by_s;0'0 = ko, 0’y = &n; b'g = bo, b’y = by, b’y = by,

~

b3 =bs, by = by by = by, b1 =by1, b0 =by 2,V 3 ="0y_3,0y_s=0,4
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