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Abstract: This paper considers the dual hybrid effects of discrete-time stochastic genetic regulatory
networks and discrete-space stochastic genetic regulatory networks in difference formats of expo-
nential Euler difference and second-order central finite difference. The existence of a unique-weight
pseudo-θ-almost periodic sequence solution for discrete-time and discrete-space stochastic genetic
regulatory networks on the basis of discrete constant variation formulation is discussed, as well
as the theory of semi-flow and metric dynamical systems. Furthermore, a finite-time guaranteed
cost controller is constructed to reach global exponential stability of these discrete networks via
establishing a framework of drive, response, and error networks. The results indicate that spatial
diffusions of non-negative dense coefficients have no influence on the global existence of the unique
weighted pseudo-θ-almost periodic sequence solution of the networks. The present study is a basic
work in the consideration of discrete spatial diffusion in stochastic genetic regulatory networks and
serves as a foundation for further study.

Keywords: discrete spatial diffusion; discrete time; stochastic; weighted pseudo-θ-almost periodicity;
finite-time guaranteed cost controller; finite difference method

MSC: 35B15

1. Introduction

Genetic regulatory networks (GRNs) have been widely recognized due to their possi-
ble usages [1]. GRNs are actually a complex dynamical system that describes the regulatory
mechanisms of DNA, mRNA, and protein interactions in biological systems at the molecu-
lar level [2,3]. The analysis of genetic regulatory networks is not only an important way to
understand and grasp the operation mechanisms of the activity of cellular life [4], but also
has promising applications in the fields of disease genetic prediction and drug target screen-
ing [5–8]. For this reason, it is necessary and valuable to propose suitable mathematical
models to represent expression mechanisms and signal transduction pathways. Currently,
GRNs are generally modeled by Boolean models, Bayesian models, and differential equa-
tion models. Two of the most widely used models are Boolean models and differential
equation models [9–11]. In particular, differential equations describe the concentration
changes in proteins and mRNA [12,13]. This model has received more attention because of
its higher accuracy and its ability to accurately describe the nonlinear dynamic behaviour
of biological systems.

In general, the majority of models utilised to characterize GRNs in the currently
available literature suppose that the concentrations of mRNAs and proteins are spatially
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homogeneous at all times. However, this assumption has some limitations, for example
the diffusion phenomenon should be considered for the case of non-uniform distributions
of gene product concentrations [14]. Therefore, the issue of kinetic analysis of GRNs with
reaction–diffusion effects is worth investigating. Moreover, time delay is often inevitable
due to the finite processing time of interactions among agents and may influence system
performance. As of recently, a great deal of results on GRNs with time delays can be
found in the literature, see, e.g., Han et al. [14], who established an asymptotic stability
criterion for reaction–diffusion delayed GRNs under Dirichlet and Neumann boundary
conditions, respectively, insightfully recognizing that diffusion–reaction information can
reduce the conservation of the system. Robust state estimation of delayed genetic regu-
latory networks with reaction–diffusion terms and uncertainty terms under the Dirichlet
boundary condition is considered by Zou et al. in [15]. Xie et al. [16] discuss the stabil-
ity of genetic regulatory networks, centralised spatial diffusion, and discrete and infinite
distribution delays.

During the processes of both computational simulation and analysis, engineers often
use discrete-time continuous models to evaluate their structural behaviour. The signals
received and operated in digital networks are dependent on discrete-time rather than
continuous-time. Therefore, discrete-time GRNs have been studied by many authors. For
example, Xue et al. [17] investigate the problems of state boundary description and reach-
able set estimation for discrete-time delayed genetic regulatory networks with bounded
perturbations. Liu et al. [18] study the problem of exponential stability analysis of dis-
crete genetic regulatory networks with time-varying discrete-time delays and unbounded
distributed time delays. Yue et al. [19] investigate the dynamics of discrete-time genetic
models and obtain conditions for the existence and stability of fixed points. It is shown
that the discrete-time genetic network undergoes fold bifurcation, flip bifurcation, and
Neimark–Sacker bifurcation, illuminating the richer dynamical properties of the discrete-
time genetic model than the original continuous-time model. It is worth noting that most of
the results on GRNs only concern discrete-time GRNs [17–22], while the results on spatial
discrete GRNs have not received sufficient attention in existing studies, probably owing
to the partial ineffectiveness of traditional methods in space–time continuous networks,
such as the Lyapunov–Krasovskii general functions in discrete-space and -time networks,
and the difficulty of computing the difference. To date, there are several reports referring
to space–time discrete models [23–25]; nevertheless, the models of stochastic space–time
discrete GRNs have not been deeply addressed.

It is well known that stochastic uncertainty is inevitable in various dynamical systems,
with reference to its ability to alter the mechanical properties of genetic regulatory networks
in practical applications. Therefore, the dynamic behaviour of delayed stochastic genetic
regulatory networks has been extensively studied, see the literature [26–29]. For example,
Xu et al. [26] investigate the input state stability problem of stochastic gene regulation
networks with multiple time delays, and give sufficient conditions for the mean square
exponential input state stability of the system using the Lyapunov generalization, Ito’s
formula, and Dynkin’s formula. Wang [29] investigates the dual effects of discrete space
and discrete time in stochastic genetic regulatory networks by means of exponential Eu-
lerian differences and central finite differences. In addition, finite-time guaranteed cost
control is a very effective method in the engineering field due to its many advantages in
practical applications, see references [30–37]. The advantages of finite-time guaranteed
cost controllers are listed below: (1) Stability. A finite-time guaranteed cost controller is a
feedback controller that adjusts the system to remain stable when it is subject to external
disturbances or internal changes. (2) Reliability. It can adjust the control strategy adaptively
depending on the state of the system, so as to increase the reliability of the system. In
summary, the finite-time cost-preserving controller is an advanced control method for
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genetic regulatory networks with many advantages that can assist the system to be more
stable, reliable, and robust, and optimise the performance index of the system.

On the other hand, the global exponential stability and almost periodic nature of GRNs
are significant and necessary dynamical behaviours that have been extensively researched
by many authors in the last two decades, see the literature [18,38–42]. Particularly in
stochastic models, the notion of θ-almost periodicity was first introduced in the paper [43]
on the basis of semi-flow and metric dynamical system theories, and the existence of θ-
almost periodicity for several continuous-time stochastic models was investigated [44,45].
First, pseudo-almost periodicity was introduced in the early 1990s by Zhang [46] as a natu-
ral extension of classical probability periodicity. Since then, pseudo-approximate periodic
solutions of differential equations have attracted a lot of attention. In the literature [47],
Diagana extended pseudo-almost periodicity to weighted pseudo-almost periodicity and
reported a number of excellent contributions on weighted pseudo-almost periodicity, see
references [48–50]. However, the study of the θ-almost periodicity of stochastic discrete-
time GRNs, not to mention weighted pseudo-θ-almost periodicity, influenced by spatial
diffusion, has not been addressed in depth so far.

Based on the above motivation, the main purpose of this paper is to establish discrete-
time stochastic genetic regulatory networks (SGRNs) for discrete-space diffusion using
exponential Euler difference and central finite difference methods. On this ground, a
discrete constant variation formula for discrete SGRNs is derived. On the basis of the
discrete constant variation formula, the weighted pseudo-θ-almost periodicity of discrete
SGRNs with discrete spatial diffusion is investigated by combining the theory of semi-fluid
dynamical systems and metric dynamical systems. In the end, a finite-time guaranteed
cost controller for this type of SGRN is designed by the construction of a drive, response,
and error network framework. The main studies and innovations of this paper are briefly
summarised in turn as follows.

(1) Discrete-time and discrete-space SGRNs are newly introduced, which extends the
studied models in reports [18,40].

(2) The weighted pseudo-θ-almost periodicity of this class of SGRNs is considered for
the first time, which complements the works on the almost periodicity of GRNs in
references [12,38].

(3) Finite-time cost-preserving controllers are designed for this class of SGRNs.

Plan of this paper: In Section 2, a formula for discrete-time and discrete-space SGRNs
is given and the concept of weighted pseudo-θ-almost periodicity is presented. Section 3
discusses the global existence of unique weighted pseudo-θ-almost periodic sequence
solutions for discrete-time and discrete-space SGRNs on the basis of the theory of semifluid
and metric dynamical systems, the discrete constant variation formula, and the fixed-point
theorem. Furthermore, in Section 4, finite-time cost-preserving controllers are designed
by constructing a framework of drive, response, and error networks for discrete-time and
discrete-space SGRNs. Section 5 gives numerical examples of discrete-time and discrete-
space SGRNs achieving weight pseudo-θ-almost periodicity, finite-time guaranteed cost
control, and global exponential stability. The conclusions and main points of the paper are
given in Section 6.

Symbols: Rn denotes the space of n-dimensional real vectors; Z is the field of integral
numbers; N0 = {0, 1, 2, . . .}; N = N0 \ {0}; Nb

a = {a, a+ 1, . . . , b} for any a, b ∈ Z; IJ = I ∩ J,
∀I, J ⊆ R. Let ξ1 = (1, 0, . . . , 0)T , ξ2 = (0, 1, . . . , 0)T , . . . ξm = (0, 0, . . . , 1)T .

Define Np ∈ N for p ∈ Nm
1 , fν :=

{
ν = (ν1, . . . , νm)T : (νp, p) ∈ (NNp−1

1 ,Nm
1 )
}

,

∂fν := f̄ν\fν, f̄ν =
{

ν = (ν1, . . . , νm)T : (νp, p) ∈ (NNp
0 ,Nm

1 )
}

.

For any function f : f̄ν × Z to Rn, we denote as f := f 〈ν〉k = ( f 〈ν〉1,k , . . . , f 〈ν〉n,k )
T , where

(ν, k) ∈ f̄ν ×Z. Sometimes, f = ( f1, . . . , fn)T is used for simplicity.
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2. Problem Formulation

In this section, firstly, discrete-time and discrete-space SGRNs are presented, which
can be considered as discrete formats of continuous-time SGRNs with reaction diffusion.
Secondly, the constant variation formula of the discrete network is obtained by dividing the
discrete network into two discrete sub-networks based on the theory of difference equations.
In the next step, important inequalities are given, such as the Minkowski inequality in
Lemma 2. Finally, the definition of weighted pseudo-θ-almost periodicity is presented.

2.1. Space–Time Discrete Stochastic GRNs

This article considers the following space–time discrete stochastic genetic regulatory
networks (GRNs) in the Euler form of

m〈ν〉i,k+1 = e−ai,khm〈ν〉i,k +
1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,k

+
m

∑
j=1

bij,k f j(p
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,kgj(p
〈ν〉
j,k−µj,k

)w1j,k + Ii,k

]
,

p〈ν〉i,k+1 = e−ci,khp〈ν〉i,k +
1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,k + di,km〈ν〉i,k +
m

∑
j=1

vij,kηj(m
〈ν〉
j,k−νj,k

)w2j,k

] (1)

for (ν, k) ∈ fν × Z and i = 1, 2, . . . , m; mi and pi denote the concentrations of the ith
mRNA and ith protein, respectively;

ãi = ai − 2
n

∑
q=1

Θiq

h̄2 , c̃i = ci − 2
n

∑
q=1

Πiq

h̄2 ,

ãi > 0 and c̃i > 0 are the decay rates of the ith mRNA and ith protein, respectively; Θiq
and Πiq represent the transmission diffusion matrixes, where ∆̃2

h̄q
means the discrete-space

operator denoted by

∆̃2
h̄q

m〈·〉i,· :=
m
〈ν+ξq〉
i,· + m

〈ν−ξq〉
i,·

h̄2 , ∆̃2
h̄q

p〈·〉i,· :=
p
〈ν+ξq〉
i,· + p

〈ν−ξq〉
i,·

h̄2 , q ∈ Nn
1 ;

h̄ and h denote the length of the space and time steps in order; γij and vij stand for noise
intensities; di > 0 is the translation rate; Ii = ∑j∈Ii

wij, wij ≥ 0 is bounded and Ii is the set
of all the j which is a repressor of gene i; bij = wij if transcription factor j is an activator
of gene i, bij = 0 if there is no link from node j to i, and bij = −wij if transcription factor j
is a repressor of gene i; f j, gj, and ηj are Hill functions; w1j,k := 1

h [w1j(kh + h)−w1j(kh)],
w2j,k := 1

h [w2j(kh + h) − w2j(kh)], and i, j = 1, 2, . . . , m; w11, . . . , w1m, w21, . . . , w2m are
scalar mutually independent two-sided standard Brown motions on complete probability
space (Ω,F ,ℱ·, P) with filtration

ℱk = σ
{
(w11,q, . . . , w1m,q, w21,q, . . . , w2m,q) : q ∈ (−∞, k)Z

}
, ∀k ∈ Z.

The Dirichlet boundary conditions of GRNs Equation (1) are described as

m〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = p〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z. (2)

Herein, fν can be regarded as a discrete form of the rectangle area f in Rm, which is
described by

f =
{

x = (x1, x2, . . . , xm)
T ∈ Rm : 0 < xp < Lp := h̄Np, p ∈ Nm

1

}
.
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Let m〈ν〉i,k = Mi(νh̄, kh) and p〈ν〉i,k = Pi(νh̄, kh) for (ν, k) ∈ fν×Z. Then, GRNs Equation (1)
is a full discretization scheme of the following stochastic GRNs with reaction diffusions

∂

∂t
Mi(x, t) =

n

∑
q=1

∂

∂xq

[
Θiq

∂Mi(x, t)
∂xq

]
− ãi(t)Mi(x, t)

+
m

∑
j=1

bij(t) f j(Pj(x, t− σj(t))) + Ii(t) +
m

∑
j=1

γij(x, t)gj(Pj(x, t− µj(t)))
d
dt

W1j(t),

∂

∂t
Pi(x, t) =

n

∑
q=1

∂

∂xq

[
Πiq

∂Pi(x, t)
∂xq

]
− c̃i(t)Pi(x, t)

+di(x, t)Mi(x, t) +
m

∑
j=1

vij(x, t)ηj(Mj(x, t− νj(t)))
d
dt

W2j(t),

Mi(x, t)
∣∣∣∣
x∈∂f

= 0 = Pi(x, t)
∣∣∣∣
x∈∂f

,

(3)

where x = (x1, . . . , xn)T ∈ f ⊆ Rn refers to a space variable.
The discrete techniques in SGRNs Equation (1) are therefore Eulerian difference (ED)

for Brownian motion, exponential Eulerian difference (EED) for time variables, and central
finite difference (CFD) for spatial variables, respectively. For more information on ED, EED,
and CFD, please see the literature [51–55].

Remark 1. By using Euler differences, reports [18,40] considered discrete-time GRNs without
spatial diffusions. In this article, SGRNs Equation (1) extends the models in reports [18,40].

Lemma 1. GRNs Equation (1) can be expressed as

m〈ν〉i,k =
k−1

∏
s=k0

e−ai,shm〈ν〉i,k0
+

k−1

∑
v=k0

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v

×
[

n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,v +
m

∑
j=1

bij,v f j(p
〈ν〉
j,v−σj,v

) +
m

∑
j=1

γij,vgj(p
〈ν〉
j,v−µj,v

)w1j,v + Ii,v

]
,

p〈ν〉i,k =
k−1

∏
s=k0

e−ci,shp〈ν〉i,k0
+

k−1

∑
v=k0

k−1

∏
s=v+1

e−ci,sh(1− e−ci,vh)

ci,v

×
[

n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,v + di,vm〈ν〉i,v +
m

∑
j=1

vij,vηj(m
〈ν〉
j,v−νj,v

)w2j,v

]
,

(4)

where (ν, k) ∈ fν × [k0, ∞)Z with some initial point k0 ∈ Z, i = 1, 2, . . . , m. Moreover, it
holds that

m〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = p〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ [k0, ∞)Z, i = 1, 2, . . . , m.

Lemma 2 ([56] (Minkowski inequality)). If X, Y ∈ L2(Ω,R), then

(
E|X + Y|2

) 1
2 ≤

(
E|X|2

) 1
2
+
(

E|Y|2
) 1

2 .

Lemma 3 ([56] (Hölder inequality)). Let ak, bk : Z→ R. Then,∣∣∣∑
k

akbk

∣∣∣2 ≤∑
k
|ak|∑

k
|ak||bk|2.

Lemma 4. E|w1j,k|2 = E|w2j,k|2 = 1
h for j = 1, 2, . . . , n.
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Proof. By the definition of w1j,k and Ito formula, it is derived that

E|w1j,k|2 =
1
h2 E

( ∫ kh+h

kh
dW1j(s)

)2

=
1
h2 E

∫ kh+h

kh
ds =

1
h

, ∀j = 1, 2, . . . , n.

This completes the proof.

2.2. Weighted Pseudo-Almost Periodicity

In the following, assume that (X, ‖ · ‖X) is a norm linear space, and Lp(Ω,Rn) denotes
the set of all pth integrable Rn-valued random variables with the norm

‖u‖p = max
1≤i≤n

[E|ui|p]1/p, ∀u = (u1, . . . , un)
T ∈ Lp(Ω,Rn), p > 0,

in which E denotes the expectation operator with respect to probability space (Ω,F , P).

Definition 1. Let X ∈ X and ε > 0 be arbitrary. If ν = νε and τ ∈ [a, a + νε]Z for any a ∈ Z,
ensuring that

‖Xk+τ − Xk‖X < ε, ∀k ∈ Z,

then {Xk} is an almost periodic sequence. Herein, τ is called an ε-almost period of X. AP(Z,X)
denotes the set of the whole almost periodic sequences.

Let U be the set of all weight sequences α : Z→ (0,+∞) satisfying

αk+s
αk
≤ ᾱ, ∀k ∈ Z, s ∈ [0, σ0]Z;

µk(α) :=
k

∑
s=−k

αs → +∞,
1

µk(α)

−k

∑
s=−k−σ0

αs → 0, as k→ +∞,

where σ0 = max1≤j≤m supk∈Z{σj,k, µj,k, νj,k}.
Define B(Z,X) as the set of all bounded sequences from Z to X and

PAPµ
0 (Z,X, α) :=

{
X ∈ B(Z,X) : lim

k→+∞

1
µk(α)

k

∑
s=−k

αs‖Xs‖X = 0

}
.

When X = L2(Ω,Rn) or Rn, we use PAPµ
0 (Z,Rn, α) to denote PAPµ

0 (Z,X, α).

Definition 2. Sequence X ∈ B(Z,X) is said to be a weighted pseudo-almost periodic sequence
or an α-pseudo-almost periodic sequence in the case X = Y + Z, where Y ∈ AP(Z,X),
Z ∈ PAPµ

0 (Z,X, α), and α ∈ U. The space of all α-pseudo-almost periodic sequences is rep-
resented by PAPµ(Z,X, α).

Supposing that (Ω,F , P, θ) is a metric dynamical system, see the pioneering work
in [57]. It holds that θk : Ω→ Ω is F -measurable, P(θ−1

k (A)) = P(A) for any A ∈ F , and
θs+k = θs ◦ θk, ∀s, k ∈ Z.

Definition 3. The translation to a sequential process Xk is defined as

LτXk(ω) := Xk+τ(θ−τω), ∀ω ∈ Ω, s, k, τ ∈ Z.
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Definition 4. If Xk ∈ X, ∀k ∈ Z, then X is said to be θ-almost periodic in the case that for
each ε > 0 we can find at least one positive integer ν = ν(ε) and it has a constant τ = τ(ε) ∈
(a, a + ν)Z for arbitrary a ∈ Z, ensuring that

‖LτXk − Xk‖X ≤ ε, ∀k ∈ Z.

Herein, τ is called an ε-θ-almost period of X. The space of all θ-almost periodic sequences is
represented by APθ(Z,X). If LτX = X with τ ∈ Z, then X is said to be θ-periodic.

When X = Lp(Ω,Rn) with p > 0, then X is said to be θ-almost periodic in p-mean. If p = 2,
the elements in PAPθ(Z, Lp(Ω,Rn)) are called a mean square θ-almost periodic sequence. Hereby,
we use a simplified symbol PAPθ(Z,Rn) to denote PAPθ(Z, L2(Ω,Rn)).

Definition 5. Sequence X : Z → X is said to be a weighted pseudo-θ-almost periodic se-
quence or α-pseudo-θ-almost periodic sequence in the case X = Y + Z, where Y ∈ APθ(Z,X),
Z ∈ PAPµ

0 (Z,X, α), and α ∈ U. The space of all α-pseudo-θ-almost periodic sequences is repre-
sented by PAPθ,µ(Z,X, α). If Y is θ-periodic, then X is said to be a weighted pseudo-θ-periodic
sequence or an α-pseudo-θ-periodic sequence.

When X = Lp(Ω,Rn) with p > 0, then X is said to be a weighted pseudo-θ-almost
periodic sequence or an α-pseudo-θ-almost periodic sequence in p-mean. If p = 2, the ele-
ments in PAPθ,µ(Z, Lp(Ω,Rn), α) are called a weighted pseudo mean square θ-almost periodic
sequence or an α-pseudo mean square θ-almost periodic sequence. Hereby, a simplified symbol
PAPθ,µ(Z,Rn, α) := PAPθ,µ(Z, L2(Ω,Rn), α).

3. Mean Square α-Pseudo-θ-Almost Periodic Sequence

This section focuses on weighted pseudo-θ-almost periodic sequence solutions in the
mean square sense of SGRNs Equation (1) based on stochastic calculus theory, the constant
variation formula, and the Banach contraction mapping principle.

For any u = (m, p)T ∈ PAPθ,µ(fν × Z,R2m, α) with m = (m1, · · · , mm)T and p =

(p1, · · · , pm)T , define Γ : PAPθ,µ(fν ×Z,R2m, α)→ R2m by

Γu =
(
(Φu1), · · · , (Φu)m, (Ψu)1, · · · , (Ψu)m

)T
,

where

(Φu)〈ν〉i,k =
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v

[
n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,v

+
m

∑
j=1

bij,v f j(p
〈ν〉
j,v−σj,v

) +
m

∑
j=1

γij,vgj(p
〈ν〉
j,v−µj,v

)w1j,v + Ii,v

]
,

(Ψu)〈ν〉i,k =
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ci,sh(1− e−ci,vh)

ci,v

[
n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,v

+
m

∑
j=1

vij,vηj(m
〈ν〉
j,v−νj,v

)w2j,v + di,vm〈ν〉i,v

]
, ∀(ν, k) ∈ fν ×Z;

(5)

(Φu)〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = (Ψu)〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z, i = 1, 2, . . . , m.

For ∀u = (m, p) ∈ PAPθ,µ(fν ×Z,R2m, α), define the norm as follows:

‖u‖∞ = sup
(ν,k)∈fν×Z

max
1≤i≤m

{∥∥∥m〈ν〉i,k

∥∥∥
2
,
∥∥∥p〈ν〉i,k

∥∥∥
2

}
,
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in which
∥∥∥m〈ν〉i,k

∥∥∥
2
=

[
E
(

m〈ν〉i,k

)2
] 1

2
and

∥∥∥p〈ν〉i,k

∥∥∥
2
=

[
E
(

p〈ν〉i,k

)2
] 1

2
for all (ν, k) ∈ fν × Z,

i = 1, 2, . . . , m.
Define

ai := inf
k∈Z

ai,k, ci := inf
k∈Z

ci,k, d̄i := sup
k∈Z
|di,k|,

Īi := sup
k∈Z
|Ii,k|, b̄ij := sup

k∈Z
|bij,k|, γ̄ij := sup

k∈Z
|γij,k|, v̄ij := sup

k∈Z
|vij,k|,

where i, j = 1, 2, . . . , m.
In the later discussion of this paper, the following assumptions are necessary:

(g1) ai and ci are R-valued almost periodic sequences; σj, µj, and νj are Z0-valued almost
periodic sequences; bij, γij, vij, Ii, and di are R-valued α-pseudo-almost periodic se-
quences.

(g2) f j(0) = gj(0) = ηj(0) = 0 and there exist positive numbers L f
j , Lg

j and Lη
j such that

| f j(u)− f j(v)| ≤ L f
j |u− v|, |gj(u)− gj(v)| ≤ Lg

j |u− v|, |ηj(u)− ηj(v)| ≤ Lη
j |u− v|

for any u, v ∈ R, j = 1, 2, . . . , m.
(g3) min1≤i≤m{ai, ci} > 0.

3.1. α-Pseudo-θ-Almost Periodicity of Operator Γ

Define a coordinate function wpj,k(ω) := wpj(kh, ω) := ωpj,k and θ = (θk)k∈Z, which
is the dynamical system on (Ω,F , P), as

θkω(s) =
(

w11,k+s −w11,k, . . . , w1m,k+s −w1m,k, w21,k+s −w21,k, . . . , w2m,k+s −w2m,k

)T
,

where ω = (ω11, . . . , ω1m, ω21, . . . , ω2m)
T ∈ Ω, k, s ∈ Z, p = 1, 2, j = 1, 2, . . . , m.

For any k, τ ∈ Z and ω ∈ Ω, it holds that

wpj,k+τ(θ−τω) = wpj,k(ω)−wpj,−τ(ω), p = 1, 2, j = 1, 2, . . . , m. (6)

Lemma 5. Let σ : Z → [0, σ0]Z with σ0 > 0 and ∆σ < 1. If x ∈ PAPµ
0 (Z,X, α), then

xk−σk
∈ PAPµ

0 (Z,X, α), ∀k ∈ Z.

Proof. By the definition of PAPµ
0 (Z,X, α), we obtain

1
µk(α)

k
∑

s=−k
αs‖xs−σs‖X ≤ ᾱ

µk(α)

k−σk
∑

q=−k−σ−k

αq
∥∥xq
∥∥
X

≤ ᾱ
µk(α)

k
∑

q=−k
αq
∥∥xq
∥∥
X + ᾱ

µk(α)

−k
∑

q=−k−σ0

αq
∥∥xq
∥∥
X → 0,

as k→ ∞. This completes the proof.

Corollary 1. If x ∈ PAPµ
0 (Z,X, α), then xk−1 ∈ PAPµ

0 (Z,X, α) for each k ∈ Z.

Lemma 6. Let σ : Z→ [0, σ0]Z be an almost periodic sequence, which satisfies the conditions in
Lemma 5. If x ∈ PAPθ,µ(Z,X, α), then xk−σk

∈ PAPθ,µ(Z,X, α), ∀k ∈ Z.

Proof. Owing to x ∈ PAPθ,µ(Z,X, α), then x = x̂ + x̆, where x̂ ∈ APθ(Z,R) and
x̆ ∈ PAPµ

0 (Z,R, α). From Lemma 5, x̆k−σk
∈ PAPµ

0 (Z,X, α), ∀k ∈ Z. It suffices to prove
x̂k−σk

∈ APθ(Z,X), ∀k ∈ Z.
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Let τ ∈ Z be an ε-θ-almost period of σ and x̂, ε ∈ (0, 1). Noting that σ : Z→ Z, so

|σk+τ − σk| = 0 < ε, ∀k ∈ Z,

which derives∥∥Lτ x̂k−σk
− x̂k−σk

∥∥
X ≤

∥∥∥x̂k+τ−σk+τ
− x̂k−σk+τ

∥∥∥
X
+
∥∥∥x̂k−σk+τ

− x̂k−σk

∥∥∥
X
< ε, ∀k ∈ Z.

Then, x̂k−σk
∈ APθ(Z,X), ∀k ∈ Z. This completes the proof.

Lemma 7. If b ∈ PAPµ(Z,R, α), x ∈ PAPθ,µ(Z,X, α) is bounded, f (0) = 0, and f : R → R
meets the Lipschitz condition with Lipschitz constant L f > 0, then b f (x) ∈ PAPθ,µ(Z,X, α).

Proof. Under the assumptions in Lemma 7, there exist b̂ ∈ AP(Z,R), b̆ ∈ PAPµ
0 (Z,R, α),

x̂ ∈ APθ(Z,X), and x̆ ∈ PAPµ
0 (Z,X, α) such that

b = b̂ + b̆, x = x̂ + x̆.

For any τ ∈ Z,∥∥∥Lτ b̂k f (x̂k)− b̂k f (x̂k)
∥∥∥
X

=
∥∥∥b̂k+τ f (Lτ x̂k)− b̂k f (x̂k)

∥∥∥
X

≤
∣∣∣b̂k+τ − b̂k

∣∣∣L f ‖x̂k+τ(θ−τω)‖X + |b̂k|L f ‖Lτ x̂k − x̂k‖X, ∀k ∈ Z,

which implies b̂ f (x̂) ∈ APθ(Z,X). Meanwhile,∥∥∥b f (x)− b̂ f (x̂)
∥∥∥
X
≤ |b̆|L f ‖x‖2 + |b̂|L f ‖x̆‖X,

which induces b f (x)− b̂ f (x̂) ∈ PAPµ
0 (Z,X, α). This completes the proof.

Lemma 8. If a ∈ AP(Z,R) with a = infk∈Z ak > 0, x ∈ PAPθ,µ(Z,R, α) is bounded and xk is
ℱk-adaptive for each k ∈ Z, then

k−1

∑
v=−∞

k−1

∏
s=v+1

e−ashxv ∈ PAPθ,µ(Z,R, α),
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ashxvwpj,v ∈ PAPθ,µ(Z,R, α), ∀k ∈ Z,

where p = 1, 2, j = 1, 2, . . . , m.

Proof. Similar to Lemma 7, there exist x̂ ∈ APθ(Z,R) and x̆ ∈ PAPµ
0 (Z,R, α) such that

x = x̂ + x̆.
Let ā = supk∈Z ak, τ ∈ Z be an ε-θ-almost period of a and x̂,

Îpj,k :=
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ashx̂vwpj,v, Ĭpj,k :=
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ashx̆vwpj,v, ∀k ∈ Z,

where p = 1, 2, j = 1, 2, . . . , m. By using Equation (6) and the Minkowski and Hölder
inequalities in Lemmas 2 and 3, we have

∥∥Lτ Îpj,k − Îpj,k
∥∥

2 =

{
E
[

k−1
∑

v=−∞

k−1
∏

s=v+1
e−ash

(
eash(e−as+τ h − e−ash)x̂v+τ + (x̂v+τ − x̂v)

)
wpj,v

]2} 1
2

≤
{ k−1

∑
v=−∞

e−a(k−v−1)h
k−1

∑
v=−∞

e−a(k−v−1)hE
[(

e(ā−a)hεh|x̂v+τ |+ |x̂v+τ − x̂v|
)

wpj,v

]2} 1
2

≤ 1
1−e−ah

(
e(ā−a)hh sup

k∈Z
‖x̂k‖2 + 1

)
h−

1
2 ε, ∀k ∈ Z,

which implies Îpj ∈ APθ(Z,R), p = 1, 2, j = 1, 2, . . . , m.
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On the other hand, similar to the before derivation, we attain

∥∥∥Ĭpj,k

∥∥∥
2

=

{
E
[

k−1
∑

v=−∞

k−1
∏

s=v+1
e−ashx̆vwpj,v

]2} 1
2

≤
[ k−1

∑
v=−∞

e−a(k−v−1)h
k−1

∑
v=−∞

e−a(k−v−1)hE
(
x̆2

vw2
pj,v
)] 1

2

≤
[

1
1−e−ah

k−1
∑

v=−∞

1
h e−a(k−v−1)h‖x̆v‖2

2

] 1
2

, ∀k ∈ Z,

which implies

lim
k→+∞

1
µk(α)

k
∑

s=−k
αs
∥∥Ĭpj,s

∥∥
2 ≤ lim

k→+∞
1

µk(α)

[
k
∑

s=−k
αs

k
∑

s=−k
αs
∥∥Ĭpj,s

∥∥2
2

] 1
2

≤ lim
k→+∞

[
1

µk(α)(1−e−ah)

k
∑

s=−k
αs

s−1
∑

v=−∞

1
h e−a(s−v−1)h‖x̆v‖2

2

] 1
2

≤
[

supk∈Z ‖x̆k‖2
1−e−ah

∞
∑

q=0
e−aqh 1

h lim
k→+∞

1
µk(α)

k
∑

s=−k
αs‖x̆s−q−1‖2

] 1
2

(q = s− v− 1)

= 0, p = 1, 2, j = 1, 2, . . . , m.

In the above computations, Corollary 1 and the principle of uniform convergence
are employed. Thus, ∑k−1

v=−∞ ∏k−1
s=v+1 e−ashxvw··,v ∈ PAPθ,µ(Z,R, α), ∀k ∈ Z. Furthermore,

∑k−1
v=−∞ ∏k−1

s=v+1 e−ashxv ∈ PAPθ,µ(Z,R, α) can be similarly addressed, and ∀k ∈ Z. This
completes the proof.

Together with Lemmas 5–8, we derive the following:

Theorem 1. Supposing that (g1)–(g3) hold. Then, Γ maps PAPθ,µ(fν × Z,R2m, α) to
PAPθ,µ(fν ×Z,R2m, α).

3.2. Weighted Pseudo-Almost Periodic Sequence Solution to GRNs Equation (1)

Define

PAPθ,µ
b (fν ×Z,R2m, α) =

{
u ∈ PAPθ,µ(fν ×Z,R2m, α) : ‖u− ϕ‖∞ ≤

ςϕ0

1− ς

}
,

where

ϕ = (ϕ1, ϕ2, · · · , ϕm, 0, · · · , 0)T , ϕ
〈ν〉
i,k =

k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v
Ii,v

for all (ν, k) ∈ fν ×Z, i = 1, 2, . . . , m. From the definition of ϕ, we derive

‖ϕ‖∞ = max
1≤i≤m

sup
(ν,k)∈fν×Z

∥∥∥ϕ
〈ν〉
i,k

∥∥∥
2
= max

1≤i≤m
sup

(ν,k)∈fν×Z

k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v
Ii,v ≤ max

1≤i≤m

Īi
ai

= ϕ0,

which induces

‖u‖∞ ≤ ‖u− ϕ‖∞ + ‖ϕ‖∞ ≤
ςϕ0

1− ς
+ ϕ0 =

ϕ0

1− ς
, ∀u ∈ PAPθ,µ

b (fν ×Z,R2m, α).

Theorem 2. Let (g1)–(g3) be valid. GRNs Equation (1) possesses a unique weighted pseudo- or
α-pseudo-almost periodic sequence solution if the following condition holds.
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(g4) ς = max{ς1, ς2} < 1, where

ς1 = max
1≤i≤m

1
ai

[
n

∑
q=1

2|Θiq|
h̄2 +

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j h−

1
2

]
,

ς2 = max
1≤i≤m

1
ci

[
n

∑
q=1

2|Πiq|
h̄2 +

m

∑
j=1

v̄ijL
η
j h−

1
2 + d̄i

]
.

Proof. Let us prove that the operator Γ is self-mapping from PAPθ,µ
b (fν × Z,R2m, α) to

PAPθ,µ
b (fν × Z,R2m, α). Supposing that u = (m, p)T = (m1, · · · , mm, p1, · · · , pm)T ∈

PAPθ,µ
b (fν × Z,R2m, α). In view of Equation (5) and by utilizing the Minkowski and

Hölder inequalities in Lemmas 2 and 3, we have∥∥∥(Φu)〈ν〉i,k − ϕ
〈ν〉
i,k

∥∥∥
2
=

{
E

(
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v

[
n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,v

+
m
∑

j=1
bij,v f j(p

〈ν〉
j,v−σj,v

) +
m
∑

j=1
γij,vgj(p

〈ν〉
j,v−µj,v

)w1j,v

])2} 1
2

≤ 1−e−ai h

ai

{
E

(
k−1

∑
v=−∞

e−ai(k−v−1)h

[
n

∑
q=1
|Θiq||∆̃2

h̄q
m〈ν〉i,v |

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

|+
m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

||w1j,v|
])2} 1

2

≤ 1−e−ai h

ai

{
k−1
∑

v=−∞
e−ai(k−v−1)h

k−1

∑
v=−∞

e−ai(k−v−1)h

× E

[
n

∑
q=1
|Θiq||∆̃2

h̄q
m〈ν〉i,v |+

m

∑
j=1

b̄ijL
f
j |p
〈ν〉
j,v−σj,v

|+
m

∑
j=1

γ̄ijL
g
j |p
〈ν〉
j,v−µj,v

||w1j,v|
]2} 1

2

≤ 1−e−ai h

ai

{
1

1−e−ai h

k−1

∑
v=−∞

e−ai(k−v−1)h

{(
E

[
n

∑
q=1
|Θiq||∆̃2

h̄q
m〈ν〉i,v |

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

|+
m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

||w1j,v|
]2) 1

2
}2} 1

2

≤ 1−e−ai h

ai

{
1

1−e−ai h

k−1

∑
v=−∞

e−ai(k−v−1)h

{(
E

(
n

∑
q=1
|Θiq||∆̃2

h̄q
m〈ν〉i,v |

)2) 1
2

+

(
E

(
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

|
)2) 1

2

+

(
E

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

||w1j,v|
)2) 1

2
}2} 1

2

≤ 1−e−ai h

ai

{
1

1−e−ai h

k−1

∑
v=−∞

e−ai(k−v−1)h

{
n

∑
q=1
|Θiq|

2
h̄
‖u‖∞

+
m
∑

j=1
b̄ijL

f
j ‖u‖∞ +

m
∑

j=1
γ̄ijL

g
j

1√
h
‖u‖∞

}2} 1
2

≤ 1−e−ai h

ai

{
1

1−e−ai h

1
1− e−aih

{
n

∑
q=1
|Θiq|

2
h̄
‖u‖∞

+
m
∑

j=1
b̄ijL

f
j ‖u‖∞ +

m
∑

j=1
γ̄ijL

g
j

1√
h
‖u‖∞

}2} 1
2

≤ 1
ai

( n

∑
q=1
|Θiq|

2
h̄
+

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j

1√
h

)
‖u‖∞

≤ ςϕ0
1−ς , i = 1, 2, . . . , m,

(7)

as well as
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∥∥∥(Ψu)〈ν〉i,k − 0
∥∥∥

2
=

{
E

(
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ci,sh(1− e−ci,vh)

ci,v

[
n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,v

+di,vm〈ν〉i,v +
m
∑

j=1
vij,vηj(m

〈ν〉
j,v−νj,v

)w2j,v

])2} 1
2

≤ 1−e−cih

ci

{
E

(
k−1

∑
v=−∞

e−ci(k−v−1)h

[
n

∑
q=1
|Πiq||∆̃2

h̄q
p〈ν〉i,v |

+d̄i|m
〈ν〉
i,v |+

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

||w2j,v|
])2} 1

2

≤ 1−e−cih

ci

{
k−1
∑

v=−∞
e−ci(k−v−1)h

k−1

∑
v=−∞

e−ci(k−v−1)h

×E

[
n

∑
q=1
|Πiq||∆̃2

h̄q
p〈ν〉i,v |+ d̄i|m

〈ν〉
i,v |+

m

∑
j=1

v̄ijL
η
j |m

〈ν〉
j,v−νj,v

||w2j,v|
]2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{(
E

[
n

∑
q=1
|Πiq||∆̃2

h̄q
p〈ν〉i,v |

+d̄i|m
〈ν〉
i,v |+

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

||w2j,v|
]2) 1

2
}2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{(
E

(
n

∑
q=1
|Πiq||∆̃2

h̄q
p〈ν〉i,v |

)2) 1
2

+

(
E

(
d̄i|m

〈ν〉
j,v |
)2) 1

2

+

(
E

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

||w2j,v|
)2) 1

2
}2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

×
{

n

∑
q=1
|Πiq|

2
h̄
‖u‖∞ + d̄i‖u‖∞ +

m

∑
j=1

v̄ijL
η
j

1√
h
‖u‖∞

}2} 1
2

≤ 1−e−cih

ci

{
1

1−e−cih
1

1− e−cih

×
{

n

∑
q=1
|Πiq|

2
h̄
‖u‖∞ + d̄i‖u‖∞ +

m

∑
j=1

v̄ijL
η
j

1√
h
‖u‖∞

}2} 1
2

≤ 1
ci

( n

∑
q=1
|Πiq|

2
h̄
+ d̄i +

m

∑
j=1

v̄ijL
η
j

1√
h

)
‖u‖∞

≤ ςϕ0
1−ς , i = 1, 2, . . . , m.

(8)

In the calculations of the stochastic terms of Equations (7) and (8), Lemma 4 has been
employed.

Together with Equations (7) and (8), ‖Γu− ϕ‖∞ ≤
ςϕ0

1− ς
and Γu is well defined in

space
(

PAPθ,µ
b (fν ×Z,R2m, α), ‖ · ‖∞

)
for any u ∈ PAPθ,µ

b (fν ×Z,R2m, α).

In the end, the property of contraction to the operator Γ in space PAPθ,µ
b (fν ×

Z,R2m, α)will be demonstrated. Let u = (m1, · · · , mm, p1, · · · , pm)T and ũ = (m̃1, · · · , m̃m,
p̃1, · · · , p̃m)T belong to space PAPθ,µ

b (fν ×Z,R2m, α), it follows that
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∥∥∥(Φu)〈ν〉i,k − (Φũ)〈ν〉i,k

∥∥∥
2
=

{
E

(
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ai,sh(1− e−ai,vh)

ai,v

[
n

∑
q=1

Θiq∆̃2
h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )

+
m
∑

j=1
bij,v

(
f j(p

〈ν〉
j,v−σj,v

)− f j(p̃
〈ν〉
j,v−σj,v

)
)

+
m
∑

j=1
γij,v

(
gj(p

〈ν〉
j,v−µj,v

)− gj(p̃
〈ν〉
j,v−µj,v

)
)

w1j,v

])2} 1
2

≤ 1−e−aih

ai

{
E

(
k−1

∑
v=−∞

e−ai(k−v−1)h

[
n

∑
q=1
|Θiq||∆̃2

h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )|

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

− p̃〈ν〉j,v−σj,v
|+

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

− p̃〈ν〉j,v−µj,v
||w1j,v|

])2} 1
2

≤ 1−e−aih

ai

{
k−1
∑

v=−∞
e−ai(k−v−1)h

k−1
∑

v=−∞
e−ai(k−v−1)hE

[
n
∑

q=1
|Θiq||∆̃2

h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )|

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

− p̃〈ν〉j,v−σj,v
|+

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

− p̃〈ν〉j,v−µj,v
||w1j,v|

]2} 1
2

≤ 1−e−aih

ai

{
1

1−e−aih

k−1

∑
v=−∞

e−ai(k−v−1)h

{(
E

[
n

∑
q=1
|Θiq||∆̃2

h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )|

+
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

− p̃〈ν〉j,v−σj,v
|+

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

− p̃〈ν〉j,v−µj,v
||w1j,v|

]2) 1
2
}2} 1

2

≤ 1−e−aih

ai

{
1

1−e−aih

k−1

∑
v=−∞

e−ai(k−v−1)h

{(
E

(
n

∑
q=1
|Θiq||∆̃2

h̄q
(m〈ν〉i,v − m̃〈ν〉i,v )|

)2) 1
2

+

(
E

(
m
∑

j=1
b̄ijL

f
j |p
〈ν〉
j,v−σj,v

− p̃〈ν〉j,v−σj,v
|
)2) 1

2

+

(
E

m
∑

j=1
γ̄ijL

g
j |p
〈ν〉
j,v−µj,v

− p̃〈ν〉j,v−µj,v
||w1j,v|

)2) 1
2
}2} 1

2

≤ 1−e−aih

ai

{
1

1−e−aih

k−1

∑
v=−∞

e−ai(k−v−1)h

{
n

∑
q=1
|Θiq|

2
h̄
‖u− ũ‖∞

+
m
∑

j=1
b̄ijL

f
j ‖u− ũ‖∞ +

m
∑

j=1
γ̄ijL

g
j

1√
h
‖u− ũ‖∞

}2} 1
2

≤ 1−e−aih

ai

{
1

(1−e−aih)2

{
n
∑

q=1
|Θiq| 2h̄‖u− ũ‖∞

+
m
∑

j=1
b̄ijL

f
j ‖u− ũ‖∞ +

m
∑

j=1
γ̄ijL

g
j

1√
h
‖u− ũ‖∞

}2} 1
2

≤ 1
ai

( n

∑
q=1
|Θiq|

2
h̄
+

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j

1√
h

)
‖u− ũ‖∞

≤ ς‖u− ũ‖∞, i = 1, 2, . . . , m,

(9)

as well as
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∥∥∥(Ψu)〈ν〉i,k − (Ψũ)〈ν〉i,k

∥∥∥
2
=

{
E

(
k−1

∑
v=−∞

k−1

∏
s=v+1

e−ci,sh(1− e−ci,vh)

ci,v

[
n

∑
q=1

Πiq∆̃2
h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )

+di,v(m
〈ν〉
i,v − m̃〈ν〉i,v ) +

m
∑

j=1
vij,vηj(m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
)w2j,v

])2} 1
2

≤ 1−e−cih

ci

{
E

(
k−1

∑
v=−∞

e−ci(k−v−1)h

[
n

∑
q=1
|Πiq||∆̃2

h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )|

+d̄i|m
〈ν〉
i,v − m̃〈ν〉i,v |+

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
||w2j,v|

])2} 1
2

≤ 1−e−cih

ci

{
k−1
∑

v=−∞
e−ci(k−v−1)h

k−1

∑
v=−∞

e−ci(k−v−1)hE

[
n

∑
q=1
|Πiq||∆̃2

h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )|

+d̄i|m
〈ν〉
i,v − m̃〈ν〉i,v |+

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
||w2j,v|

]2} 1
2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{(
E

[
n

∑
q=1
|Πiq||∆̃2

h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )|

+d̄i|m
〈ν〉
i,v − m̃〈ν〉i,v |+

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
||w2j,v|

]2) 1
2
}2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{(
E

(
n

∑
q=1
|Πiq||∆̃2

h̄q
(p〈ν〉i,v − p̃〈ν〉i,v )|

)2) 1
2

+

(
E

(
d̄i|m

〈ν〉
j,v − m̃〈ν〉j,v |

)2) 1
2

+

(
E

m
∑

j=1
v̄ijL

η
j |m

〈ν〉
j,v−νj,v

− m̃〈ν〉j,v−νj,v
||w2j,v|

)2) 1
2
}2} 1

2

≤ 1−e−cih

ci

{
1

1−e−cih

k−1

∑
v=−∞

e−ci(k−v−1)h

{
n

∑
q=1
|Πiq|

2
h̄
‖u− ũ‖∞

+d̄i‖u− ũ‖∞ +
m
∑

j=1
v̄ijL

η
j

1√
h
‖u− ũ‖∞

}2} 1
2

≤ 1−e−cih

ci

{
1

(1−e−cih)2

{
n
∑

q=1
|Πiq| 2h̄‖u− ũ‖∞

+d̄i‖u− ũ‖∞ +
m
∑

j=1
v̄ijL

η
j

1√
h
‖u− ũ‖∞

}2} 1
2

≤ 1
ci

( n

∑
q=1
|Πiq|

2
h̄
+ d̄i +

m

∑
j=1

v̄ijL
η
j

1√
h

)
‖u− ũ‖∞

≤ ς‖u− ũ‖∞, i = 1, 2, . . . , m.

(10)

The inequalities in Equations (9) and (10) exhibit ‖Γu− Γũ‖∞ ≤ ς‖u− ũ‖∞, ∀u, ũ ∈
PAPθ,µ

b (fν × Z,R2m, α). In line with assumption (g1), the operator Γ is a contraction

mapping. Consequently, Γ possess a unique fixed point û = (m̂, p̂)T ∈ PAPθ,µ
b (fν ×

Z,R2m, α), i.e., Γû = û. Hence, û is a unique weighted pseudo-almost periodic sequence to
GRNs Equation (1). This completes the proof.

Remark 2. Articles [12,38] studied the existence of a unique (weighted pseudo) almost periodic
solution of continuous-time GRNs without spatial diffusions. However, this paper not only regards
the spatial diffusions, but also studies the corollary responding to multi-variable discrete GRNs. So
Theorem 2 complements the works of [12,38].
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4. Finite-Time Guaranteed Cost Controls in Exponential Form

In this section, finite-time guaranteed cost controllers for SGRNs Equation (1) are
designed based on the drive network, response network, and error network. The global
exponential stability of SGRNs Equation (1) in the mean square sense is also discussed.

4.1. The Frame of Controlling GRNs

Let û = (m̂, p̂)T ∈ PAPθ,µ
b (fν × Z,R2m, α) be the unique weighted pseudo-almost

periodic sequence to GRNs Equation (1), where m̂ = (m̂1, . . . , m̂m)T and p̂ = (p̂1, . . . , p̂m)T .
That is,

m̂〈ν〉i,k+1 = e−ai,khm̂〈ν〉i,k +
1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

m̂〈ν〉i,k

+
m

∑
j=1

bij,k f j(p̂
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,kgj(p̂
〈ν〉
j,k−µj,k

)w1j,k + Ii,k

]
,

p̂〈ν〉i,k+1 = e−ci,khp̂〈ν〉i,k +
1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

p̂〈ν〉i,k

+
m

∑
j=1

vij,kηj(m̂
〈ν〉
j,k−νj,k

)w2j,k + di,km̂〈ν〉i,k

]
, ∀(ν, k) ∈ fν ×Z0,

(11)

where i = 1, 2, . . . , m. The initial and boundary values of GRNs Equation (11) can be
described as

m̂〈·〉i,s = ϕ̂
〈·〉
i,s , p̂〈·〉i,s = φ̂

〈·〉
i,s , ∀s ∈ [−σ0, 0]Z; m̂〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = p̂〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z0,

where i = 1, 2, . . . , m.
A controlling network is constructed as below:

m〈ν〉i,k+1 = e−ai,khm〈ν〉i,k +
1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

m〈ν〉i,k

+
m

∑
j=1

bij,k f j(p
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,kgj(p
〈ν〉
j,k−µj,k

)w1j,k + Ii,k

]
+ ρ
〈ν〉
i,k ,

p〈ν〉i,k+1 = e−ci,khp〈ν〉i,k +
1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

p〈ν〉i,k

+
m

∑
j=1

vij,kηj(m
〈ν〉
j,k−νj,k

)w2j,k + di,km〈ν〉i,k

]
+ $
〈ν〉
i,k , (ν, k) ∈ fν ×Z0,

(12)

where i = 1, 2, . . . , m. The initial and boundary values of GRNs Equation (12) are given by

m〈·〉i,s = ϕ
〈·〉
i,s , p〈·〉i,s = φ

〈·〉
i,s , ∀s ∈ [−σ0, 0]Z; m〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = p〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z0,

where i = 1, 2, . . . , m.
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Let ei = mi − m̂i and wi = pi − p̂i, i = 1, 2, . . . , m. Together with GRNs Equations (12)
and (11), it yields

e〈ν〉i,k+1 = e−ai,khe〈ν〉i,k +
1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

e〈ν〉i,k

+
m

∑
j=1

bij,k f̃ j(w
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,k g̃j(w
〈ν〉
j,k−µj,k

)w1j,k] + ρ
〈ν〉
i,k ,

w〈ν〉i,k+1 = e−ci,khw〈ν〉i,k +
1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

w〈ν〉i,k

+
m

∑
j=1

vij,kη̃j(e
〈ν〉
j,k−νj,k

)w2j,k + di,ke〈ν〉i,k

]
+ $
〈ν〉
i,k ,

(13)

where

f̃ j(wj) = f j(pj)− f j(p̂j), g̃j(wj) = gj(pj)− gj(p̂j), η̃j(ej) = gj(mj)− gj(m̂j),

in which (ν, k) ∈ fν ×Z0, i, j = 1, 2, . . . , m.
The state feedback controller is designed:

ρ
〈·〉
i,k = κie

〈·〉
i,k , $

〈·〉
i,k = κiw

〈·〉
i,k , ∀k ∈ Z0, (14)

where κi and κi denote the controller gains to be determined later, i = 1, 2, . . . , m.
Substituting controller Equation (14) into the error network Equation (13) leads to

e〈ν〉i,k+1 = (e−ai,kh + κi)e
〈ν〉
i,k +

1− e−ai,kh

ai,k

[ n

∑
q=1

Θiq∆̃2
h̄q

e〈ν〉i,k

+
m

∑
j=1

bij,k f̃ j(w
〈ν〉
j,k−σj,k

) +
m

∑
j=1

γij,k g̃j(w
〈ν〉
j,k−µj,k

)w1j,k

]
,

w〈ν〉i,k+1 = (e−ci,kh +κi)w
〈ν〉
i,k +

1− e−ci,kh

ci,k

[ n

∑
q=1

Πiq∆̃2
h̄q

w〈ν〉i,k

+
m

∑
j=1

vij,kη̃j(e
〈ν〉
j,k−νj,k

)w2j,k + di,ke〈ν〉i,k

]
, (ν, k) ∈ fν ×Z0,

(15)

where i = 1, 2, . . . , m.
Similar to the derivation of Formula (4), we achieve

e〈ν〉i,k =
k−1

∏
s=0

(e−ai,sh + κi)e
〈ν〉
i,0 +

k−1

∑
v=0

k−1

∏
s=v+1

(e−ai,sh + κi)(1− e−ai,vh)

ai,v

×
[

n

∑
q=1

Θiq∆̃2
h̄q

e〈ν〉i,v +
m

∑
j=1

bij,v f̃ j(w
〈ν〉
j,v−σj,v

) +
m

∑
j=1

γij,v g̃j(w
〈ν〉
j,v−µj,v

)w1j,v

]
,

w〈ν〉i,k =
k−1

∏
s=0

(e−ci,sh +κi)w
〈ν〉
i,0 +

k−1

∑
v=0

k−1

∏
s=v+1

(e−ci,sh +κi)(1− e−ci,vh)

ci,v

×
[

n

∑
q=1

Πiq∆̃2
h̄q

w〈ν〉i,v + di,ve〈ν〉i,v +
m

∑
j=1

vij,vη̃j(e
〈ν〉
j,v−νj,v

)w2j,v

]
, (ν, k) ∈ fν ×Z0,

(16)

where i = 1, 2, . . . , m. Moreover, it holds that

e〈·〉i,s = ϕ
〈·〉
i,s − ϕ̂

〈·〉
i,s , w〈·〉i,s = φ

〈·〉
i,s − φ̂

〈·〉
i,s , ∀s ∈ [−σ0, 0]Z; e〈ν〉i,k

∣∣∣
ν∈∂fν

= 0 = w〈ν〉i,k

∣∣∣
ν∈∂fν

, ∀k ∈ Z0,

where i = 1, 2, . . . , m.
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Definition 6. State feedback controller Equation (14) finite-time stabilises GRNs Equation (12)
with a finite-time exponential convergent form in case the error networks Equation (15) achieves
finite-time exponential stability, i.e., for any ε ∈ (0, 1) there exists δ > 0, µ > 0 and integer K > 0,
ensuring that

ϕ0 := max
1≤i≤m

max
(ν,s)∈fν×[−σ0,0]Z

{∥∥∥e〈ν〉i,s

∥∥∥
2
,
∥∥∥w〈ν〉i,s

∥∥∥
2

}
< δ

implies that
max

1≤i≤m
max
ν∈fν

{∥∥∥e〈ν〉i,k

∥∥∥
2
,
∥∥∥w〈ν〉i,k

∥∥∥
2

}
≤ εe−µkh, ∀k ∈ [0, K]Z. (17)

Herein, K is called the settling time.

Define a performance index JK
c associated with the error networks Equation (15) by

JK
c = E

K

∑
k=0

max
ν∈fν

U〈ν〉Tk FU〈ν〉k ,

where
U = col(e, ρ, w, $), F = diag(P1, Q1, P2, Q2),

e = col(e1, . . . , em), w = col(w1, . . . , wm),

ρ = col(ρ1, . . . , ρm), $ = col($1, . . . , $m),

Pı = PT
ı > 0, Qı = QT

ı > 0, ı = 1, 2.

Definition 7. State feedback controller Equation (14) is said to be a finite-time guaranteed cost
controller to GRNs Equation (12) in case it finite-time stabilises GRNs Equation (12) with an
exponential convergent form and meets

JK
c ≤ λ,

where λ > 0 is a constant.

4.2. Design of Finite-Time Guaranteed Cost Controllers

From the first equation of the error networks Equation (16), we obtain∥∥∥e〈ν〉i,k

∥∥∥
2
=
[
E|e〈ν〉i,k |

2
] 1

2 ≤ (e−aih + κi)
k‖e〈ν〉i,0 ‖2 +

k−1
∑

v=0
(e−aih + κi)

k−v−1 (1−e−ai h)
ai

×
[

n

∑
q=1
|Θiq|‖∆̃2

h̄q
e〈ν〉i,v ‖2 +

m

∑
j=1

b̄ijL
f
j ‖w

〈ν〉
j,v−σj,v

‖2 +
m

∑
j=1

γ̄ijL
g
j ‖w

〈ν〉
j,v−µj,v

‖2h−
1
2

]
,

(18)

where ν ∈ fν, i = 1, 2, . . . , m. Similarly,∥∥∥w〈ν〉i,k

∥∥∥
2
=
[
E|w〈ν〉i,k |

2
] 1

2 ≤ (e−cih +κi)
k‖w〈ν〉i,0 ‖2 +

k−1
∑

v=0
(e−cih +κi)

k−v−1 (1−e−cih)
ci

×
[

n

∑
q=1
|Πiq|‖∆̃2

h̄q
w〈ν〉i,v ‖2 + d̄i‖e

〈ν〉
i,v ‖2 +

m

∑
j=1

v̄ijL
η
j ‖e
〈ν〉
j,v−νj,v

‖2h−
1
2

]
,

(19)

where ν ∈ fν, i = 1, 2, . . . , m.
Equations (18) and (19) are equal to
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maxν∈fν

∥∥∥e〈ν〉i,k

∥∥∥
2
≤ (e−aih + κi)

k maxν∈fν
‖e〈ν〉i,0 ‖2 +

k−1
∑

v=0
(e−aih + κi)

k−v−1 (1−e−ai h)
ai

×
[

n

∑
q=1
|Θiq|max

ν∈fν

‖∆̃2
h̄q

e〈ν〉i,v ‖2 +
m

∑
j=1

b̄ijL
f
j max

ν∈fν

‖w〈ν〉j,v−σj,v
‖2

+
m
∑

j=1
γ̄ijL

g
j maxν∈fν

‖w〈ν〉j,v−µj,v
‖2h−

1
2

]
,

(20)

and

maxν∈fν

∥∥∥w〈ν〉i,k

∥∥∥
2
≤ (e−cih +κi)

k maxν∈fν
‖w〈ν〉i,0 ‖2 +

k−1
∑

v=0
(e−cih +κi)

k−v−1 (1−e−cih)
ci

×
[

n

∑
q=1
|Πiq|max

ν∈fν

‖∆̃2
h̄q

w〈ν〉i,v ‖2 + d̄i max
ν∈fν

‖e〈ν〉i,v ‖2

+
m
∑

j=1
v̄ijL

η
j maxν∈fν

‖e〈ν〉j,v−νj,v
‖2h−

1
2

]
, i = 1, 2, . . . , m.

(21)

Theorem 3. If (g2) and the following assumptions are fulfilled,

(g5) The control gains κi = e−âih − e−aih and κi = e−ĉih − e−cih, where âi and ĉi are positive
constants, i = 1, 2, . . . , m.

(g6) It holds that 1 − e−αh < max{υ1, υ2} <
1− e−αh

1− e−ᾱh , where α = min1≤i≤m{âi, ĉi} and

ᾱ = max1≤i≤m{âi, ĉi},

υ1 = max
1≤i≤m

(1− e−aih)

ai

[
n

∑
q=1

2|Θiq|
h̄2 +

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j h−

1
2

]
,

υ2 = max
1≤i≤m

(1− e−cih)

ci

[
n

∑
q=1

2|Πiq|
h̄2 + d̄i +

m

∑
j=1

v̄ijL
η
j h−

1
2

]
.

then state feedback controller Equation (14) is a finite-time guaranteed cost controller for GRNs
Equation (12) with the settling time K satisfying

K < − 1
ᾱh

ln

(
1− 1− e−αh

max{υ1, υ2}

)
.

Proof. In accordance with (g6), for any ε > 0, we can select δ > 0 and 0 < µ < α to be
small enough, causing

δ

ε
+ max

1≤i≤m

1− e−(âi − µ)Kh

1− e−(âi − µ)h
(1− e−aih)eµ(σ0+1)h

ai

[
n

∑
q=1

2|Θiq|
h̄2 +

m

∑
j=1

b̄ijL
f
j +

m

∑
j=1

γ̄ijL
g
j h−

1
2

]
< 1,

δ

ε
+ max

1≤i≤m

1− e−(ĉi1 − µ)Kh

1− e−(ĉi1 − µ)h
(1− e−cih)eµ(σ0+1)h

ci

[
n

∑
q=1

2|Πiq|
h̄2 + d̄i +

m

∑
j=1

v̄ijL
η
j h−

1
2

]
< 1.

A method of reduction to absurdity will be adapted here, supposing that Equation (17)
holds. If not, then one of the following two cases must be valid.

(a) There exist k0 ∈ (0, T]Z and i0 ∈ {1, 2, . . . , m} such that

max
1≤i≤m

max
ν∈fν

{∥∥∥e〈ν〉i,k

∥∥∥
2
,
∥∥∥w〈ν〉i,k

∥∥∥
2

}
≤ εe−µkh, ∀k ∈ [0, k0)Z; max

ν∈fν

∥∥∥e〈ν〉i0,k0

∥∥∥
2
> εe−µk0h.
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(b) There exist k1 ∈ (0, T]Z and i1 ∈ {1, 2, . . . , m} ensuring

max
1≤i≤m

max
ν∈fν

{∥∥∥e〈ν〉i,k

∥∥∥
2
,
∥∥∥w〈ν〉i,k

∥∥∥
2

}
≤ εe−µkh, ∀k ∈ [0, k1)Z; max

ν∈fν

∥∥∥w〈ν〉i1,k1

∥∥∥
2
> εe−µk1h.

If (a) holds, from Equation (20) and (g5) we obtain

maxν∈fν

∥∥∥e〈ν〉i0,k0

∥∥∥
2
≤ (e−ai0

h + κi0 )
k0 δ +

k0−1
∑

v=0
(e−ai0

h + κi0 )
k0−v−1 (1−e

−ai0
h
)

ai0

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

]
eµσ0hεe−µvh

≤ e−âi0 k0hδ +
k0−1
∑

v=0
e−âi0 h(k0 − v− 1) (1−e

−ai0
h
)

ai0

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

]
eµσ0hεe−µvh

= e−âi0 k0hδ +
k0−1
∑

v=0
e−(âi0 − µ)h(k0 − v− 1) (1−e

−ai0
h
)

ai0
eµ(σ0+1)h

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

]
εe−µk0h

≤
(

δ
ε e−(âi0 − µ)k0h + 1−e−(âi0 − µ)k0h

1−e−(âi0 − µ)h
(1−e

−ai0
h
)eµ(σ0+1)h

ai0

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

])
εe−µk0h

≤
{

δ
ε + 1−e−(âi0 − µ)Kh

1−e−(âi0 − µ)h
(1−e

−ai0
h
)eµ(σ0+1)h

ai0

×
[

n

∑
q=1

2|Θi0q|
h̄2 +

m

∑
j=1

b̄i0 jL
f
j +

m

∑
j=1

γ̄i0 jL
g
j h−

1
2

]}
εe−µk0h

≤ εe−µk0h,

which contradicts fact (a).
On the other hand, if (b) holds, from Equation (21), we can likewise compute

maxν∈fν

∥∥∥w〈ν〉i1 ,k1

∥∥∥
2
≤ (e−ci1

h +κi1 )
k1 δ +

k1−1
∑

v=0
(e−ci1

h +κi1 )
k1−v−1 (1−e

−ci1
h
)

ci1

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

]
eµσ0hεe−µvh

≤ e−ĉi1 k1hδ +
k1−1
∑

v=0
e−ĉi1 h(k1 − v− 1) (1−e

−ci1
h
)

ci1

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

]
eµσ0hεe−µvh

= e−ĉi1 k1hδ +
k1−1
∑

v=0
e−(ĉi1 − µ)h(k1 − v− 1) (1−e

−ci1
h
)

ci1
eµ(σ0+1)h

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

]
εe−µk1h

≤
(

δ
ε e−(ĉi1 − µ)k1h + 1−e−(ĉi1 − µ)k1h

1−e−(ĉi1 − µ)h
(1−e

−ci1
h
)eµ(σ0+1)h

ci1

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

])
εe−µk1h

≤
{

δ
ε + 1−e−(ĉi1 − µ)Kh

1−e−(ĉi1 − µ)h
(1−e

−ci1
h
)eµ(σ0+1)h

ci1

×
[

n

∑
q=1

2|Πi1q|
h̄2 + d̄i1 +

m

∑
j=1

v̄i1 j L
η
j h−

1
2

]}
εe−µk1h

≤ εe−µk1h,
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which contradicts fact (b). As a consequence, state feedback controller Equation (14) with
the control gains in (g5) stabilises GRNs Equation (12) in finite time.

In light of Definition 7, the finite-time guaranteed cost control will be displayed as
follows. It holds that

UTU =
(

e ρ w $
)

e
ρ

w
$


=

m
∑

i=1

(
e2

i + ρ2
i + w2

i + $2
i
)

=
m
∑

i=1

[
(1 + κ2

i )e
2
i + (1 +κ2

i )w
2
i
]

≤
m
∑

i=1

(
2 + κ2

i +κ2
i
)

max{e2
i , w2

i },

which induces

JK
c = E

K

∑
k=0

max
ν∈fν

U〈ν〉Tk U〈ν〉k ≤ ϑ
K

∑
k=0

max
1≤i≤m

max
ν∈fν

{∥∥∥e〈ν〉i,k

∥∥∥
2
,
∥∥∥w〈ν〉i,k

∥∥∥
2

}
≤ ϑ

K

∑
k=0

εe−µkh ≤ λ,

where ϑ =
m

∑
i=1

(
2 + κ2

i +κ2
i

)
and λ =

ϑ

1− e−µh . Therefore, state feedback controller

Equation (14) is a finite-time guaranteed cost controller for GRNs Equation (12). This
completes the proof.

If κi = 0 = κi in feedback controller Equation (14), then ρ
〈ν〉
i,k and $

〈ν〉
i,k are vanished

from GRNs Equation (12), ∀(ν, k) ∈ fν ×N0 and i = 1, 2, . . . , m. Based upon the proof of
Theorem 3, we can easily obtain

Corollary 2. Let assumptions (g2)–(g4) hold. Then, GRNs Equation (1) is finite-time exponen-
tially stable in a mean-square sense. Further, if (g1) holds, then GRNs Equation (1) admits a unique
weighted pseudo almost periodic sequence solution, which is finite-time exponentially stable in a
mean-square sense.

5. Example

This section gives an experimental example to verify the feasibility of the main results
for discrete-space and -time stochastic GRNs, which have been addressed in the previous
sections of this article.

Considering the following discrete-time stochastic GRNs with discrete spatial diffusions

(
m〈ν〉1,k+1

m〈ν〉2,k+1

)
=

(
e−9h 0

0 e−10h

)(
m〈ν〉1,k

m〈ν〉2,k

)
+

(
1−e−9h

9 0
0 1−e−10h

10

)[(
0.2 0
0 0.2

)
∆̃2

h̄

(
m〈ν〉1,k

m〈ν〉2,k

)

+

(
1.2 cos(kπ + π

4 ) + e−|k| 0.5
0.3 1.8 sin(kπ + π

4 ) + e−|k|

)(
f1(p

〈ν〉
1,k−2)

f2(p
〈ν〉
2,k−1)

)

+

(
0.2 0.1
0 0.15

)(
g1(p

〈ν〉
1,k−1)w11,k

g2(p
〈ν〉
2,k−1)w12,k

)
+

(
1 + 0.2 cos(kπ + π

4 )

0.5 + 0.5 sin(kπ + π
4 )

)]
,

(
p〈ν〉1,k+1

p〈ν〉2,k+1

)
=

(
e−12h 0

0 e−15h

)(
p〈ν〉1,k

p〈ν〉2,k

)
+

(
1−e−12h

12 0
0 1−e−15h

15

)[(
0.1 0
0 0.1

)
∆̃2

h̄

(
p〈ν〉1,k

p〈ν〉2,k

)

+0.1

(
|m〈ν〉1,k |
|m〈ν〉2,k |

)
+

(
cos(kπ + π

3 ) + e−|k| 0.1
0 sin(kπ + π

5 ) + e−|k|

)(
η1(m

〈ν〉
1,k−1)w21,k

η2(m
〈ν〉
2,k−2)w22,k

)]
,

(22)
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where (ν, k) ∈ (0, 10)×Z0,

m〈ν〉i,k

∣∣∣
ν=0

= m〈ν〉i,k

∣∣∣
ν=10

= 0, p〈ν〉i,k

∣∣∣
ν=0

= p〈ν〉i,k

∣∣∣
ν=10

= 0, ∀k ∈ Z0, i = 1, 2.

Taking h = 0.1 and h̄ = 0.5. Corresponding to GRNs Equation (1),

a1,k = 9, a2,k = 10, c1,k = 12, c2,k = 15, Θ11 = Θ22 = 0.2, Π11 = Π22 = 0.1,

Θ12 = Θ21 = Π12 = Π21 = 0, b11,k = 1.2 cos(kπ +
π

4
) + e−|k|, b12,k = 0.5, b21,k = 0.3,

b22,k = 1.8 sin(kπ +
π

4
) + e−|k|, σ1,k = 2, σ2,k = 1, γ11,k = 0.2, γ12,k = 0.1, γ21,k = 0,

γ22,k = 0.15, I1,k = 1 + 0.2 cos(kπ +
π

4
), I2,k = 0.5 + 0.5 sin(kπ +

π

4
), d1,k = d2,k = 0.1,

v11,k = cos(kπ +
π

3
) + e−|k|, v12,k = 0.1, v21,k = 0, v22,k = sin(kπ +

π

5
) + e−|k|,

f1(p
〈ν〉
1,k−2) =

( p〈ν〉1,k−2
15

)2

1 +
( p〈ν〉1,k−2

15

)2
, f2(p

〈ν〉
2,k−1) =

( p〈ν〉2,k−1
15

)2

1 +
( p〈ν〉2,k−1

15

)2
, gi(p

〈ν〉
i,k−1) =

( p〈ν〉i,k−1
20

)2

1 +
( p〈ν〉i,k−1

20

)2
,

η1(m
〈ν〉
1,k−1) =

(m〈ν〉1,k−1
10

)2

1 +
(m〈ν〉1,k−1

10

)2
, η2(m

〈ν〉
2,k−2) =

(m〈ν〉2,k−2
10

)2

1 +
(m〈ν〉2,k−2

10

)2
, i = 1, 2, ∀(ν, k) ∈ (0, 10)×Z0.

Obviously, L f
1 = L f

2 = 1
15 , Lg

1 = Lg
2 = 0.05, Lη

1 = Lη
2 = 0.1. It follows from the direct

calculation that max{ς1, ς2} < 1. Therefore, assumptions (g1)–(g4) in Theorem 2 are valid,
i.e., GRNs Equation (22) possesses a unique weighted pseudo- or α-pseudo-almost periodic
sequence solution, see Figures 1 and 2. Let â1 = 1.25, â2 = 12, ĉ1 = 14, and ĉ2 = 7. Then,
the state feedback controllers corresponding to Equation (14) are listed as follows:

ρ
〈·〉
1,k = 0.4983e〈·〉1,k, ρ

〈·〉
2,k = −0.0667e〈·〉2,k, $

〈·〉
1,k = −0.0546w〈·〉1,k, $

〈·〉
2,k = 0.2735w〈·〉2,k, (23)

where k ∈ Z0. Moreover, assumptions (g2) and (g5)–(g6) in Theorem 3 hold. Then, the
state feedback controller Equation (23) is a finite-time guaranteed cost controller for GRNs
Equation (22) with the settling time K satisfying K < 4.0294, see Figures 3–6. Finally,
the trajectories of the finite-time exponential stability of GRNs Equation (22) in three-
dimensional and two-dimensional spaces are shown in Figures 7–10.

Figure 1. Weighted pseudo-almost periodic sequence solution of m〈3〉1,k and m〈3〉2,k .
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Figure 2. Weighted pseudo-almost periodic sequence solution of p〈3〉1,k and p〈3〉2,k .

In Figures 1 and 2, the pictures show the weighted pseudo-almost periodicity of m
and p in GRNs Equation (22). From these pictures, we can observe that the solution of
GRNs Equation (22) is not weighted pseudo-almost periodic at the beginning of the time,
but it becomes almost periodic as the time increases.

Figure 3. Finite-time guaranteed cost controller for m〈ν〉1,k and m〈ν〉2,k with the settling time K satisfying
K < 4.0294.

Figure 4. Finite-time guaranteed cost controller for p〈ν〉1,k and p〈ν〉2,k with the settling time K satisfying
K < 4.0294.

Figure 5. Finite-time guaranteed cost controller for m〈6〉1,k and m〈6〉2,k with the settling time K satisfying
K < 4.0294.

Figure 6. Finite-time guaranteed cost controller for p〈6〉1,k and p〈6〉2,k with the settling time K satisfying
K < 4.0294.
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In Figures 3 and 4, the pictures show the trajectories of m and p in GRNs Equation (22)
with feedback controls in the closed loop. By observing these pictures, we can observe
that the solutions of GRNs Equation (22) with different initial values realise finite-time
exponential stability in three-dimensional space. Figures 5 and 6 give the trajectories of m
and p of GRNs Equation (22) with feedback controls in the closed loop when ν = 6.

Figure 7. Finite-time exponential stability of m〈ν〉1,k and m〈ν〉2,k .

Figure 8. Finite-time exponential stability of p〈ν〉1,k and p〈ν〉2,k .

Figure 9. Finite-time exponential stability of m〈8〉1,k and m〈8〉2,k .

Figure 10. Finite-time exponential stability of p〈8〉1,k and p〈8〉2,k .

Figures 7 and 8 show the solutions of GRNs Equation (22) without feedback control,
realising finite-time exponential stability in three-dimensional space. Figures 9 and 10
draw the solutions of GRNs Equation (22) without feedback control, realising finite-time
exponential stability when ν = 8.

6. Conclusions and Perspectives

Utilizing EED and CFT techniques, discrete stochastic genetic regulatory networks
with discrete spatial diffusion are presented, which can be considered as fully discrete
configurations of stochastic genetic regulatory networks with reaction diffusion. Based on
the constant variable formulation in discrete form, the existence uniqueness, the finite-time
guaranteed cost control, and the exponential stability of the weighted pseudo-θ-almost
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periodic sequence of such discrete stochastic genetic regulatory networks in the mean-
square sense are discussed. In addition, Lemmas 2 and 3, among others, have been crucial
to the discussion in this paper over the course of the study. Notably, the work in this paper
will initiate the development of qualitative problems in discrete-time and discrete-space
models, laying the theoretical and practical foundations for future work in this area.
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