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Abstract: In this paper, we propose two new hybrid methods for solving nonlinear equations,
utilizing the advantages of classical methods (bisection, trisection, and modified false position),
i.e., bisection-modified false position (Bi-MFP) and trisection-modified false position (Tri-MFP). We
implemented the proposed algorithms for several benchmark problems. We discuss the graphical
analysis of these problems with respect to the number of iterations and the average CPU time.

Keywords: modified false position method; classical methods; numerical calculations; hybrid algorithms

MSC: 58C30; 65H05

1. Introduction

It is widely acknowledged that one of the most challenging problems in the math-
ematical sciences, particularly in numerical analysis, is solving the nonlinear equation
Ψ(ξ) = 0. In multiple improvements, numerous researchers have suggested, examined,
and developed a variety of numerical approaches, employing various strategies, includ-
ing Taylor’s series, modified homotopy perturbation methods, decomposition methods,
variational iterative methods, and quadrature formulae. There is a wealth of literature
available that highlight various approaches to solving nonlinear equations; for example,
see [1–15]. There are various ways to determine the roots of nonlinear equations, which
include bracketing methods (bisection, trisection, false position, and modified false po-
sition) and open methods (Newton–Raphson, secant, Steffenson) hybrid methods (Badr
et al. [16] and Sabharwal [17]), and metaheuristic algorithms, etc. There are benefits and
drawbacks to each of the strategies mentioned above (there is no specific way to solve
nonlinear equations effectively). Open approaches are quick but do not converge, whereas
closed approaches are known for being slow but close. This research was motivated by the
desire to propose fast and convergent methods, as opposed to the conventional methods,
because hybrid methods are characterized by combining speed and convergence.

In fact, the idea of developing a hybrid technique by fusing two traditional methodolo-
gies is not new but rather has a long history. In 1995, Novak et al. [18] introduced a hybrid
secant–bisection method. A novel hybrid bracketing strategy (bisection-false position) was
proposed by Sabhrwal [17]. On the other hand, Badr et al. [16] created a hybrid method
called Tri-FP that combines two closed algorithms. On fifteen benchmark linear and non-
linear equations, they evaluated the method’s performance. Sabhrwal’s [17] approach
(Bi-FP) was outperformed by the hybrid algorithm (Tri-FP) proposed by Badr et al. [16].
Recently, two new blended algorithms that make use of the advantages of open approaches
and bracketing methods were suggested by Badr et al. [19].

The main objective of this research was to combine bracketing methods to propose
two hybrid algorithms. It is well known that the modified false position method is better
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than the classical false position method. The first algorithm is a combination of bisection
and modified false position methods (Bi-MFP). The second algorithm combines trisection
and modified false position methods (Tri-MFP). We evaluated the proposed algorithms
using fifteen benchmark functions against bisection, trisection, and modified false position
methods. The numerical results showed that the proposed algorithms outperformed the
classical bisection, trisection, and modified false position methods in terms of the number
of iterations.

2. Classical Methods

In this section, we discuss four classical methods for finding the roots of non-linear
equations. These methods are the bisection method, the trisection method, the false position
method, and the modified false position method. This section includes details of these
classical methods.

2.1. Bisection Method

The intermediate value theorem (IVT) says that Ψ(ξ) has at least a root or zero of
Ψ(ξ) = 0 inside the interval [ω1, ω2] if it is continuous and defined on the interval [ω1, ω2],
fulfilling the relation Ψ(ω1) ∗Ψ(ω2) < 0 with Ψ(ω1) and Ψ(ω2) are of opposite signs. Find-
ing two real numbers ω1 and ω2 that lie in the interval [ω1, ω2] and the root in ω1 ≤ ξ ≤ ω2
with each step’s length being half of the interval’s initial length is the function of this
method.

This process is continued until the interval imparts the desired precision as a result
of obtaining the necessary root. The algorithms only work when the multiplicity of a root
is odd. Additionally, the root converges very slowly and linearly. However, we can stop
iterating when Ψ(c) is very close to zero or is very small. Consequently, the basic formula is

c =
ω1 + ω2

2
. (1)

The size of the interval is reduced by half at each iteration. Therefore, the tolerance (eps) is
determined from the following formula:

eps =
ω2 −ω1

2v
, (2)

where v is the number of iterations. From (2), the number of iterations is found by

v =

[
log2

(
ω2 −ω1

eps

)]
. (3)

As a bracketing approach, the bisection method brackets the root in the range [ω1, ω2],
halving the range’s size after each iteration. As a result, this decreases the error between
an iteration’s approximation root and precise root. However, the bisection method only
works quickly if the approximate root is far from the interval’s endpoint; otherwise, more
iterations are required to reach the root [3].

2.2. Trisection Method

The trisection method [7] is like the bisection method, except that it divides the interval
[ω1, ω2] into three subintervals, while the bisection method divides the interval into two
partial periods. This algorithm divides the interval [ω1, ω2] into three equal subintervals
and searches for the root in the subinterval that contains different signs of the function
values at the endpoints of these subintervals. If the condition of termination is true, then
the iteration has finished its task; otherwise, the algorithm repeats the calculations.
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To divide the distance [ω1, ω2] by ξ1 into thirds and ξ2, one needs to know the location
of ξ1 and ξ2, as follows:

ξ1 −ω1 = ω2 − ξ2 (4)

ξ2 − ξ1 = ξ1 −ω1. (5)

By solving Equations (4) and (5), we obtain

ξ1 =
2ω1 + ω2

3
and

ξ2 =
ω1 + 2ω2

3
.

The size of the interval [ω1, ω2] decreases to a third with each repetition. Therefore,
the value eps is determined from the following formula:

eps =
ω2 −ω1

3v
, (6)

where v is the number of iterations. From (6) the number of iterations is found by

v =

[
log3

(
ω2 −ω1

eps

)]
. (7)

When we compare Equations (2) and (7), we can conclude that the iterations number
of the trisection algorithm is less than the iteration number of the bisection algorithm. We
might think that the trisection algorithm is better than the bisection algorithm, since it
requires fewer iterations. However, it might be the case that one iteration of the trisection
algorithm has an execution time longer than the execution time of one iteration of the
bisection algorithm. Therefore, we will consider both execution time and the number of
iterations to evaluate the different algorithms, see [2,3,5,6,20] and references therein.

2.3. False Position (Regula Falsi) Method

In this technique, one uses results that are known to be false to converge to the true
root. This method chooses initial approximations ξ0 and ξ1, such that Ψ(ξ0) ∗Ψ(ξ1) < 0.
The new approximation value is be then obtained using the following relation:

ξv = ξv−1 −
Ψ(ξv−1)(ξv−1 − ξv−2)

Ψ(ξv−1)−Ψ(ξv−2)
, (8)

for v ≥ 2.
After that, and in order to decide which secant line to use, the product of Ψ(ξ2) and

Ψ(ξ1) should be taken. If Ψ(ξ1) ∗ Ψ(ξ2) < 0 then choose ξ3 as a line joining (ξ1, Ψ(ξ1))
and (ξ2, Ψ(ξ2)), and if Ψ(ξ1) ∗Ψ(ξ2) > 0 then choose ξ3 as a line joining (ξ0, Ψ(ξ0)) and
(ξ2, Ψ(ξ2)). The process continues until the stopping criteria are satisfied.

2.4. Modified False Position Method

In this method, an improvement over the false position method is obtained by replac-
ing the secant with straight lines with an even smaller slope, until ξ falls to the other side
of the zero of Ψ(ξ). To begin, we take the interval [ω1, ω2] in which the root lies and apply
the false position to determine the value of ξ1, as given by

ξ1 = ω2 −
Ψ(ω2)(ω2 −ω1)

Ψ(ω2)−Ψ(ω1)
. (9)

Then, the products of Ψ(ξ1), Ψ(ω1) and Ψ(ω2) decide the root interval. If Ψ(ξ1) ∗Ψ(ω1) >
0, then this implies that root lies in interval [ξ1, ω2] and we take ω1 = ξ1 in interval [ω1, ω2]
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with a fixed value of ω2 in a complete iteration. Then, to find the next approximation ξ2,
impose the half function value of ω2 using the following relation:

ξ2 = ω2 −
Ψ(ω2)

2 (ω2 −ω1)
Ψ(ω2)

2 −Ψ(ω1)
. (10)

If Ψ(ξ1) ∗ Ψ(ω2) > 0 then we take ω2 = ξ1 and the fixed value of ω1 in whole iteration.
The next value of approximation ξ2 can be found by imposing half function value of ω1, as
given below

ξ2 = ω2 −
Ψ(ω2)(ω2 −ω1)

Ψ(ω2)− Ψ(ω1)
2

. (11)

This process continues until the stopping criteria satisfied.

3. Hybrid Algorithms

Instead of the classical methods (bisection, trisection, false position, modified false po-
sition), we propose two new hybrid algorithms: a bisection-modified false position method
(Bi-MFP) and a trisection-modified false position method (Tri-MFP). These methods have
the benefits of bisection, trisection, and modified false position methods. Badr et al. [16,17]
proposed blended algorithms containing bisection, trisection, and false position methods. It
is shown in this paper that our proposed algorithms performed better than their component
algorithms, in the sense of the number of iterations.

3.1. Bisection-Modified False Position Method

This proposed algorithm (bisection-modified false position method) contains the
advantages of both the bisection and modified false position methods. It is well known that
the modified false position method outperforms the classical false position method, so we
took advantage of the superiority of the modified false position method in our proposed
algorithm. A flowchart and pseudocode for the Bi-MFP method are given in Figure 1 and
Algorithm 1, respectively.

Figure 1. Flow chart of bisection-modified false position.
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Algorithm 1: Hybrid Bi-MRF (Ψ, ω1, ω2, eps).
INPUT: The function Ψ(ξ). The interval [ω1, ω2] where the root lies in, The absolute
error (eps)
OUTPUT: The root (ξ). The value of Ψ(ξ). Number of iterations (v). The interval
[ω1, ω2] where the root lies in.
v := 0
ω1,a := ω1
ω1,b := ω1
ω2,a := ω2
ω2,b := ω2
while true do

v := v + 1
ξB := (ω1 + ω2)/2
ξF := ω1 − (Ψ(ω1) ∗ (ω2 −ω1))/(Ψ(ω2)−Ψ(ω1))
if |Ψ(ξB)| < |Ψ(ξF )| then

ξ := ξB
else

ξ := ξF
end if
if |Ψ(ξ)| <= eps then

return ξ, Ψ(ξ), v, ω1, ω2
end if
if Ψ(ω1) ∗Ψ(ξB) < 0 then

ω2,a := ξB
else

ω1,a := ξB
end if
if Ψ(ω1) ∗Ψ(ξF ) > 0 then

ω1,b := ξF
Ψ(ω1) := Ψ(ξF )
Ψ(ω2) := Ψ(ω2)/2

else
if Ψ(ω2) ∗Ψ(ξF ) > 0 then

ω2,b := ξF
Ψ(ω2) := Ψ(ξF )

end if
end if
ω1 := max(ω1,a, ω1,b)
ω2 := min(ω2,a, ω2,b)
end while

end while

3.2. Trisection-Modified False Position Method

Badr et al. [16] proposed a new blended algorithm called the trisection-false position
algorithm, which is better than Sabharwal’s bisection-false position algorithm [17] in terms
of iteration number and average CPU time. We proposed a new method having supremacy
over the modified false position method, called the trisection-modified false position
method (Tri-MFP). A flowchart and pseudocode of the proposed methods are given below
in Figure 2 & Algorithm 2 respectively:
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Figure 2. Flow chart of trisection-modified false position.

3.3. Empirical Study

MAPLE version 18.0, 64-bit, windows 7, Core(TM)2, T5600, 1.83 GHz, and 3.00 GB of
memory were the elements that made up the software environment. In this paper, we used
an absolute error of (eps = 10−10) to terminate all the algorithms. The iteration number and
CPU time are effective tools for the comparison of algorithms, so we ran every algorithm
ten times and calculated the average of the running time to obtain an accurate running time
and avoid the problem of operating systems.

We evaluate the suggested technique for numerous benchmark problems as shown in
Table 1, since it was not accurate enough to draw conclusions from only one problem. The
abbreviations AppRoot, Error, LowerB, and UpperB in Tables 2–6 represent the approximate
root, the difference between two consecutive roots, and the lower and upper bounds,
respectively.

Figures 1 and 2 shows flow charts of the proposed algorithms Bi-MFP and Tri-MFP.
Meanwhile, Figures 3 and 4 display the analysis of the benchmark problems shown in
Table 1, according to the number of iterations and average CPU time, respectively.
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Algorithm 2: Hybrid Tri-MRF (Ψ, ω1, ω2, eps).
INPUT: The function Ψ(ξ). The interval [ω1, ω2] where the root lies in, The
absolute error (eps)
OUTPUT: The root (ξ). The value of Ψ(ξ). Number of iterations (v). The interval
[ω1, ω2] where the root lies in.
v := 0, ω1,a := ω1, ω1,b := ω1, ω2,a := ω2, ω2,b := ω2
while true do

v := v + 1
ξT 1 := (2 ∗ω1 + ω2)/3
ξT 2 := (ω1 + 2 ∗ω2)/3
ξF := ω1 − (Ψ(ω1) ∗ (ω2 −ω1))/(Ψ(ω2)−Ψ(ω1))
ξ := ξT 1
Ψξ := Ψ(ξT 1)
if |Ψ(ξT 2)| < |Ψ(ξ)| then

ξ := ξT 2
end if
if |Ψ(ξF )| < |Ψ(ξ)| then

ξ := ξF
end if
if |Ψ(ξ)| <= eps then

return ξ, Ψ(ξ), v, ω1, ω2
end if
if Ψ(ω1) ∗Ψ(ξT 1) < 0 then

ω2,a := ξT 1
else

if Ψ(ξT 1) ∗Ψ(ξT 2) < 0 then
ω1,a := ξT 1
ω2,a := ξT 2

else
ω1,a := ξT 2

end if
end if
if Ψ(ω1) ∗Ψ(ξF ) > 0 then

ω1,b := ξF
Ψ(ω1) := Ψ(ξF )
Ψ(ω2) := Ψ(ω2)/2

else
if Ψ(ω2) ∗Ψ(ξF ) > 0 then

ω2,b := ξF
Ψ(ω2) := Ψ(ξF )

end if
end if
ω1 := max(ω1,a, ω1,b)
ω2 := min(ω2,a, ω2,b)
end while

end while



Axioms 2023, 12, 684 8 of 13

Table 1. Standard benchmark problems.

No. Problem Interval References

P1 ξeξ − 7 [0, 2] Calihoun [13]
P2 ξ − cos(ξ) [0, 1] Ehiworio [3]
P3 ξ sin(ξ)− 1 [0, 2] Mathews [18]
P4 sin(ξ) sinh(ξ) + 1 [1.5, 4] Esfandiari [17]
P5 eξ − 3ξ − 2 [0, 3] Hoffman [14]
P6 sin(ξ)− ξ2 [0.5, 1] Chapra [11]

Table 2. Solutions of some problems using the bisection method.

Problems

Bisection Method

Iter Average
CPU Time

Approx
Root

Function
Value

Lower
Bound

Upper
Bound

P1 32 0.1118 1.52434520468 −0.000000002 1.52434520422 1.52434520515
P2 35 0.1152 0.739085134091 0.000000015 0.739085134062 0.739085134119
P3 32 0.1180 1.11415714072 0.000000000 1.11415714026 1.11415714119
P4 33 0.1336 3.22158839905 0.000000000 3.22158839876 3.22158839934
P5 33 0.1308 2.12539119889 0.000000000 2.12539119854 2.12539119923
P6 33 0.1214 0.876726215414 0.000000000 0.876726215355 0.876726215471

Table 3. Solutions of some problems using the trisection method.

Problems

Trisection Method

Iter Average
CPU Time

Approx
Root

Function
Value

Lower
Bound

Upper
Bound

P1 20 0.1214 1.52434520541 0.000000003 1.52434520484 1.52434520656
P2 22 0.1244 0.739085133325 0.000000000 0.739085133262 0.739085133357
P3 21 0.1120 1.11415714133 0.000000000 1.11415714114 1.11415714171
P4 21 0.1180 3.22158839889 0.000000029 3.22158839841 3.22158839913
P5 21 0.1212 2.12539119879 −0.000000001 2.12539119823 2.12539119908
P6 20 0.1338 0.876726215456 −0.000000000 0.876726215170 0.876726215600

Table 4. Solutions of some problems using the modified regula falsi method.

Problems

Modified Regula Falsi Method

Iter Average
CPU Time

Approx
Root

Function
Value

Lower
Bound

Upper
Bound

P1 20 0.1304 1.52434520493 −0.0000000062 1.52434520482 2.0000000000
P2 9 0.1370 0.739085133213 0.0000000000 0.739085133171 1.0000000000
P3 6 0.1244 1.11415714087 0.0000000000 1.11415714087 1.11415714304
P4 31 0.1524 3.22158839849 0.0000000081 3.22158839777 4.0000000000
P5 33 0.1244 2.12539119823 −0.0000000031 2.12539119761 3.0000000000
P6 13 0.1306 0.876726215392 0.000000000 0.876726215372 1.0000000000

Table 5. Solutions of some problems using the bisection and modified regula falsi methods.

Problems

Bisection-Modified Regula Falsi Method

Iter Average
CPU Time

Approx
Root

Function
Value

Lower
Bound

Upper
Bound

P1 9 0.1182 1.52434520539 0.000000000 1.52434520445 1.52772146940
P2 7 0.1118 0.739085133226 0.000000000 0.739085129706 0.745369013289
P3 15 0.1180 1.11415714088 0.000000000 1.11414625500 1.11425614878
P4 10 0.1214 3.22158839955 −0.000000012 3.22158839943 3.22238911820
P5 9 0.1086 2.12539119894 0.000000001 2.12539118521 2.12787084220
P6 7 0.1308 0.876726215441 −0.0000000001 0.876726210685 0.877268445426
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Table 6. Solutions of some problems using the trisection and modified regula falsi methods.

Problems

Trisection-Modified Regula Falsi Method

Iter Average
CPU Time

Approx
Root

Function
Value

Lower
Bound

Upper
Bound

P1 6 0.1180 1.52434520508 0.00000255309 1.52434520413 1.52441127915
P2 6 0.0964 0.739085133236 0.0003113615 0.739085133117 0.739643235290
P3 12 0.1118 1.11415714132 0.000001774 1.11415714046 1.11415841776
P4 8 0.1056 3.22158839889 1.5× 10−9 3.22158839878 3.22215305257
P5 7 0.1276 2.12539119914 1.0× 10−9 2.12539119840 2.12548466697
P6 5 0.1212 0.876726215473 2.0× 10−10 0.876726215114 0.876727040681

Figure 3. Comparison of six standard problems according to the number of iterations.

Figure 4. Comparison of six standard problems according to CPU time.

3.4. Some New Numerical Experiments

We now consider some nonlinear polynomial equations from applied biomedical
engineering and practical sciences.

Example 1 (Blood rheology and fractional nonlinear equations Model [21]). Blood is modeled
as a “Casson Fluid” as it is a non-Newtonian fluid. According to the Casson fluid model, basic
fluids such as blood and water flow through a tube in such a way that the velocity gradient near
the wall and the center core of the fluids travel as plugs, with minimal deformation. The following
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nonlinear fractional equation, which measures the drop in flow rate, was used to elaborate the plug
flow of Casson fluids:

Ψ(ξ) = 1− 16
7

√
ξ +

4
3

ξ − 1
21

ξ4 − G, (12)

or where the reduction in flow rate is measured by G = 0.40. Table 7 and Figures 5 and 6 show
numerical and graphical comparisons of the classical and proposed methods.

Table 7. Results of the above example using Bi, Tri, MFP, Bi-MFP, and Tri-MFP methods.

Method

Blood Rheology and Fractional Nonlinear Equations Model

Iter Approx
Root

Function
Value

Lower
Bound

Upper
Bound

Bisection 34 0.104698652342 −1.6× 10−9 0.104698652284 0.104698652401
Trisection 23 0.104698652104 −1.3× 10−9 0.104698652083 0.104698652115

MFP 44 0.104698651667 −2.86× 10−10 0.000000000000 0.104698651748
Bi-MFP 19 0.104698651542 0.0000000000 0.104698181152 0.104701995849
Tri-MFP 13 0.104698651485 −7.335× 10−7 0.104698357861 0.104700239538

Figure 5. Comparison of methods according to iterations.
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Figure 6. Comparison of log of residual per iteration.

Example 2 (Fluid Permeability in Biogels [21]). The following nonlinear equation comes from
the specific hydraulic permeability relationship between the pressure gradient and fluid velocity in
porous media (agarose gel or extracellular fiber matrix):

Ψ(ξ) = <eξ3 − 20κ(1− ξ)2, (13)
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Comparison of the proposed methods with the classical methods are numerically and graphically
displayed in Table 8 and Figure 7 & Figure 8, respectively.

Table 8. The results of the above example using the Bi, Tri, MFP, Bi-MFP, and Tri-MFP methods

Method

Fluid Permeability in Biogels

Iter Approx
Root

Function
Value

Lower
Bound

Upper
Bound

Bisection 30 1.00003698747 7.51× 10−13 1.00003698654 1.00003698840
Trisection 20 1.00003698880 −3.31× 10−13 1.00003698823 1.00003698909

MFP Fail
Bi-MFP 18 1.00003698850 2.09× 10−13 1.00003698808 1.00003699241
Tri-MFP 15 1.00003698885 −1.41× 10−12 1.00003698848 1.00003699616

Figure 7. Comparison of the methods according to iterations.
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Figure 8. Comparison of the log of residual per iteration.

Example 3 (beam position model [22]). Consider a mechanical issue with beam positioning that
results in the following nonlinear equation:

Ψ(ξ) = ξ4 + 4ξ3 − 24ξ2 + 16ξ + 16. (14)

Comparison of the proposed methods with the classical methods are numerically and
graphically displayed in Table 9 and Figure 9 & Figure 10, respectively.
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Table 9. Results of the above example using the Bi, Tri, MFP, Bi-MFP, and Tri-MFP methods.

Method

Beam Position Model

Iter Approx
Root

Function
Value

Lower
Bound

Upper
Bound

Bisection 34 −0.535898384669 1.0× 10−8 −0.535898384698 −0.535898384639
Trisection 22 −0.535898384057 3.0× 10−8 −0.535898384089 −0.535898384042

MFP 15 −0.535898384849 6.0× 10−10 −1.000000000000 −0.535898384808
Bi-MFP 15 −0.535898384738 1.00× 10−8 −0.535919189454 −0.535888671875
Tri-MFP 12 −0.535898384898 −1.06× 105 −0.535899563639 −0.535896741125

Figure 9. Comparison of the methods according to Iteration.
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Figure 10. Comparison of the log of residual per iteration.

4. Conclusions

This research study introduced a pair of innovative hybrid algorithms that enhanced
the efficiency of bisection, trisection, and modified false position methods. These new hy-
brid algorithms—bisection-modified false position (Bi-MFP) and trisection-modified false
position (Tri-MFP)—outperformed the methods previously proposed by [16,17]. Moreover,
we tested some examples and arranged the results in a numerical and graphical manner.
Moving forward, in the future, we will focus on some open and bracketing methods for
solving non-linear equations.
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