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Abstract: In this study, some stability and robust stability conditions for switched positive linear
systems in which all subsystems are unstable in continuous time and discrete time were obtained
using the Φ-dependent dwell time technique and the discretized co-positive Lyapunov functions
approach, respectively. The co-positive Lyapunov functions constructed in this study are functions
of time during the dwell time, and after that, they are independent of time. In addition, the above
method was applied to switched-interval positive systems, and corresponding conclusions are
presented. The Φ-dependent dwell time technique used in this paper is more effective than the
dwell time and mode-dependent dwell time used in other studies. The results are verified with an
illustrative example.

Keywords: Φ-dependent dwell time; discretized co-positive Lyapunov functions; robust stability;
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1. Introduction

Many dynamic systems in the real world are restricted to orthogonal variables, and
such systems are usually referred to as positive systems in the literature. Switched positive
linear systems (SPLSs), a class of positive systems, consist of a series of positive linear
systems and switching signals that control the switching between them. SPLSs have
received extensive attention due to their wide applications in control fields, such as mobile
robot navigation [1], load forecasting [2], and fuel balancing [3]. In SPLSs, stability is the
most basic property of the system. Some important results regarding SPLSs have been
obtained in the literature [4–11], especially with respect to stability analysis. The linear
co-positive Lyapunov function (LCLF) approach is a very effective approach in the stability
analysis of SPLSs because it holds that the state of the systems is positive under natural
constraints. The sufficient and necessary conditions for the existence of a common LCLF for
SPLSs are mentioned in [12]. The stability of discrete-time SPLSs was analyzed in [13] by
using the switched LCLF approach. The multiple LCLF for a given SPLS was established
for the first time in [14]. Based on this, the stability analysis problem for SPLSs with
average-dwell-time (ADT) switching was investigated and sufficient conditions for both
the continuous-time and the discrete-time cases were given in [14].

Most practical switched systems have both stable and unstable subsystems due to
disturbances, failures, and possibl changing environmental factors [15]. The problem of
exponential stability for SPLSs consisting of both stable and unstable subsystems was in-
vestigated in [16]. Sufficient stability conditions were proposed for discrete-time switched
delay positive systems with stable and unstable subsystems in [17]. The above conclusions
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all concern switched systems with at least one stable subsystem. However, these conclu-
sions are generally not valid when all subsystems are unstable. As is well known, even
if all subsystems are unstable, one may carefully switch between them to make the total
system asymptotically stable. Using a discretized Lyapunov function approach, a sufficient
condition ensuring the asymptotic stability of switched continuous-time systems with all
modes unstable is proposed in [18]. The stability of switched linear systems with dwell time
was studied by constructing a discretized Lyapunov function in [19]. Some conclusions
have been reached [20,21] about SPLSs with uncertainty. In [20], the constructed Lyapunov
functions were time-varying during the dwell time and time-invariant afterwards. There
are currently few research conclusions about the stability of SPLSs with all modes unstable
and uncertainty, which are significant for our research in this paper.

The main objective of this study was to establish the stability and robust stability
criteria for a system where all subsystems are unstable in continuous-time and discrete-
time cases. The research results in this paper include the following points. First of all, a
group of switching signals that make SPLSs with all modes unstable asymptotically stable
was found by using discretized co-positive Lyapunov functions and the Φ-dependent
dwell time technique. Then, we extended the above method and conclusion to SPLSs with
interval uncertainty. Finally, an illustrative example is given to verify that the Φ-dependent
dwell time technique is more effective than using mode-dependent dwell time [22] or
dwell time.

The structure of this paper is as follows. Section 2 gives a description of the system
and the necessary definitions and lemmas. Section 3 presents the main conclusions with
their proofs. An illustrative example is given in Section 4. Section 5 provides the conclusion
of this paper.

The notations used in this paper are shown in Table 1.

Table 1. The notations used in this paper.

R The set of real numbers

Rn The set of n-dimensional real vectors

Rn×n The space of n× n real matrices

N (N+) The set of nonnegative (positive) integers

GT The transpose of a matrix G

ι � 0(ι � 0) Each component of vector ι is nonnegative (positive)

δ(ι)(δ(ι)) The minimal (maximal) components of vector ι

G � 0(G � 0) Each component of matrix G is nonnegative (positive)

‖x‖1 1-norm of x(t); i.e., ‖x‖1 = ∑n
i=1 ‖xi‖

‖x‖2 Euclidean vector norm of x(t); i.e., ‖x‖2 = (∑n
i=1 x2

i )
1
2

⇐⇒ If and only if

2. Problem Formulation and Preliminaries

Consider the continuous-time switched linear system

ẋ(s) = Gρ(s)x(s), s ∈ R, s ≥ s0, (1)

and the discrete-time switched linear system

x(s + 1) = Gρ(s)x(s), s ∈ N, s ≥ s0, (2)

where x(s) ∈ Rn is the state of the system, and ρ(s) is called a switching signal. ρ(s) is a
piece-wise constant right-continuous function: [0, ∞)→M = {1, 2, · · · , m}, where m ∈ N+
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is the number of subsystems. Gu ∈ Rn×n and u ∈ M are known constant matrices of
appropriate dimensions.

All subsystems studied in this paper are unstable. The switching instants have the
following relationship: 0 ≤ s0 < s1 < · · · < sr < sr+1 < · · · , where s0 represents the initial
time of system operation and sr represents the rth switching instant. In addition, we assume
that x(s+r ) = x(s−r ), r = 0, 1, 2, · · · . When s ∈ [sr, sr+1), we say the ρ(sr)th subsystem of
the switched system is active. The length of time between adjacent switching instants is
called the dwell time τr = sr+1 − sr, r = 0, 1, 2, · · · . Let K = {1, 2, · · · , k} where k ∈ N and
k ≤ m. Define the surjection operator: Φ : M 7→ K. Set Φi = {u ∈ M | Φ(u) = i} [23].
This work supposes that each family of Φi subsystems has a dwell time, denoted as
τΦi ,r, r = 0, 1, 2, · · · , i ∈ K and called the Φ-dependent dwell time. If τr is too large, then
the total system will be unstable due to it running unstable subsystems for a long time.
If τr is too small, then overly fast switching also makes the system unstable. Thus, we
limit the Φ-dependent dwell time to a range that ensures the asymptotic stability of the
system; namely, τΦi ,r ∈ [τΦi ,min, 2τaΦi ,max − τΦi ,min], i ∈ K, r = 0, 1, 2, · · · , where τΦi ,min
represents the minimum dwell time of a family of Φi subsystems, τaΦi ,max represents the
maximum average dwell time of a family of Φi subsystems, and 0 < τΦi ,min ≤ τaΦi ,max.
D[τΦi ,min,2τaΦi ,max−τΦi ,min]

is called the switching strategy set of the Φ-dependent dwell time.
The aim of this study was to analyze the problem of the stability and robust stability

of SPLSs where all subsystems are unstable. Before that, we first provide some definitions
and lemmas to be used.

Definition 1 ([24]). Systems (1) and (2) are said to be positive if x(s) � 0, ∀ s > s0, ∀ ρ(s),
x(s0) � 0.

Definition 2 ([12]). A matrix G is said to be a Metzler matrix if its non-diagonal elements are
positive or zero.

Consider the continuous-time system

ẋ(s) = Gx(s), s ∈ R, s ≥ s0, (3)

and the discrete-time system

x(s + 1) = Gx(s), s ∈ N, s ≥ s0. (4)

We note the following lemmas.

Lemma 1 ([19]). System (3) is positive⇐⇒ G is a Metzler matrix, and System (4) is positive
⇐⇒ G � 0.

From Lemma 1, we can deduce that System (1) is positive with regard to ρ(s)⇐⇒
Gu ∈ Rn×n and u ∈M are Metzler matrices, and System (2) is positive with regard to ρ(s)
⇐⇒ Gu � 0, u ∈M.

Lemma 2 ([19]). Let Systems (3) and (4) be positive; then, Systems (3) and (4) is asymptotically
stable⇐⇒ there exists a vector ι � 0 such that GT ι ≺ 0 ((G− I)T ι ≺ 0).

The function F (s) = xT(s)ι is said to be a linear co-positive Lyapunov function for
the Systems (3) and (4) if there exists a vector ι � 0 such that GT ι ≺ 0 ((G− I)T ι ≺ 0).

3. Main Results

This section presents sufficient conditions for the stability and robust stability of SPLSs
in which all subsystems are unstable in the continuous-time and discrete-time cases.
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3.1. Continuous-Time Case

In this section, sufficient conditions for the stability and robust stability of continuous
SPLSs and their proofs are given.

Theorem 1. Consider SPLS (1). Given scalars λi > 0, 0 < µi < 1, i ∈ K, 0 < τΦi ,min ≤ τaΦi ,max,
if there exists a set of vectors ιu,h � 0, h = 0, 1, 2, · · · ,H, u ∈M such that ∀ h = 0, 1, 2, · · · ,H,
∀ u, v ∈M, i ∈ K,

ΛT
u,h + ιTu,hGu − λiι

T
u,h ≺ 0, (5)

ΛT
u,h + ιTu,h+1Gu − λiι

T
u,h+1 ≺ 0, (6)

ιTu,HGu − λiι
T
u,H ≺ 0, (7)

ιv,0 − µiιu,H � 0, (8)

ln µi + λiτaΦi ,max < 0, (9)

where Λu,h =
H(ιu,h+1−ιu,h)

τΦi ,min
, Φ(u) = i, then System (1) is globally asymptotically stable under any

switching law ρ(s) ∈ D[τΦi ,min,2τaΦi ,max−τΦi ,min]
.

Analysis. The Lyapunov functions constructed in most previous articles that were
continuous in the dwell-time interval are not applicable when all subsystems are unstable.
Using another method, we consider the construction of a discretized Lyapunov function to
break the commutativity of Lyapunov functions in adjacent dwell-time intervals. In this
way, systems for which all subsystems are unstable can be stabilized by proper switching.

Proof. Step 1: Prove that System (1) is stable.
For the convenience of narration, assume that ρ(sr) = u, ρ(sr+1) = v. Divide the

interval [sr, sr + τΦi ,min) into H equal parts, with each interval represented as Iu
r,h = [sr +

ωu
h , sr + ωu

h+1), h = 0, 1, · · · ,H− 1. The length of the equal division is lu =
τΦi ,min
H , where

ωu
h = h · lu, h = 0, 1, · · · ,H.

We use the linear interpolation formula to construct linear functions for each segment
of the minimum dwell-time interval. When s ∈ Iu

r,h, let ιu(s) = (1− α)ιu,h + αιu,h+1, where

α =
s−sr−ωu

h
lu

. Substituting the expressions of α and lu into the above equation yields
ι̇u(s) = Λu,h. When α = 0, we denote ιu(sr + ωu

h ) as ιu,h.
When s ∈ [sr + τΦi ,min, sr+1), let ιu(s) remain the value of the left endpoint during this

period; i.e., ιu(s) = ιu,H. Obviously, ι̇u(s) = 0.
Since the system we are studying is positive, we can construct the following multiple

co-positive Lyapunov functions:

Fu(s) = ιTu (s)x(s), u ∈M. (10)

Among them, the vector ιu(s) is as defined above.
When s ∈ Iu

r,h,

Ḟu(s) = ΛT
u,hx(s) + ιTu (s)Gux(s)

= ΛT
u,hx(s) + [(1− α)ιTu,h + αιTu,h+1]Gux(s)

= (1− α)[ΛT
u,h + ιTu,hGu]x(s) + α[ΛT

u,h + ιTu,h+1Gu]x(s). (11)

Combining Equations (5) and (6), it can be concluded that Ḟu(s) < λiFu(s).
When s ∈ [sr + τΦi ,min, sr+1), Ḟu(s) = ιTu,HGux(s). Combining this with Equation (7),

it can be concluded that Ḟu(s) < λiFu(s).
From the above analysis, it can be seen that

Ḟu(s) < λiFu(s), s ∈ [sr, sr+1). (12)
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According to Equation (8) and the assumption that the system state does not jump
during switching, it can be concluded that

Fv(s+r+1) ≤ µiFu(s−r+1), u 6= v, ∀u, v ∈M. (13)

Combining Equations (12) and (13), we have

Fρ(sr)(s) < eλΦ(ρ(sr))(s−sr)Fρ(sr)(sr)

≤ eλΦ(ρ(sr))(s−sr)µΦ(ρ(sr−1))
Fρ(sr−1)

(s−r )

< eλΦ(ρ(sr))(s−sr)µΦ(ρ(sr−1))
eλΦ(ρ(sr−1))

(sr−sr−1)Fρ(sr−1)
(sr−1)

... (14)

< eλΦ(ρ(sr))(s−sr)µΦ(ρ(sr−1))
µΦ(ρ(sr−2))

· · · µΦ(ρ(s0))

eλΦ(ρ(sr−1))
(sr−sr−1) · · · eλΦ(ρ(s0))

(s1−s0)Fρ(s0)
(s0)

= eλΦ(ρ(sr))(s−sr)

 k

∏
i=1

µ
ni
i e

k
∑

i=1
λiTi

Fρ(s0)
(s0)

≤ eλΦ(ρ(sr)) ·2τaΦi ,max

(
k

∏
i=1

µ
ni
i eλiniτaΦi ,max

)
Fρ(s0)

(s0),

where ni denotes the switching numbers of the i th family subsystems over the interval
[0, s], and Ti denotes the total activated time of the i th family subsystems over the interval
[0, s]. Let τ = max{τaΦi ,max}, λ = max{λi}, i ∈ K. From Equation (9), we can derive
µie

λiτaΦi ,max < 1; namely, µ
ni
i eλiniτaΦi ,max < 1, ∀ i ∈ K. Substituting into Equation (14), we

obtain:

Fρ(sr)(s) < e2λτFρ(s0)
(s0). (15)

As we all know, the following inequalities are true: Fρ(s0)
(s0) ≤ δ

√
n‖x(s0)‖2,

δ‖x(s)‖2 ≤ Fρ(sr)(s), where δ = max
u∈M,h=0,1,··· ,H

{δ(ιu,h)}, δ = min
u∈M,h=0,1,··· ,H

{δ(ιu,h)}. Sub-

stituting into Equation (15), we obtain:

‖x(s)‖2 ≤ Θ‖x(s0)‖2, (16)

where Θ = δ
√

n
δ e2λτ .Then, ∀ ε > 0, we can choose ‖x(s0)‖2 < ξ(ε) = Θ−1ε. This results in

‖x(s)‖2 < ε, and the stability of System (1) can be obtained.
Step 2: Prove that System (1) is globally asymptotically stable.
Combining Equations (12) and (13), it can be seen that Fv(sr+1) < γFu(sr), 0 < γ < 1,

where γ = max (µie
2λiτaΦi ,max). Recursively, the following relationship can be obtained:

Fρ(sr)(sr) < γrFρ(s0)
(s0). We can derive lim

r→∞
Fρ(sr)(sr) = 0, which implies lim

r→∞
x(sr) = 0.

Below, we use the proof by contradiction to obtain the desired conclusion. Assume
the existence of x(s f ) such that lim

f→∞
x(s f ) = c, where c is a positive constant. From the

definition of the limit, it can be seen that there exists q > 0 such that ‖x(s f )‖2 > c− a
whenever f > q, where a(< c) is any positive constant.

From the stability of System (1), it can be seen that there exists ζ(p) > 0 such that
‖x(s)‖2 < p whenever ‖x(s0)‖ < ζ, where p is positive. Let p = c− a; then, ‖x(s)‖2 <
c− a. This contradicts ‖x(s f )‖2 > c− a, so the assumption is not valid, Then, we have
lim
s→∞

x(s) = 0.

Hence, SPLS (1) is globally asymptotically stable with regard to
ρ(s) ∈ D[τΦi ,min,2τaΦi ,max−τΦi ,min]

.
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Remark 1. The co-positive Lyapunov functions in Theorem 1 are time-varying during [sr, sr +
τΦi ,min) and time-invariant during [sr + τΦi ,min, sr+1), where r = 0, 1, · · · . The discretized co-
positive Lyapunov function divides the dwell-time interval into a finite number of small regions,
and the vector function ιu(s) varies linearly with respect to s in each small region.

Remark 2. The Lyapunov functions Fu(s) in Theorem 1 are allowed to increase while the unstable
subsystem is working, and the increase rate is limited to Ḟu(s) < λiFu(s). Moreover, this
increment can be compensated for by the switching behavior; that is, the Lyapunov functions do not
increase at the switching instants.

Remark 3. The switching strategy set can be obtained by the following procedure. Firstly, appropri-
ate λi, µi,H, and τΦi ,min are given according to the constraints of each parameter. Then, the values
of vectors ιu,h are calculated by linear programming. We can then obtain the switching strategy set.
Later, we will visually see through examples that the Φ-dependent dwell time technique is more
flexible than the mode-dependent dwell time and the dwell time.

Remark 4. Unlike most stability results based on various dwell time strategies or their extended
forms, Theorem 1 applies to the situation where all subsystems are unstable. The theorem is based
on the fact that the energy increment caused by unstable subsystem may be compensated for by the
suitable “stable” switching. This has two limitations: the computational complexity caused by group
diversity and the blindness in determining the minimum dwell time. The conditions of the theorem
are to some extent harsh, but it provides an effective switching design scheme for related research.

Due to the fact that real-world systems are always influenced by various factors, the
following investigates the robust stability of continuous switched-interval positive systems
where all subsystems are unstable.

Consider the continuous switched-interval positive system

ẋ(s) = Gρ(s)x(s), (17)

where Gu ∈ [Gu,Gu], u ∈ M, Gu, and Gu, u ∈ M are constant matrices with suitable
dimensions, representing interval uncertainty. In addition, we assume that Gu are Metzler
matrices.

Theorem 2. Consider SPLS (17). Given scalars λi > 0, 0 < µi < 1, i ∈ K, and 0 <
τΦi ,min ≤ τaΦi ,max, if there exists a set of vectors ιu,h � 0, h = 0, 1, 2, · · · ,H, u ∈ M such that
∀ h = 0, 1, 2, · · · ,H, ∀ u, v ∈M, i ∈ K,

ΛT
u,h + ιTu,hGu − λiι

T
u,h ≺ 0, (18)

ΛT
u,h + ιTu,h+1Gu − λiι

T
u,h+1 ≺ 0, (19)

ιTu,HGu − λiι
T
u,H ≺ 0, (20)

ιv,0 − µiιu,H � 0, (21)

ln µi + λiτaΦi ,max < 0, (22)

where Λu,h =
H(ιu,h+1−ιu,h)

τΦi ,min
, Φ(u) = i, then System (17) is globally asymptotically stable under

any switching law ρ(s) ∈ D[τΦi ,min,2τaΦi ,max−τΦi ,min]
.

Proof. Under the assumption that Gu are Metzler matrices, according to Definition 2, it
can be concluded that Gu are also Metzler matrices. We still use the discretized co-positive
Lyapunov function (Equation (10)).
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When s ∈ Iu
r,h,

Ḟu(s) ≤ ΛT
u,hx(s) + ιTu (s)Gux(s)

= (1− α)[ΛT
u,h + ιTu,hGu]x(s) + α[ΛT

u,h + ιTu,h+1Gu]x(s). (23)

Combining Equations (18) and (19), it can be concluded that Ḟu(s) < λiFu(s). Sim-
ilarly, when s ∈ [sr + τΦi ,min, sr+1), there is the same formula. In summary, it can be
concluded that Ḟu(s) < λiFu(s), s ∈ [sr, sr+1). The subsequent proof is similar to Theorem
1. Therefore, there will be no further explanation.

3.2. Discrete-Time Case

This section provides the sufficient conditions for the stability and robust stability of
discrete-time SPLSs.

Theorem 3. Consider SPLS (2). Given scalars λi > 0, 0 < µi < 1, i ∈ K, and 0 <
τΦi ,min ≤ τaΦi ,max, if there exists a set of vectors ιu,h � 0, h = 0, 1, 2, · · · ,H, u ∈ M such that
∀ h = 0, 1, 2, · · · ,H, ∀ u, v ∈M, i ∈ K,

ΛT
u,hGu + ιTu,h(Gu − I)− λiι

T
u,h ≺ 0, (24)

ΛT
u,hGu + ιTu,h+1(Gu − I)− λiι

T
u,h+1 ≺ 0, (25)

ιTu,H(Gu − I)− λiι
T
u,H ≺ 0, (26)

ιv,0 − µiιu,H � 0, (27)

ln µi + τaΦi ,max ln(1 + λi) < 0, (28)

where Λu,h =
H(ιu,h+1−ιu,h)

τΦi ,min
, Φ(u) = i, then System (2) is globally asymptotically stable under any

switching law ρ(s) ∈ D[τΦi ,min,2τaΦi ,max−τΦi ,min]
.

Proof. We still use the linear interpolation formula to construct linear functions for each
segment of the minimum dwell-time interval Iu

r,h = [sr +ωu
h , sr +ωu

h+1), h = 0, 1, · · · ,H− 1,
as shown in Theorem 1. We can easily obtain ιu(s + 1) = Λu,h + ιu(s). Then,

∆Fu(s) = Fu(s + 1)−Fu(s)

= (ιTu (s) + ΛT
u,h)Gux(s)− ιTu (s)x(s)

= [(1− α)ιTu,h + αιTu,h+1 + ΛT
u,h]Gux(s)− [(1− α)ιTu,h + αιTu,h+1]x(s)

= (1− α)[ιTu,h(Gu − I) + ΛT
u,hGu]x(s)

+ α[ιTu,h+1(Gu − I) + ΛT
u,hGu]x(s). (29)

Combining Equations (24) and (25), it can be concluded that Fu(s + 1) < (1 +
λi)Fu(s).

Similarly, when s ∈ [sr + τΦi ,min, sr+1), take ιu(s) = ιu,H. Using Equation (26), we can
derive

∆Fu(s) = ιTu,HGux(s)− ιTu,Hx(s)

= ιTu,H(Gu − I)x(s)

< λiFu(s). (30)

From the above analysis, it can be seen that

Fu(s + 1) < (1 + λi)Fu(s), s ∈ [sr, sr+1). (31)

According to Equation (27) and the assumption that the system state does not jump
during switching, it can be concluded that
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Fv(s+r+1) ≤ µiFu(s−r+1), u 6= v, ∀u, v ∈M. (32)

From Equations (31) and (32), we can obtain

Fρ(sr)(s) < (1 + λΦ(ρ(sr)))
s−srFρ(sr)(sr)

≤ (1 + λΦ(ρ(sr)))
s−sr µΦ(ρ(sr−1))

Fρ(sr−1)
(sr)

< (1 + λΦ(ρ(sr)))
s−sr µΦ(ρ(sr−1))

(1 + λΦ(ρ(sr−1))
)sr−sr−1Fρ(sr−1)

(sr−1)

... (33)

< (1 + λΦ(ρ(sr)))
s−sr µΦ(ρ(sr−1))

µΦ(ρ(sr−2))
· · · µΦ(ρ(s0))

(1 + λΦ(ρ(sr−1))
)sr−sr−1 · · · (1 + λΦ(ρ(s0))

)s1−s0Fρ(s0)
(s0)

= (1 + λΦ(ρ(sr)))
s−sr

(
k

∏
i=1

µ
ni
i (1 + λi)

Ti

)
Fρ(s0)

(s0)

≤ (1 + λΦ(ρ(sr)))
2τaΦi ,max

(
k

∏
i=1

µ
ni
i (1 + λi)

niτaΦi ,max

)
Fρ(s0)

(s0),

where ni denotes the switching numbers of the i th family subsystems over the interval [0, s],
and Ti denotes the total activated time of the i th family subsystems over the interval [0, s].
Let Ψ = max{(1 + λi)

2τaΦi ,max}. From Equation (28), we can derive µi(1 + λi)
τaΦi ,max < 1.

Substituting into Equation (33), we obtain:

Fρ(sr)(s) < ΨFρ(s0)
(s0). (34)

As we all know, the following inequalities are true: Fρ(s0)
(s0) ≤ δ

√
n‖x(s0)‖2,

δ‖x(s)‖2 ≤ Fρ(sr)(s), where δ = max
u∈M,h=0,1,··· ,H

{δ(ιu,h)}, δ = min
u∈M,h=0,1,··· ,H

{δ(ιu,h)}. Sub-

stituting into Equation (34), we obtain:

‖x(s)‖2 ≤ Ω‖x(s0)‖2, (35)

where Ω = δ
√

n
δ Ψ. Then, ∀ ε > 0, and we can choose ‖x(s0)‖2 < ξ(ε) = Ω−1ε. This results

in ‖x(s)‖2 < ε, and the stability of System (2) can be obtained.
The rest of the proof of Theorem 3 is similar to Theorem 1 and is therefore omitted.

Below, we provide sufficient conditions for the case of interval uncertainty.
Consider the discrete switched-interval positive system

x(s + 1) = Gρ(s)x(s), (36)

where Gu ∈ [Gu,Gu], u ∈M, Gu, and Gu, u ∈M are the same as Equation (17). In addition,
we assume that Gu � 0.

Theorem 4. Consider Equation (36). Given scalars λi > 0, 0 < µi < 1, i ∈ K, and 0 <
τΦi ,min ≤ τaΦi ,max, if there exists a set of vectors ιu,h � 0, h = 0, 1, 2, · · · ,H, u ∈ M such that
∀ h = 0, 1, 2, · · · ,H, ∀ u, v ∈M, i ∈ K,

ΛT
u,hGu + ιTu,h(Gu − I)− λiι

T
u,h ≺ 0, (37)

ΛT
u,hGu + ιTu,h+1(Gu − I)− λiι

T
u,h+1 ≺ 0, (38)

ιTu,H(Gu − I)− λiι
T
u,H ≺ 0, (39)

ιv,0 − µiιu,H � 0, (40)

ln µi + τaΦi ,max ln(1 + λi) < 0, (41)
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where Λu,h =
H(ιu,h+1−ιu,h)

τΦi ,min
and Φ(u) = i; then, System (36) is globally asymptotically stable

under any switching law ρ(s) ∈ D[τΦi ,min,2τaΦi ,max−τΦi ,min]
.

The proof of this theorem is basically the same as the previous proof and is omit-
ted here.

4. Illustrative Example

In this section, we illustrate through a specific example that the Φ-dependent dwell
time technique is more flexible than mode-dependent dwell time and dwell time.

Consider an epidemiological model with n population groups [25]. Every ı th group is
divided into infectives and susceptibles. Let Iı(s) and Sı(s), respectively, denote the number
of infectives and susceptibles at time s. Suppose the total number Iı(s) + Sı(s) = Nı is
constant at any time s ≥ 0. By taking xı(s) = Iı(s)/Nı, we have, for ı = 1, 2, · · · , n:

ẋı(s) = (1− xı(s))
N

∑
=1

βıN

Nı
x(s)− (ηı + vı)xı(s), (42)

where βı > 0 and ηı > 0 are some known constants, and vı > 0 is the death rate in the ı
group. Suppose there are m different therapies to fight the epidemic, and the infection rate
ηρ(s) is not constant but depends, at each time s, on ρ(s) ∈ {1, 2, · · · , m}, which orchestrates
the different therapies for the different population groups. By linearizing the system around
the disease-free point x = 0, one can get the following system:

ẋ(s) = Gρ(s)x(s); (43)

i.e., Equation (1) with the system’s matrices given as follows:

G1 =

[
−2.75 0.05
0.045 0.15

]
,G2 =

[
0.1 0.035

0.03 −1.75

]
,G3 =

[
0.2 0.06
0.05 −3

]
.

The eigenvalues of G1 are a1 = −2.7508 and a2 = 0.1508, the eigenvalues of G2 are
a1 = 0.1006 and a2 = −1.7506, and the eigenvalues of G3 are a1 = 0.2009 and a2 = −3.0009.
Obviously, all three subsystems are unstable.

For the convenience of calculation, we take H = 1, x(0) = [3, 5]T . Di represents the
switching strategy set of the i th family subsystem, and τi represents the dwell time of the i
th family subsystem. Due to the number of subsystems being three, the set K can be divided
into the following three situations. According to the choice of the different Φ, one can get
different switching strategies. When K = {1}, then Φ1 = {1, 2, 3}, which corresponds to
the case with the dwell time technique. When K = {1, 2}, there are three types of grouping:
(1) Φ1 = {1, 2}, Φ2 = {3}; (2) Φ1 = {1, 3}, Φ2 = {2}; and (3) Φ1 = {1}, Φ2 = {2, 3}. When
K = {1, 2, 3}, then Φ1 = {1}, Φ2 = {2}, and Φ3 = {3}, which corresponds to the mode-
dependent dwell time technique. In each group, select appropriate λi > 0, 0 < µi < 1, and
τΦi ,min, and use linear programming to solve the vector ιu,h that satisfies Equations (5)–(8)
in Theorem 1. When Equations (5)–(8) have a solution, by bringing the values of λi and
µi into Equation (9), we can obtain τaΦi ,max. The switching strategy set Di can be obtained
from τΦi ,min and τaΦi ,max. Select the appropriate switching τi in Di. Based on the selected τi,
the state response (Figures 1–5) can be obtained for different groups Φ. The following table
provides the parameter selection and switching strategy set corresponding to the dwell
time, Φ-dependent dwell time, and mode-dependent dwell time techniques, respectively.
As can be seen from the state response figures, all three techniques can stabilize the system
with appropriate switching. It can be seen from Table 2 that the τΦi ,min of the dwell tine
technique is 0.5, while the τΦi ,min can be 0.4 in the three cases where K = {1, 2}. Similarly,
the Φ-dependent dwell time technique has a broader range of switching strategy sets
than the mode-dependent one. By comparing the switching signal sets and state response
graphs of the different techniques, it can be seen that the conclusions obtained with the
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Φ-dependent dwell time cover the previous dwell time and mode-dependent dwell time.
The technique used in this paper can make the system stable in the shortest time with the
appropriate switching.
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Figure 1. The state response of the system with the dwell time technique.
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Figure 2. The state response of the system with group one of the Φ-dependent dwell time technique.
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Figure 3. The state response of the system with group two of the Φ-dependent dwell time technique.
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Figure 4. The state response of the system with group three of the Φ-dependent dwell time technique.
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Figure 5. The state response of the system with the mode-dependent dwell time technique.
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Table 2. Comparison of the three methods.

Φ-Dependent Dwell Time

Technique Dwell Time K = {1} K = {1, 2} Mode-Dependent Dwell Time K = {1, 2, 3}

Φ
Φ1 = {1, 2, 3} Φ1 = {1, 2} Φ1 = {1, 3} Φ1 = {1} Φ1 = {1}

Φ2 = {3} Φ2 = {2} Φ2 = {2, 3} Φ2 = {2}
Φ3 = {3}

λ
λ1 = 0.5 λ1 = 0.5 λ1 = 0.5 λ1 = 0.5 λ1 = 0.5

λ2 = 0.55 λ2 = 0.57 λ2 = 0.6 λ2 = 0.6
λ3 = 0.55

µ1 = 0.75 µ1 = 0.7 µ1 = 0.7 µ1 = 0.7 µ1 = 0.75
µ µ2 = 0.65 µ2 = 0.6 µ2 = 0.68 µ2 = 0.7

µ3 = 0.65

ι1,0

[
0.0100
0.0116

] [
0.0100
0.0124

] [
0.0100
0.0124

] [
0.0100
0.0127

] [
0.0100
0.0119

]

Table 2. Cont.

Φ-Dependent Dwell Time

Technique Dwell Time K = {1} K = {1, 2} Mode-Dependent Dwell Time K = {1, 2, 3}

ι1,1

[
0.0177
0.0133

] [
0.0234
0.0143

] [
0.0255
0.0143

] [
0.0226
0.0143

] [
0.0214
0.0133

]
ι2,0

[
0.0132
0.0100

] [
0.0164
0.0100

] [
0.0178
0.0100

] [
0.0158
0.0100

] [
0.0161
0.0100

]
ι2,1

[
0.0157
0.0133

] [
0.0195
0.0143

] [
0.0211
0.0167

] [
0.0189
0.0147

] [
0.0195
0.0143

]
ι3,0

[
0.0118
0.0100

] [
0.0137
0.0100

] [
0.0126
0.0100

] [
0.0128
0.0100

] [
0.0137
0.0100

]
ι3,1

[
0.0133
0.0154

] [
0.0154
0.0190

] [
0.0143
0.0177

] [
0.0147
0.0187

] [
0.0154
0.0183

]
D1 [0.5, 0.55] [0.5, 0.7] [0.5, 0.7] [0.4, 0.7] [0.4, 0.55]
D2 [0.4, 0.75] [0.4, 0.85] [0.45, 0.6] [0.45, 0.5]
D3 [0.4, 0.53]

τ1 0.5 0.6 0.6 0.55 0.4
τ2 0.5 0.6 0.45 0.5 0.45
τ3 0.5 0.5 0.6 0.5 0.5

State response Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

5. Conclusions

In this paper, we studied the stability and robust stability of SPLSs in which all
subsystems are unstable by means of Φ-dependent dwell-time switching. By using the
discretized co-positive Lyapunov functions, the sufficient conditions for the stability of
SPLSs were obtained in the form of linear matrix inequalities. The stability and robust
stability of SPLSs in continuous-time and discrete-time cases were studied in this paper,
respectively. At the end of the paper, an illustrative example showed that the Φ-dependent
dwell time technique is more effective than the mode-dependent dwell time and the
dwell time.
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