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Abstract: Physics-informed neural networks (PINNs) have been widely used to solve partial differen-
tial equations in recent years. But studies have shown that there is a gradient pathology in PINNs.
That is, there is an imbalance gradient problem in each regularization term during back-propagation,
which makes it difficult for neural network models to accurately approximate partial differential
equations. Based on the depth-weighted residual neural network and neural attention mechanism,
we propose a new mixed-weighted residual block in which the weighted coefficients are chosen
autonomously by the optimization algorithm, and one of the transformer networks is replaced by
a skip connection. Finally, we test our algorithms with some partial differential equations, such
as the non-homogeneous Klein–Gordon equation, the (1+1) advection–diffusion equation, and the
Helmholtz equation. Experimental results show that the proposed algorithm significantly improves
the numerical accuracy.

Keywords: depth-weighted residual neural networks; physics-informed learning; partial differential
equations

1. Introduction

In real life, many problems are represented by partial differential equations (PDEs),
such as the advection–diffusion equation, the wave equation, and the Klein–Gordon equa-
tion. So, solving the partial differential equations [1–4] is of great practical significance.
Traditional numerical methods: finite volume [5], finite element [6], and finite difference [7]
have been very mature in solving partial differential equations. With the rapid development
of computers, neural networks have been applied to many fields, such as computer vision,
image processing, etc. In recent years, neural networks have been widely used to solve
partial differential equations [8–11].

In the past few years, many neural network algorithms for solving partial differential
equations have been proposed. The most representative of which are the physics-informed
neural networks (PINNs) [12–14]. The PINNs algorithm integrates the control equation
into the neural network, and constructs a loss function according to the control equation to
constrain the space of the solution so that the final result naturally satisfies the constraints
of the control equation. When the loss function tends to zero, we can obtain an approximate
solution to the problem. At the same time, many improved and extended algorithms
of PINNs have been proposed, such as conservative physics-informed neural networks
based on domain decomposition [15], BPINN and UQPINN [16,17] based on uncertainty
theory and Bayesian theory, Fourier neural network operators [18] etc. But using the
governing equation as a regularization term leads to unstable and erroneous predictions in
some cases. In [19], a fundamental failure mode of the stiffness-related physics-informed
neural network in gradient flow dynamics is explored. Revealing that in some cases,
PINNs have an imbalance gradient problem between the regularization terms during back-
propagation. In order to alleviate the problem of unbalanced gradients between the regular
terms, inspired by the extended stochastic gradient descent algorithm [20], a learning rate
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annealing program [19] and an improved fully connected neural network that are elastic for
gradient pathology are proposed. At the same time, the convergence speed of the PINNs
algorithm is slow and unstable. Based on the Galerkin method, a variational physics-
informed neural networks (VPINNs) [21,22] algorithm was proposed. The principle of
the VPINNs algorithm is to derive the variational form of partial differential equations
based on the Galerkin method, and construct the loss function using the variational form
of the partial differential equation. And we can reduce the order of the differential operator
through integration by parts, making the problem easier to solve. Moreover, based on
the intuitive understanding and prior knowledge of the computational domain, we can
adaptively split the computational domain [15] and design the appropriate neural network
model on each sub-domain separately to improve numerical accuracy; We only need
to specifically deal with the common boundaries of different subdomains to ensure the
continuity of the global solution.

In this paper, a mixed-weighted deep residual neural network (M-WDRNN) algorithm
based on the decoder–encoder framework in the attention mechanism [23,24] and deep-
weighted residual neural network is proposed. M-WDRNN can alleviate the gradient
pathology and degradation problems. Moreover, the weighted coefficient of the weighted
residual block is used as a trainable parameter to participate in the model training, and
the optimal parameter is selected according to the optimization algorithm, which saves
the adjustment time of the hyperparameters. Finally, the experimental results show the
effectiveness of the algorithm we proposed.

The rest of this article is organized as follows: In Section 2, we describe the problem to
be solved, deriving the loss function of PINNs and VPINNs in detail; We describe in detail
the structure of a mixed-weighted residual neural network in Section 3; The proposed
algorithm is applied to solve PDEs in Section 4, including the advection diffusion equation,
the Helmholtz equation, and the Klein–Gordon equation, to demonstrate the performance
of the proposed algorithm; Finally, in Section 5, we summarize the contributions and
shortcomings of the article, and briefly describe future work.

2. Problem Description

When using neural networks to approximate partial differential equations, PINNs and
fully connected neural networks have no essential differences in network structure. The
difference between the two is that to construct different loss functions. Compared with
fully connected neural networks, PINNs is to incorporate the governing equation into the
construction of the loss function. Next, the following equations were considered:

`u(x, t) = m(x, t), (x, t), t) ∈ X× [0, Γ],

ξu(x, t) = n(x, t), t), (x, t), t) ∈ ∂X× [0, Γ],

u(x, 0) = h̄(x, t)), (x, t), t) ∈ X× {t = 0},
(1)

where `, ξ, and h̄(x, t) represent the differential operator, the boundary operator, and the
initial condition, respectively, X denotes the bounded open set. According to Equation (1),
we can define PINN’s loss function:

L = τ
1
K

K

∑
j=1

(`u(xj, tj)−m(xj, tj)) + τb
1

Kb

Kb

∑
j=1

(ξu(xj
b, tj)− n(xj

b, tj))

+ τ0
1

K0

K0

∑
j=1

(u(xj
0, t = 0)− h̄(xj

0)),

(2)

where {(xj, tj)K
j=1, (xj

b, tj
b)

Kb
j=1, (xj, t = 0)K0

j=1} represent the residual points, boundary points,
and initial points, respectively. The parameters {τ, τb, τ0} represent the weight of residual
terms in the loss function, which is used to adjust the weight of the residual terms in the loss
function [19]. Although PINNs incorporate the governing equation into the construction of
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the loss function so that the training results naturally meet the constraints of the governing
equation. The training process is unstable, the convergence rate is slow, and it does not
necessarily converge. Thus, based on the Galerkin method, variational physics-informed
neural networks (VPINNs) [21,22] were proposed, a method that multiplies the residuals
of the governing equation with some properly chosen test functions vj and integrates over
the entire computational domain to obtain the variational form of Equation (2):

<j(u) =
∫

Ω×(0,Γ]
(`u(xj, tj)−m(xj, tj))ϑjdxdt = 0,

<b,j(u) =
∫

∂Ω×(0,Γ]
(ξu(xj

b, tj)− n(xj
b, tj))ϑjdxdt = 0,

<0,j(u) =
∫

Ω
(u(xj

0, t = 0)− h̄(xj
0))ϑjdx = 0.

(3)

Further, the loss function:

L = τ
1
K

K

∑
j=1
|<j(u)|2 + τb

1
Kb

Kb

∑
j=1
|<b,j(u)|2 + τ0

1
K0

K0

∑
j=1
|<0,j(u)|2. (4)

To reduce convergence time and training costs, variational physics-informed neural
networks with domain decomposition (hp-VPINNs) [25] were proposed.

3. Improved Weighted Residual Neural Network
3.1. Weighted Residual Blocks

Many studies [26–28] have shown that the performance of neural network models is
positively correlated with the number of neural layers in the network. But experimental
results show that as the number of layers of neural networks increases, the performance of
neural network models not only does not improve but begins to decline. As the number of
layers of the network increases, it encounters degradation problems. The deep residual
neural network [29] greatly alleviates this problem. On the basis of the residual neural
network, we propose a weighted residual neural network in our previous work, compared
with the residual neural network. The difference between the two is the difference in the
residual block. The output of the hidden layer in the weighted residual block is multiplied
by the weighted coefficient and increases the skip connection, relying on the weighted
coefficient to dynamically adjust the input to the next neural layer. A simple residual block
and a weighted residual block, as shown in Figure 1.

Figure 1. (A) Weighted residual block, where Yi−1 represents the output of the hidden layer. (B) Resid-
ual block.



Axioms 2023, 12, 750 4 of 11

3.2. Improved Fully Connected Neural Networks

There are two key factors to the success of neural networks: 1. Construct a suitable
loss function. Because the neural network algorithm is to transform the problems to be
solved into an optimization problem and uses the optimization algorithm to optimize the
loss function to obtain the optimal parameters. The construction of the loss function and
the appropriate optimization algorithm are very important. 2. Design a special neural
network framework. The framework design of the neural network is equally important
for solving the problems. For example, convolutional neural networks [30] and residual
neural networks [29] are excellent at solving image problems and degradation problems,
so appropriate network architectures can be designed according to actual problems. In-
spired by neural attention mechanisms applied to computer vision and natural language
processing [31], a neural network with a new structure [19] was proposed. Differing from
traditional fully connected architectures by introducing two transformer networks that
projected input variables into high-dimensional feature spaces. Introduced new weights
and biases and improved the network’s ability to represent complex functions. Its forward
update rules are as follows:

Uℵ = σ(XW1, b1),

Vℵ = σ(XW2, b2),

L1 = σ(XW1, b1),

Y  = σ(LW+1, b+1),  = 1, 2, · · · , k− 1,

L+1 = (1−Y )�Uℵ + Y  �Vℵ,  = 1, 2, · · · , k− 1,

uNN = LkWk + bk.

(5)

where {W1, W2, b1, b2} represent additional weights and biases, σ and � represent ac-
tivation functions and Hadamard product, respectively. This forward structure results
in a certain memory overhead, increases training time, but significantly improves the
performance of the model.

3.3. Mixed-Weighted Residual Neural Network

In this section, we consider combining weighted residual neural networks with the
forward structure in Section 3.1. At the same time, here, we take the weighted coefficients in
the mixed-weighted residual block as trainable parameters to participate in the the model’s
training. Eliminating the manual selection of the weighted coefficients. The updated rules
for mixed-weighted residual blocks are as follows:

Uk+1 = σ(XkWτk+1,k+1 + bτk+1,k+1),

Y1,k+1 = σ(XkW1,k+1 + b1,k+1),

Xi,k+1 = (1− αi,k+1Yi,k+1)�Uk+1 + αi,k+1Yi,k+1 � Xk, i = 1, 2, . . . , L− 1,

Yi+1,k+1 = σ(Xi,k+1Wi,k+1 + bi,k+1), i = 1, 2, . . . , L− 1,

Xk+1 = XL,k+1 = (1−YL,k+1 �Uk+1) + Xk �YL,k+1,

(6)

where {Wτk+1,k+1, bτk+1,k+1} represent the extra weight and bias in the k + 1-th mixed-
weighted residual block and Xk represents the final output from the k-th mixed-weighted
residuals block. Here, we replace transformer network V with Xk, and the hidden layer
output of the mixed-weighted residual block is given a trainable weight αi,j. Yi,k+1 repre-
sents the output of the i-layer in the k + 1 mixed-weighted residual block, Xk+1 represents
the final output of the k + 1 mixed-weighted residual block, and a simple mixed-weighted
residual block is shown in Figure 2.
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Figure 2. Mixed-weighted residual block.

4. The Forward and Inverse Problems

In this section, we solve some partial differential equations to test the performance of
the algorithm we proposed and build neural network models with different numbers of
mixed-weighted residual blocks based on different cases. Adam optimization algorithm [20]
is used to optimize the loss function in the following examples.

Example 1. We first consider the two-dimensional non-homogeneous Poisson equation to test the
algorithm we proposed, and the exact solution is shown below:

u(x, y) = sin(πx)sin(πy), (x, y) ∈ [−1, 1]× [−1, 1]. (7)

This example uses five mixed-weighted residuals with three hidden layers to model
neural networks. Each with a transformer network, the number of neurons in the hid-
den layer is 10, and the activation function is sin(x). The point-wise error of PINN and
M-WDRNN was compared in Figure 3. The root mean square error (RMSE) of PINN and
M-WDRNN is 1.832× 10−4, 1.587× 10−5, respectively. During the training process, the loss
function values of M-WDRNN and PINN drop to 4.56× 10−10 and 5.56× 10−8, respectively.
The algorithm we proposed greatly improves the approximation of PINN. The approxima-
tion on the boundary is significantly better than that of PINN, and M-WDRNN alleviates
the gradient imbalance problem of each regular term in the loss function. We randomly
took 1000 inner points and 400 boundary points as training samples in all examples.

Figure 3. Top panel: (A) PINN prediction. (B) PINN point-wise error. Bottom panel: (C) M-WDRNN
prediction. (D) M-WDRNN point-wise error. (E) exact solution (7).
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Example 2. Here, we apply our proposed algorithm to the problem of the non-homogeneous Klein–
Gordon equation:

u(x, t)tt + γ∆u(x, t) + h(x, t) = f (x, t), [−1, 1]× [0, 1], (8)

where ∆ represents the Laplace operator, f (x, t) = αu(x, t) + βu(x, t)k , the parameters γ = −1,
α = 0, β = 1, k = 3, the exact solution is expressed as:

u(x, t) = xcos(t). (9)

In this example, we select three mixed-weighted residuals with three hidden layers to
build a neural network. The hidden layer contains 10 neurons. We chose the function sin(x)
as the activation function, the parameters τ = τb = τ0 = 1, K = 1000, Kb = 200, K0 = 100.
The exact solution, prediction of the Equation (8) and point-wise error are shown in Figure 4.
The maximum point-wise error of PINN and M-WDRNN are 2.73× 10−3 and 3.12× 10−4,
respectively. Note that the approximation of the PINN algorithm is worse than other
regions in the boundary. The M-WDRNN algorithm alleviates this phenomenon and signif-
icantly improves the overall approximation.

Figure 4. Top panel: (A) PINN loss values. (B) PINN point-wise error. (C) PINN predicted solution.
(D) Exact solution (9). Bottom panel: (E) M-WDRNN point-wise error. (F) M-WDRNN predicted
solution. (G) Loss values.

Example 3. Next, we consider the (1+1) dimensional advection diffusion equation (ADE):

∂u(x, t)
∂t

+ ν
u(x, t)

∂x
= κ

∂2u(x, t)
∂x2 . (10)
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Equation (10) satisfies the following initial condition and boundary condition: u(1, t) =
u(−1, t), u(x, 0) = −sin(πx), where ν = 1 and κ = 0.1

π are the advection coefficient and
the diffusion coefficient. The analytical solution to the AD Equation (10) is given in [32] by
summing infinite series. We built a neural network model using two mixed-weighted resid-
ual blocks with three hidden layers, training samples K = 1000, Kb = 200, and K0 = 100.
Since the analytical solution of the equation involves the sum of infinite series, we consider
intercepting finite terms as the analytical solution. We use the first 80,000 terms to calculate
the analytical solution to Equation (10), and compare the method we propose with other
methods. The result is as shown in Figure 5. Compared with other methods, our algorithm
is more accurate.

Figure 5. Top panel: (A) PINN point-wise error. (B) PINN prediction. Bottom panel: (C) M-WDRNN
point-wise error. (D) M-WDRNN prediction. (E) Exact solution (10).

Next, we consider solving the inverse problem of the differential equation, that is, the
problem of parameter estimation. In contrast to the partial differential forward problem,
the inverse problem only requires adding an observational penalty term to the loss function
of the forward problems. Here, we assume that the diffusion coefficient κ is unknown, κ is
initialized by 0.5, and 5 data points with measurement error 0.02 are randomly extracted as
observations. The PINN algorithm and the M-WDRNN algorithm are used to estimate un-
known parameters and approximate the true solution, respectively. Except for the network
structure, both maintain the same hyperparameter settings. A comparison of the results of
PINN and M-WDRNN is shown in Figure 6. The results show that the M-WDRNN algo-
rithm accurately approximates the exact solution and estimates the unknown parameters κ.
The estimation of PINN is extremely unstable during training, so the approximation error
exceeds that of the M-WDRNN algorithm. This shows the effectiveness of the M-WDRNN
algorithm for PDE inverse problems.
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Figure 6. The inverse problem of the (1+1) dimensional advection diffusion Equation (10). (A) M-
WDRNN point wise-error. (B) PINN point wise-error. (C) Exact solution (10), (D) Loss values.
(E) Diffusion coefficient κ.

Example 4. Finally, we consider the Helmholtz equation:

∆u(x, y) + D2u(x, y) = h(x, y),

u(−1, y) = u(1, y) = 0,

u(x,−1) = u(x, 1) = 0,

(11)

where D = 1 represents the diffusion coefficient, and the exact solution:

u(x, y) = (x + y)sin(πx)sin(πy), (x, y) ∈ [−1, 1]× [−1, 1]. (12)

We consider the forward problem. Two mixed-weighted residual blocks with three
hidden layers are used to build the network model, the parameters τ = τb = 1, K = 500,
Kb = 400. We chose sin(x) as the activation function, each hidden layer contains 10 neurons.
The result is shown in Figure 7. The maximum point-wise error of PINN and M-WDRNN
are 1.63× 10−2 and 2.71× 10−3, respectively. The RMSE of PINN and M-WDRNN are
6.83× 10−3 and 5.87× 10−4, respectively. Both M-WDRNN and PINN successfully fit
boundaries and inner domains, but the M-WDRNN algorithm has a more powerful ap-
proximation capability.

Secondly, we solve the inverse problem of Equation (11), where we assume that the
diffusion coefficient D = 1 is unknown. Randomly select 10 sample points as observation
points, and the network model is consistent with the forward problem. As shown in
Figure 8, the algorithm we propose can converge quickly with precise values and remain
stable during subsequent training, which shows that our algorithm is equally effective for
solving inverse problems of differential equations.
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Figure 7. Top panel: (A) M-WDRNN loss values. (B) M-WDRNN point-wise error. (C) M-WDRNN
predicted solution, (D) Exact solution (12). Bottom panel: (E) PINN point-wise error. (F) PINN
predicted solution. (G) PINN loss values.

Figure 8. The inverse problem of the Helmholtz Equation (12). (A) Loss values. (B) Predicted solution.
(C) Point-wise error. (D) Diffusion coefficient D.
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5. Summary and Discussion

Although PINNs are widely used to solve partial differential equations, gradient
pathology makes it difficult for PINNs to accurately approximate solutions to partial dif-
ferential equations. We propose a new and improved weighted residual neural network
based on the deep-weighted residual neural network and attention mechanism. Unlike
the improved fully connected neural networks [19], we no longer use two transformer
neural networks to participate in the construction of the network. But each residual block
adds a transformer neural network to participate in the construction of the network, and a
skip connection replaces the other transformer neural network. Based on the numerical
experimental results, we can see that the proposed algorithm can alleviate the gradient
pathology. It is worth mentioning that in all experiments, we have kept the weights of
each penalty term in the loss function unchanged, indicating our algorithm’s the validity.
Secondly, we no longer manually select the coefficient of the weighted residual network but
take the weighted coefficients in the mixed-weighted residual block as trainable parameters
to participate in the training of the model, relying on the network itself and the optimization
algorithm to achieve adaptive selection, saving the time of adjusting the network hyperpa-
rameters. Finally, the algorithm we propose is equally valid for the inverse problem but is
not discussed in further detail.
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