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Abstract: The pandemic caused by COVID-19 led to serious disruptions in the preventive efforts
against other infectious diseases. In this work, a robust mathematical co-dynamical model of
COVID-19, dengue, and HIV is designed. Rigorous analyses for investigating the dynamical prop-
erties of the designed model are implemented. Under a special case, the stability of the model’s
equilibria is demonstrated using well-known candidates for the Lyapunov function. To reduce the
co-circulation of the three diseases, optimal interventions were defined for the model and the control
system was analyzed. Simulations of the model showed different control scenarios, which could
have a positive or detrimental impact on reducing the co-circulation of the diseases. Highlights of
the simulations included: (i) Upon implementation of the first intervention strategy (control against
COVID-19 and dengue), it was observed that a significant number of single and dual infection cases
were averted. (ii) Under the COVID-19 and HIV prevention strategy, a remarkable number of new
single and dual infection cases were also prevented. (iii) Under the COVID-19 and co-infection
prevention strategy, a significant number of new infections were averted. (iv) Comparing all the
intervention measures considered in this study, it is possible to state that the strategy that combined
COVID-19/HIV averted the highest number of new infections. Thus, the COVID-19/HIV strategy
would be the ideal and optimal strategy to adopt in controlling the co-spread of COVID-19, dengue,
and HIV.

Keywords: COVID-19; optimal strategy; bifurcation analysis; dengue; stability; HIV

MSC: 34C60; 92C42; 92D30; 92D25

1. Introduction

Coronavirus disease 2019 (COVID-19) is a communicable respiratory disease driven
by severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) and belongs to the
family, Coronaviridae [1,2]. The emergence of COVID-19 in the latter months of 2019
signaled the start of a global pandemic with devastating effects. The Coronaviridae group
of viruses are diverse and cause serious illness. Characteristically, these groups of viruses
are protein-enveloped, roughly spherical with glycoprotein projections, possess helical
nucleocapsid, and a genome consisting of a positive-sense single-stranded RNA (+ssRNA).
Of all RNA viruses, the coronaviruses have the largest genome size of about 32 Kb [3,4].
The onset of COVID-19 infection is characterized by some or all of the following symptoms:
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sore throat, fever, dry cough, fatigue, headache, muscle ache, loss of taste, and loss of
smell. As experienced by many patients, COVID-19 infection quickly progresses from
a mild respiratory condition to acute respiratory distress syndrome (ARDS) and then to
grievous complications [1,4]. Since the first reports of COVID-19 in Wuhan, China, several
mutants of the virus have been detected in different populations around the globe. Due
to factors such as genome editing, mutations, and high adaptability, many variants of
SARS-CoV-2 have shown an increased spread and virulent activities across the globe, as
well as higher pathogenicity, leading to poor prognosis, increased morbidity, and a high
mortality rate [1,4]. The database of the World Health Organization (WHO) is dedicated
to informing the public about global health challenges, and their COVID-19 statistics are
ever-changing. As of 4 June 2023, global records hold that 767,364,883 confirmed cases
contracted COVID-19 infection, 6,938,353 deaths occurred due to COVID-19 complications,
and about 13,375,580,553 COVID-19 vaccine doses have been administered [5]. The patho-
genesis of COVID-19 begins with SARS-CoV-2 entry via infected droplets. The spike
proteins (s-proteins) surround the viral envelope and interact with the entry receptor,
ACE2 (angiotensin-converting enzyme 2), found in the target cells of the respiratory tract.
The binding of COVID-19 and ACE2 and the subsequent interaction with the enzyme
TMPRSS2 (transmembrane protease serine subtype 2) triggers a surge in dendritic cells,
neutrophils, monocytes, and macrophages. The release of pro-inflammatory cells results
in increased levels of pro-inflammatory proteins such as cytokines. With the initiation
and promotion of this inflammatory cascade, pathological events such as pulmonary dam-
age, ARDS, sepsis, tissue damage, and multi-organ failure occur. Target organs include
the lungs, kidney, heart, small intestine, pancreas, liver, and brain [2,6,7]. Pre-existing
health conditions such as obesity, hypertension, diabetes, and lung disease may increase
the disease burden of COVID-19 and increase morbidity [6]. However, the development
of COVID-19-specific anti-viral drugs and global mass vaccination campaigns have the
potential to halt the spread of COVID-19 and reduce morbidity.

Dengue fever (DF) is a major public health problem that is caused by dengue virus
(DV) and pathologically transmitted by the vector Aedes Aegypti [8]. The dengue virus
is responsible for about 100 million dengue fever infections annually across the globe.
Symptoms include fever, headache, rash, and myalgia. DF is prevalent in tropical and sub-
tropical regions, such as the Middle East, Africa, Asia, and South America [8]. The mortality
rate for DF is high, at about 50% for untreated patients, and morbid complications such
as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are known to
occur if poorly treated [9–11]. As a result of overlapping symptoms between COVID-19
and dengue, there is a high tendency for misdiagnosis of both diseases [12]. Co-infection
between dengue and COVID-19 has been reported in different parts of the world. Patients
suffering from dual infections of dengue and COVID-19 could suffer severe illness [13].

Human immunodeficiency virus (HIV) is a global public health problem that has
claimed the lives of over 40 million persons [14]. Currently, there is an estimated 39 million
people living with HIV across the globe [15]. HIV attacks human cells and their ability to
immunologically fight infections. In the event that the viral load increases uncontrollably
and the infection is not treated appropriately, acquired immunodeficiency syndrome (AIDS)
then occurs as the final stage of HIV [16]. Globally, people living with HIV are classed
in the at-risk demographic, due to their vitiated immunity [16]. It has also been reported
that HIV patients may have an increased potential to contract and suffer severely from
COVID-19 [17,18]. In tropical regions of the world, the co-circulation of COVID-19, dengue,
and HIV is prominent [19]. It is known that the COVID-19 pandemic led to serious
disruptions in the diagnosis, treatment, and prevention efforts against other infectious
diseases [20]. Moreover, the COVID-19 pandemic disrupted humanitarian aid and increased
pressure on already weakened healthcare systems, especially in dengue/HIV-endemic
countries, thus making it very difficult to handle simultaneous outbreaks of multiple
diseases, due to insufficient manpower and supplies [21].
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According to estimates, 0.4% of the sexually active population of Argentina is infected
with HIV. The prevalence is higher among transsexual women and men who have sex with
men (MSM), where it is respectively between 12% and 34% [22]. Additionally, roughly
37.5% of men and 30% of women receive late HIV diagnosis [22]. Arboviral disease
epidemics spread by Aedes mosquitoes have emerged in Argentina in the past 20 years [23].
The northern and central provinces of the country have reported cases of dengue fever,
chikungunya, and Zika [24]. The first-ever dengue outbreak in Argentina’s central area
occurred in 2009. Since then, incidences of frequent dengue outbreaks have been reported
every year, with the largest outbreak occurring in the year 2020, when more than 50% of all
cases in the nation occurred in that region [25].

In order to model the dynamics of multiple infectious diseases, optimal control has
proven to be a useful method. A thorough analysis of a dynamical model for the Zika virus
with optimal control was carried out by Khan et al. [26]. Jan et al. [27] analyzed a dengue
viral intervention model. Ullah et al. [28] examined a hepatitis B viral model with optimal
control. In addition, the authors in [29] studied a COVID-19 and dengue co-infection model
with optimal management, utilizing Brazilian data as a case study. They demonstrated that a
COVID-19- or dengue-specific preventive strategy would be sufficient to control both illnesses.
Using actual data from Yemen, Hezam [30] created a revolutionary dynamical optimum
control model for COVID-19 and chikungunya outbreaks. The authors of [31] investigated a
dynamical optimal control model for COVID-19 and Zika virus. Other models with optimal
intervention measures can also be found in previously published papers [32–37].

The rest of this paper is structured as follows: In Section 2, a novel mathematical model
for COVID-19, dengue, and HIV co-dynamics is developed. In Section 3, the designed
model is qualitatively analyzed using bifurcation and stability analyses. In Section 4,
optimal controls are incorporated into the model to adequately mitigate the co-spread
of the diseases. In Section 5, numerical experiments for assessing optimal intervention
strategies for curtailing triple infections are reported. The conclusions, limitations of the
study, and further research directions are presented in Section 6. This study is novel and
we hope it will open up further research in this area.

2. Model Formulation

The total population at any time t is denoted by Nh(t) and comprises susceptible or
vulnerable humans Sh(t); COVID-19 infected Ic(t); dengue infected Id(t); HIV infected
Ih(t), COVID-19 and dengue infected Icd(t); COVID-19 and HIV infected Ich(t); dengue
and HIV infected Idh(t); and COVID-19, dengue, and HIV infected Icdh(t), with R(t)
standing for COVID-19 or dengue recovered individuals. The total mosquito population
Nv(t)(t) comprises susceptible or uninfected mosquitoes: Sv(t) and infected mosquitoes
with dengue, Iv

d (t). Recruitment into the human environment is represented by Λh. Sus-
ceptible or uninfected persons Sh can become infected with any of the three infections at

the rates β1(Ic+Icd+Ich+Icdh)
Nh

, βh
2Iv

d
Nh

, β3(Ih+Ich+Idh+Icdh)
Nh

, respectively. We have also assumed

concurrent transmission of COVID-19 and HIV at the rate β13Ich
Nh

. The term µh is the natural
death rate. Individuals in the COVID-19-infected stage, dengue-infected, and HIV-infected
compartments may die due to the diseases at the rates φc, φd, and φh, respectively. Indi-
viduals in the COVID-19-infected class can also become co-infected with either dengue

or HIV at the rates βh
2Iv

d
Nh

and β3(Ih+Ich+Idh+Icdh)
Nh

, respectively. Similarly, those infected

with dengue or HIV can become infected with COVID-19 at the rate β1(Ic+Icd+Ich+Icdh)
Nh

.
Individuals co-infected with COVID-19 and dengue can become infected with HIV at the
rate β3(Ih+Ich+Idh+Icdh)

Nh
. Those infected with COVID-19 and HIV can become infected with

dengue at the rate βh
2Iv

d
Nh

, while those infected with dengue and HIV can also become infected

with COVID-19 at the rate β1(Ic+Icd+Ich+Icdh)
Nh

. Recovery rates for dengue- and COVID-19-
infected individuals are defined by ζd and ζc, respectively. We have also assumed that
after recovery from COVID-19, an individual has some immunity against re-infection [38],
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with κ denoting the COVID-19 re-infection rate. However, recovery from dengue does not
confer any immunity, and an individual can become re-infected, just like the susceptibles.
Recovered individuals are also susceptible to HIV infection. In addition, we have assumed
co-infection with the three diseases, which is possible [39]. Moreover, concurrent trans-
mission of either COVID-19 and dengue or HIV and dengue is not captured in the model,
as it has not yet been clinically documented whether a mosquito or human can transmit
COVID-19 and dengue or HIV and dengue concurrently.

In order to avoid complications in the model, asymptomatic classes for either COVID-19
or dengue were not assumed. The model also considered only the HIV infection stage, without
assuming the full-blown AIDS stage. Although the authors recognize that asymptomatic
individuals could play a crucial role in the transmission dynamics of infectious diseases,
by omitting asymptomatic classes, the model fails to capture the full spectrum of disease
severity and transmission patterns. This could also result in an incomplete representation
of the interactions between the three viral diseases and their impact on the population.
By excluding asymptomatic individuals and those with full-blown AIDS, the model may
underestimate the true burden of each disease and their interactions. Individuals with full-
blown AIDS may experience different clinical outcomes and interactions with COVID-19 and
dengue compared to those with HIV infection alone. The authors also acknowledge that
the findings of this study may have limited generalizability to real-world scenarios, since
asymptomatic individuals and those with full-blown AIDS are excluded. Thus, future work
in this regard is desirable, to fill the research gap that this study has created. Moreover, there
is not much information available regarding vaccine or infection-acquired cross-protection
between COVID-19, HIV, and dengue. There is no detailed clinical information on whether
the currently available COVID-19 or dengue vaccines could cross-protect against infection
with HIV. It should be stated that understanding the potential cross-protection between
vaccines for COVID-19, dengue, and HIV is crucial. Future research will focus on evaluating
the potential cross-reactivity or immune interactions between vaccines, exploring whether
vaccination against one disease could provide a degree of cross-protection against the other
two, and assessing the potential impacts on disease severity and transmission dynamics. The
model parameters and flow chart (describing other transitions in the model) are presented in
Table 1 and Figure 1, respectively.

dSh

dt
= Λh −

(
β1(Ic + Icd + Ich + Icdh)

Nh
+

βh
2Iv

d
Nh

+
β3(Ih + Ich + Idh + Icdh)

Nh
+

β13Ich

Nh
+ µh

)
Sh ,

dIc

dt
=

β1(Ic + Icd + Ich + Icdh)

Nh
(Sh + κR)− (φc + ζc + µh)Ic −

βh
2Iv

d
Nh
Ic −

β3(Ih + Ich + Idh + Icdh)

Nh
Ic ,

dId

dt
=

βh
2Iv

d
Nh

(Sh +R)− (φd + ζd + µh)Id −
β1(Ic + Icd + Ich + Icdh)

Nh
Id −

β3(Ih + Ich + Idh + Icdh)

Nh
Id ,

dIh

dt
=

β3(Ih + Ich + Idh + Icdh)

Nh
(Sh +R) + ζcIch + ζdIdh + ζcdIcdh − (φh + µh)Ih −

β1(Ic + Icd + Ich + Icdh)

Nh
Ih

−
βh

2Iv
d

Nh
Ih ,

dIcd

dt
=

βh
2Iv

d
Nh
Ic +

β1(Ic + Icd + Ich + Icdh)

Nh
Id − (φcd + ζcd + µh)Icd −

β3(Ih + Ich + Idh + Icdh)

Nh
Icd ,

dIch

dt
=

β13Ich

Nh
(Sh +R) +

β3(Ih + Ich + Idh + Icdh)

Nh
Ic +

β1(Ic + Icd + Ich + Icdh)

Nh
Ih + ζdIcdh

− (φch + ζc + µh)Ich −
βh

2Iv
d

Nh
Ich ,

dIdh

dt
=

β3(Ih + Ich + Idh + Icdh)

Nh
Id +

βh
2Iv

d
Nh
Ih + ζcIcdh − (φdh + ζd + µh)Idh −

β1(Ic + Icd + Ich + Icdh)

Nh
Idh ,

dIcdh

dt
=

β3(Ih + Ich + Idh + Icdh)

Nh
Icd +

βh
2Iv

d
Nh
Ich +

β1(Ic + Icd + Ich + Icdh)

Nh
Idh − (φcdh + ζc + ζd + ζcd + µh)Icdh ,

dR
dt

= ζcIc + ζdId + ζcdIcd −
(

κ
β1(Ic + Icd + Ich + Icdh)

Nh
+

βh
2Iv

d
Nh

+
β3(Ih + Ich + Idh + Icdh)

Nh
+

β13Ich

Nh
+ µh

)
R,

dSv

dt
= Λv −

(
βv

2(Id + Icd + Idh + Icdh)

Nh
+ µv

)
Sv ,

dIv
d

dt
=

βv
2(Id + Icd + Idh + Icdh)

Nh
Sv − µvIv

d .

(1)
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Table 1. Model parameters and description.

Parameter Description Value Source

βv
2 Contact rate for human–mosquito

spread of dengue 0.60–0.70 day−1 [31]
φd Dengue fever induced death rate 0.05 day−1 [31]
ζc COVID-19 recovery rate 0.13978 day−1 [40]
φc COVID-19-induced death rate 0.015 day−1 [40]
Λh Recruitment rate for humans 29,289,357

78.07×365 day−1 [41]
µh Human natural death rate 1

78.07×365 day−1 [41]
Λv Recruitment rate for mosquitoes 20,000 day−1 [42]
µv Mosquito removal rate 1

21 day−1 [42]
ζd Dengue fever recovery rate 0.15 day−1 [43]
β1 COVID-19 transmission rate 0.5642 day−1 [44]
βh

2 Contact rate for mosquito-human
spread of dengue 0.3427 day−1 [44]

β3 HIV transmission rate 0.3425 day−1 [45]
β13 COVID-19/HIV dual-transmission rate 0.6 day−1 Assumed
ζcd COVID-Dengue recovery rate 0.15 day−1 Assumed
φh HIV induced death rate 0.3425

365 day−1 [45]
φcd Co-infection death rate 0.06 day−1 Assumed
φch Co-infection death rate 0.05 day−1 Assumed
φdh Co-infection death rate 0.05 day−1 Assumed
φcdh Co-infection death rate 0.07 day−1 Assumed
κ Re-infection rate for COVID-19 0.7 day−1 [38]

Sh

Idh Id

Ic

Ih

Icd

Ich

R

Icdh

ζd

ζd

Λh

µh µh + φc

µh + φh µh + φch

µh + φcdµh + φdµh + φdh µh + φcdh

µh

λv
d

λh

λd

λv
d

λh

λh λd

λc

ζd
ζcd

ζcd

ζc

ζc

λc λhλh

λc

λc

κλc

λv
d

ζc

λch

λch

Sv Iv
dβv

2(Id+Icd+Idh+Icdh)
Nh

Λv

µv µv

Figure 1. Flow chart of the model (1), where, λc =
β1(Ic+Icd+Ich+Icdh)

Nh
, λv

d =
βh

2I v
d

Nh
,

λh =
β3(Ih+Ich+Idh+Icdh)

Nh
, λch =

β13Ich
Nh

.
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3. Analysis of the Model

A qualitative analysis of the formulated model without controls is carried out in
this section.

3.1. Non-Negativity of the Model Solutions

In order for system (1) to be epidemiologically meaningful, it is necessary to show that
the solutions are non-negative over the passage of time. This result is established thus:

Theorem 1. Given the initial states Sh(0) ≥ 0, Ic(0) ≥ 0, Id(0) ≥ 0, Ih(0) ≥ 0, Icd(0) ≥ 0,
Ich(0) ≥ 0, Idh(0) ≥ 0, Icdh(0) ≥ 0,R(0) ≥ 0,Sv(0) ≥ 0, Iv

d (0) ≥ 0.
Then the solutions, (Sh(t), Ic(t), Id(t), Ih(t), Icd(t), Ich(t),R(t),Sv(t), Iv

d (t)) of system
(1) are non-negative for all time t > 0.

Proof. The 1st Equation of (1) is given by

dSh(t)
dt

= Λh − (λc(t) + λv
d(t) + λh(t) + λch(t) + µh)Sh, (2)

where,

λc(t) =
β1(Ic + Icd + Ich + Icdh)

Nh
, λv

d(t) =
βh

2Iv
d

Nh
, λh =

β3(Ih + Ich + Idh + Icdh)

Nh
, λch(t) =

β13Ich
Nh

.

Upon the application of the integrating factor approach in (2) we obtain

d
dt

Sh(t) exp

 t∫
0

(λc(σ) + λv
d(σ) + λh(σ) + λch(σ))dσ + µht

 = Λh exp

[ t∫
0

(
λc(σ) + λv

d(σ) + λv
h(σ)

+ λch(σ)

)
dσ + µht

]
. (3)

Integrating both sides of (3) gives

Sh(t) exp

 t∫
0

(λc(σ) + λv
d(σ) + λh(σ) + λch(σ))dσ + µht

− S(0)

= Λh

∫ t

0
exp

[ x∫
0

(λc(σ) + λv
d(σ) + λh(σ) + λch(σ))dσ + µhx

]
dx.

Thus,

Sh(t) = Sh(0) exp

− t∫
0

(λc(σ) + λv
d(σ) + λh(σ) + λch(σ))dσ− µht


+ exp

− t∫
0

(λc(σ) + λv
d(σ) + λh(σ) + λch(σ))dσ− µht


×Λh

∫ t

0
exp

 x∫
0

(λc(σ) + λv
d(σ) + λh(σ) + λch(σ))dσ + µhx

dx ≥ 0.

Hence, Sh(t) ≥ 0 for a sufficiently large time t.
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Similarly, it can be shown that
Ic(t) ≥ 0, Id(t) ≥ 0, Ih(t) ≥ 0, Icd(t) ≥ 0, Ich(t) ≥ 0, Idh(t) ≥ 0, Icdh(t) ≥ 0,R(t) ≥ 0,
Sv(t) ≥ 0, Iv

d (t) ≥ 0.

3.2. Boundedness of the Solution

Theorem 2. The closed set D = D ×Dv, with

D =

{
(Sh, Ic, Id, Ih, Icd, Ich, Idh, Icdh,R) ∈ R9

+ : Sh + Ic + Id + Ih + Icd + Ich + Idh + Icdh +R ≤
Λh
µh

}
,

Dv =

{
(Sv, Iv

d ) ∈ R2
+ : Sv + Iv

d ≤
Λv

µv

}
.

is positively invariant relative to model (1).

Proof. If all the equations associated with human components are added up, this gives

dNh
dt

= Λh − µhNh(t)− [φcIc + φdId + φhIh + φcdIcd + φchIch + φdhIdh + φcdhIcdh]. (4)

Equation (4) can be re-written as

dNh
dt
≤ Λh − µhNh, (5)

that is,
dNh(t)

dt
+ µhNh(t) ≤ Λh, (6)

Upon application of the integrating factor approach in (6) and simplification, we obtain the
inequality

Nh(t) ≤
Λh
µh

+

(
Nh(0)−

Λh
µh

)
e−µht,

which further implies that

lim sup
t→∞
Nh(t) ≤

Λh
µh

. (7)

Thus, Nh(t) ≤ Λh
µh

for a sufficiently large t.

Similarly, Nv(t) ≤ Λv
µv

. Therefore, it is concluded that the system (1) is positively
invariant.

3.3. The Basic Reproduction Number of the Model

The model’s DFE (disease-free equilibrium) is given by

M0 = (S∗h , I∗c , I∗d , I∗h , I∗cd, I∗ch, I∗dh, I∗cdhR
∗,S∗v , Iv∗

d )

=

(
Λh
µh

, 0, 0, 0, 0, 0, 0, 0, 0,
Λv

µv
, 0
)

.
(8)

The next generation operator approach [46] can be applied to system (1) to obtain the
reproduction number. The transfer matrices, whose dimensions correspond to the number
of infected classes of the model, that is: Ic, Id, Ih, Icd, Ich, Idh, Icdh, Iv

d are defined below:
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F =



β1 0 0 β1 β1 0 β1 0
0 0 0 0 0 0 0 βh

2
0 0 β3 0 β3 β3 β3 0
0 0 0 0 0 0 0 0
0 0 0 0 β13 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 βv

2S∗v
N ∗h

0 βv
2S∗v
N ∗h

0 βv
2S∗v
N ∗h

βv
2S∗v
N ∗h

0


, V =



H1 0 0 0 0 0 0 0
0 H2 0 0 0 0 0 0
0 0 H3 0 −ζc −ζd −ζcd 0
0 0 0 H4 0 0 0 0
0 0 0 0 H5 0 −ζd 0
0 0 0 0 0 H6 −ζc 0
0 0 0 0 0 0 H7 0
0 0 0 0 0 0 0 µv


, (9)

where

H1 = φc + ζc + µh, H2 = φd + ζd + µh, H3 = φh + µh, H4 = φcd + ζcd + µh, H5 = φch + ζc + µh,

H6 = φdh + ζd + µh, H7 = φcdh + ζc + ζd + ζcd + µh.
(10)

The reproduction number for system (1) is given by R0 = ρ(FV−1) = max
{R0c,R0d,R0h,R0ch} where R0c, R0d, R0h and R0ch are the reproduction numbers for
COVID-19, dengue, HIV, and co-infection (of COVID-19 and HIV), respectively, given by

R0c =
β1

(φc + ζc + µh)
, R0d =

√
βh

2βv
2µhΛv

Λhµ2
v(φd + ζd + µh)

, R0h =
β3

(φh + µh)
, R0ch =

β13

(φch + ζc + µh)
.

3.4. Local Asymptotic Stability of the Disease Free Equilibrium (DFE) of the Model

Theorem 3. The model’s DFE,M0, is locally asymptotically stable given thatR0 < 1, and unsta-
ble given thatR0 > 1.

Proof. The Jacobian matrix of system (1) computed at the DFEM0 is given by



−µh −β1 0 −β3 −β1 −(β1 + β3 + β13) −β3 −(β1 + β3) 0 0 −βh
2

0 β1 −H1 0 0 β1 β1 0 β1 0 0 0
0 0 −H2 0 0 0 0 0 0 0 βh

2
0 0 0 β3 −H3 0 β3 β3 β3 + ζc 0 0 0
0 0 0 0 −H4 0 0 0 0 0 0
0 0 0 0 0 β13 −H5 0 ζd 0 0 0
0 0 0 0 0 0 −H6 ζc 0 0 0
0 0 0 0 0 0 0 −H7 0 0 0
0 ζc ζd 0 ζcd 0 0 0 −µh 0 0
0 0 − βv

2S∗v
N ∗h

0 − βv
2S∗v
N ∗h

0 − βv
2S∗v
N ∗h

− βv
2S∗v
N ∗h

0 −µv 0

0 0 βv
2S∗v
N ∗h

0 βv
2S∗v
N ∗h

0 βv
2S∗v
N ∗h

βv
2S∗v
N ∗h

0 0 −µv



. (11)

The eigenvalues are given by

$1 = −(φcd + ζcd + µh), $2 = −(φdh + ζd + µh), $3 = −(φcdh + ζc + ζd + ζcd + µh),

$4 = −µh( with multiplicity of 2), $5 = −µv,

and the zeros of the equations

$ +H1(1−R0c) = 0, (12)

$ +H3(1−R0h) = 0, (13)

$ +H5(1−R0ch) = 0, (14)
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$2 + (µv +H2)$ + µvH2(1−R2
0d) = 0. (15)

Adopting the Routh–Hurwitz criterion, all four Equations (12)–(15) possess zeros hav-
ing negative real parts if, and only if, the reproduction numbersR0c < 1,R0d < 1,R0h < 1
and R0ch < 1. Hence, the DFE M0 is locally asymptotically stable if
R0 = max{R0c,R0d,R0h,R0ch} < 1.

3.5. Backward Bifurcation Analysis of the Model

In this section, we will carry out a backward bifurcation analysis of the model.
The center-manifold theory [47] (given in Appendix A) will be employed for this purpose.

We found the results below:

Theorem 4. The co-dynamical model (1) will exhibit backward bifurcation if

a = −
2(ω2 + ω3 + ω4)(β1ω2ν2 − βh

2ω11ν3) + 2ω9(κβ1ω2ν2 + β2ω11ν3)

N ∗h

− 2β1(ω2 + ω6)[ω3ν3 + ω4ν4 −ω3ν5 −ω4ν6 + ω7ν7 −ω7ν8]

N ∗h

− β3(ω4 + ω6)[ω4ν3 + (ω2 + ω3 + ω4 + ω6 + ω9)ν4 −ω9ν4 + ω5ν5 −ω2ν6 −ω3ν7 −ω5ν8]

N ∗h

− 2β13(ω3 + ω6)ω6ν6
N ∗h

−
2βv

2x∗10(ω3 + ω8)(ω1 + ω2 + ω3 + ω4 + ω6 + ω9)ν11

N ∗2h

−
2βh

2ω11(ω4ν4 + ω2ν5 + ω6ν6 −ω4ν7)

N ∗h
+

2βv
2ω3ω10ν11

N ∗h
> 0,

where ω1, ω2, ω3, . . . , ω11 and ν1, ν2, ν3, . . . , ν11 represent the right and left eigenvector compo-
nents, associated with the simple zero eigenvalues of the Jacobian matrix (11) evaluated at the
infection-free equilibrium,M0 given in (8). The other parameters are the same as defined in Table 1.

Proof. Consider the case when R0 = max{R0c,R0d,R0h,R0ch} = 1. Suppose, further,
that a contact rate, say β13, is chosen as a bifurcation parameter. Solving for β13 = β∗13 from
R0ch = 1 gives

β13 = β∗13 = H5.

Using the approach in [47], the Jacobian matrix J(M0) given in (11) has a right eigenvector
(linked with the zero eigenvalues of J(M0)) given by ω = [ω1, ω2, ω3, . . . , ω11]

T , where
the components are

ω1 = − 1
µh

[
β1(ω2 + ω5 + ω6) + β3(ω4 + ω6) + β13ω6 + βh

2ω11

]
< 0, ω2 =

β1
H1

> 0, ω3 =
βh

2ω11

H2
> 0,

ω4 = ω4 > 0, ω5 = 0, ω6 = ω6 > 0, ω7 = ω8 = 0, ω9 =
1
µ
(ζcω2 + ζdω3) > 0, ω10 = − 1

µv

βv
2ω3

N ∗h
=< 0,

ω11 =
1

µv

βv
2ω3

N ∗h
> 0.

The non-zero components of the left eigenvector of J(M0)|β13=β∗13
, ν = [ν1, ν2, . . . , ν11],

satisfying ω.ν = 1 are

ν1 = 0, ν2 = ν2 > 0, ν3 =
βv

2S∗v
µvH2N ∗h

> 0, ν4 = ν4 > 0, ν5 =
1
H4

(
β1ν2 +

H2

βh
2

)
> 0, ν6 = ν6 > 0,

ν7 =
1
H6

(
β3ν4 +

H2

βh
2

)
> 0, ν8 =

1
H7

(
β1ν2 + (β3 + ζc)ν4 + ζdν6 + ζcν7 +

H2

βh
2

)
> 0, ν9 = ν10 = 0,

ν11 =
H2N ∗h
βh

2βv
2S∗v

> 0.
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Applying Theorem 4.1 in [47] and by computing the non-trivial partial differentiations of
f (x) (evaluated at DFE, (M0)), the coefficients defined as

a =
11

∑
k,i,j=1

νkωiωj
∂2 fk

∂xi∂xj
(0, 0) and b =

11

∑
k,i=1

νkωi
∂2 fk

∂xi∂βh∗
3
(0, 0),

are computed to be

a = −
2(ω2 + ω3 + ω4)(β1ω2ν2 − βh

2ω11ν3) + 2ω9(κβ1ω2ν2 + β2ω11ν3)

N ∗h

− 2β1(ω2 + ω6)[ω3ν3 + ω4ν4 −ω3ν5 −ω4ν6 + ω7ν7 −ω7ν8]

N ∗h

− β3(ω4 + ω6)[ω4ν3 + (ω2 + ω3 + ω4 + ω6 + ω9)ν4 −ω9ν4 + ω5ν5 −ω2ν6 −ω3ν7 −ω5ν8]

N ∗h

− 2β13(ω3 + ω6)ω6ν6
N ∗h

−
2βv

2S∗v (ω3 + ω8)(ω1 + ω2 + ω3 + ω4 + ω6 + ω9)ν11

N ∗2h

−
2βh

2ω11(ω4ν4 + ω2ν5 + ω6ν6 −ω4ν7)

N ∗h
+

2βv
2ω3ω10ν11

N ∗h
,

b = ω6ν6 > 0.

It can be observed that the backward bifurcation coefficient b is strictly greater than
zero. Thus, it is concluded, following [47], that the model (1) would undergo backward
bifurcation when the coefficient a > 0. The epidemiological significance of the backward
bifurcation phenomenon of system (1) is that the classical necessity of having the repro-
duction numberR0 less than unity, even though still necessary, is no longer sufficient for
effective elimination of the diseases.

3.6. Global Asymptotic Stability (GAS) of the Disease-Free Equilibrium for a Special Case

Studying the global properties of a full co-infection model can be difficult, due to the
strong non-linearity of the model. We shall thus consider a special case of the model when
there is no co-infection or re-infection with the same or a different disease. The reduced
model under this scenario is given below:

dSh
dt

= Λh −
(

β1Ic

Nh
+

βh
2Iv

d
Nh

+
β3Ih
Nh

+ µh

)
Sh,

dIc

dt
=

β1Ic

Nh
Sh − (φc + ζc + µh)Ic,

dId
dt

=
βh

2Iv
d

Nh
Sh − (φd + ζd + µh)Id,

dIh
dt

=
β3Ih
Nh
Sh − (φh + µh)Ih,

dR
dt

= ζcIc + ζdId − µhR,

dSv

dt
= Λv −

βv
2Id

Nh
Sv − µvSv,

dIv
d

dt
=

βv
2Id

Nh
Sv − µvIv

d .

(16)

Furthermore, consider the Lyapunov function candidate defined below:

Z1 = ln[(Sh − S∗h ) + Ic + Id + Ih +R+ (Sv − S∗v ) + Iv
d ] +

1
H1
Ic +

βv
2S∗v

µvH2
Id +

1
H3
Ih +

R0d
µv
Iv

d , (17)

where S∗h ,S∗v ,H1,H2, andH3 are given by Equations (8) and (10).
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The Lyapunov time derivative of (17)

Ż1 =
1[

(Sh − S∗h ) + Ic + Id + Ih +R+ (Sv − S∗v ) + Iv
d
](Λh −

(
β1Ic

Nh
+

βh
2Iv

d
Nh

+
β3Ih
Nh

+ µh

)
Sh

+
β1Ic

Nh
Sh − (φc + ζc + µh)Ic +

βh
2Iv

d
Nh
Sh − (φd + ζd + µh)Id +

β3Ih
h

Nh
Sh − (φh + µh)Ih

+ ζcIc + ζdId − µhR+ Λv −
(

βv
2Id
Nh

+ µv

)
Sv +

βv
2Id
Nh
Sv − µvIv

d

)

+
1
H1

(
β1Ic

Nh
Sh − (φc + ζc + µh)Ic

)
+

βv
2S∗v

µvH2

(
βh

2Iv
d

Nh
Sh − (φd + ζd + µh)Id

)

+
1
H3

(
β3Ih
Nh
Sh − (φh + µh)Ih

)
+
R0d
µv

(
βv

2Id
Nh
Sv − µvIv

d

)
,

which can be further simplified into

Ż1 =
1[

(Sh − S∗h ) + Ic + Id + Ih +R+ (Sv − S∗v ) + Iv
d
](Λh − µh(Sh + Ic + Id + Ih +R) + Λv − µv(Sv + Iv

d )

− (φcIc + φdId + φhIh)

)
+

1
H1

(
β1Ic

Nh
Sh −H1Ic

)
+

βv
2S∗v

µvH2

(
βh

2Iv
d

Nh
Sh −H2Id

)

+
1
H3

(
β3Ih
Nh
Sh −H3Ih

)
+
R0d
µv

(
βv

2Id

Nh
Sv − µvIv

d

)
.

Simplifying further (noting that Sh + Ic + Id + Ih + R ≤ Λh
µh

, Sv + Iv
d ≤ Λv

µv
,

and Sv < S∗v ), we have

Ż1 ≤ −
(φcIc + φdId + φhIh)[

(Sh − S∗h ) + Ic + Id + Ih +R+ (Sv − S∗v ) + Iv
d
] + 1
H1

(
β1IcS∗h
N ∗h

−H1Ic

)
+

βv
2S∗v

µvH2

(
βh

2Iv
dS
∗
h

N ∗h
−H2Id

)

+
1
H3

(
β3IhS∗h
N ∗h

−H3Ih

)
+
R0d
µv

(
βv

2IdS∗v
N ∗h

− µvIv
d

)
,

= − (φcIc + φdId + φhIh)[
(Sh − S∗h ) + Ic + Id + Ih +R+ (Sv − S∗v ) + Iv

d
] +( β1

(φc + ζc + µh)
− 1
)
Ic

+
βv

2S∗v
µv

√ βh
2βv

2µhΛv

Λhµ2
v(φd + ζd + µh)

− 1

Id +

(
βh

2βv
2µhΛv

Λhµ2
v(φd + ζd + µh)

−R0d

)
Iv

d +

(
β3

(φh + µh)
− 1
)
Ih

= − (φcIc + φdId + φhIh)[
(Sh − S∗h ) + Ic + Id + Ih +R+ (Sv − S∗v ) + Iv

d
]

+ (R0c − 1)Ic +
βv

2S∗v
µv

(R0d − 1)Id +R0d(R0d − 1)Iv
d + (R0h − 1)Ih.

Noting that all the parameters and variables are not less than zero, it can be concluded
that Ż1 < 0 for R0 = max{R0c,R0d,R0h,R0ch} ≤ 1. Thus, L is an appropriate Lyapunov
candidate on Q (the DFE of model (16)). As a result, the DFE is globally asymptotically
stable [48].

3.7. Global Asymptotic Stability (GAS) of the Endemic Equilibrium Point (EEP) of the Model (1)

Theorem 5. Suppose that we assume infection-acquired immunity against re-infection with the
same or a different disease and the absence of co-infection and super-infection in the model (1). Then,
the model’s endemic equilibrium, given by Qe, is GAS in D, given thatR0 > 1.

Proof. Consider the non-linear Lyapunov function:
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Z2 =
βv

2S∗∗v
µvH2

[
Sh − S∗∗h − S

∗∗
h ln

(
Sh
S∗∗h

)
+ Ic − I∗∗c − I∗∗c ln

(
Ic

I∗∗c

)
+ Id − I∗∗d − I

∗∗
d ln

(
Id
I∗∗d

)
+ Ih − I∗∗h − I

∗∗
h ln

(
Ih
I∗∗h

)]
+

H2

βh
2βv

2S∗∗h S
∗∗
v

[
Sv − S∗∗v − S∗∗v ln

(
Sv

S∗∗v

)
+ Iv

d − I
v∗∗
d − Iv∗∗

d ln
( Iv

d
Iv∗∗

d

)]
,

(18)

where the terms in ∗∗ denote the solutions of system (16) at the endemic equilibrium:

Λh =

(
β1I∗∗c
N ∗∗h

+
βh

2Iv∗∗
d

N ∗∗h
+

β3I∗∗h
N ∗∗h

+ µh

)
S∗∗h

β1I∗∗c
N ∗∗h

S∗∗h = (φc + ζc + µh)I∗∗c

βh
2Iv∗∗

d
N ∗∗h

S∗∗h = (φd + ζd + µh)I∗∗d

β3I∗∗h
N ∗∗h

S∗∗h = (φh + µh)I∗∗h

ζcI∗∗c + ζdI∗∗d = µhR∗∗

Λv =

(
βv

2I∗∗d
N ∗∗h

+ µv

)
S∗∗v

βv
2I∗∗d
N ∗∗h

S∗∗v = µvIv∗∗
d

(19)

The Lyapunov time derivative of (18) is given by:

Ż2 =
βv

2S∗∗v
µvH2

[(
1−
S∗∗h
Sh

)
Ṡh +

(
1− I

∗∗
c
Ic

)
İc +

(
1−
I∗∗d
Id

)
İd

]
+

H2

βh
2βv

2S∗∗h S∗∗v

[(
1− S

∗∗
v
Sv

)
Ṡv +

(
1−
Iv∗∗

d
Iv

d

)
İv

d

]
(20)

Substituting the derivatives in (16) into Ż2, we have

Ż2 =
βv

2S∗∗v
µvH2

(
1−
S∗∗h
Sh

)[
Λh −

(
β1Ic

Nh
+

βh
2Iv

d
Nh

+
β3Ih
Nh

+ µh

)
Sh

]
+

βv
2S∗∗v

µvH2

(
1− I

∗∗
c
Ic

)[
β1Ic

Nh
Sh − (φc + ζc + µh)Ic

]

+
βv

2S∗∗v
µvH2

(
1−
I∗∗d
Id

)[
βh

2Iv
d

Nh
Sh − (φd + ζd + µh)Id

]
+

βv
2S∗∗v

µvH2

(
1−
I∗∗h
Ih

)[
β3Ih
Nh
Sh − (φh + µh)Ih

]
+

H2

βh
2βv

2S∗∗h S
∗∗
v

(
1− S

∗∗
v
Sv

)[
Λv −

(
βv

2Id
Nh

+ µv

)
Sv

]
+

H2

βh
2βv

2S∗∗h S
∗∗
v

(
1−
Iv∗∗

d
Iv

d

)(
βv

2Id
Nh
Sv − µvIv

d

)
.

(21)

Substituting the expressions in (19) into (21) gives

Ż2 =
βv

2S∗∗v
µvH2

(
1−
S∗∗h
Sh

)[(
β1I∗∗c
N ∗∗h

+
βh

2Iv∗∗
d

N ∗∗h
+

β3I∗∗h
N ∗∗h

+ µh

)
S∗∗h −

(
β1Ic

Nh∗∗
+

βh
2Iv

d
N ∗∗h

+
β3Ih
N ∗∗h

+ µh

)
Sh

]

+
βv

2S∗∗v
µvH2

(
1− I

∗∗
c
Ic

)[
β1Ic

N ∗∗h
Sh − (φc + ζc + µh)Ic

]
+

βv
2S∗∗v

µvH2

(
1−
I∗∗d
Id

)[
βh

2Iv
d

N ∗∗h
Sh − (φd + ζd + µh)Id

]
+

βv
2S∗∗v

µvH2

(
1−
I∗∗h
Ih

)[
β3Ih
N ∗∗h

Sh − (φh + µh)Ih

]
+

H2

βh
2βv

2S∗∗h S∗∗v

(
1− S

∗∗
v
Sv

)[(
βv

2I∗∗d
N ∗∗h

+ µv

)
S∗∗v −

(
βv

2Id

N ∗∗h
+ µv

)
Sv

]
+

H2

βh
2βv

2S∗∗h S∗∗v

(
1−
Iv∗∗

d
Iv

d

)(
βv

2Id

N ∗∗h
Sv − µvIv

d

)
,

which can be re-written as



Axioms 2023, 12, 773 13 of 30

Ż2 =
βv

2S∗∗v
µvH2

(
1−
S∗∗h
Sh

)[(
β1I∗∗c + βh

2Iv∗∗
d + β3I∗∗h + µh

)
S∗∗h −

(
β1Ic + βh

2Iv
d + β3Ih + µh

)
Sh

]
+

βv
2S∗∗v

µvH2

(
1− I

∗∗
c
Ic

)
[β1IcSh − (φc + ζc + µh)Ic]

+
βv

2S∗∗v
µvH2

(
1−
I∗∗d
Id

)[
βh

2Iv
dSh − (φd + ζd + µh)Id

]
+

βv
2S∗∗v

µvH2

(
1−
I∗∗h
Ih

)
[β3IhSh − (φh + µh)Ih]

+
H2

βh
2βv

2S∗∗h S∗∗v

(
1− S

∗∗
v
Sv

)
[(βv

2I∗∗d + µv)S∗∗v − (βv
2Id + µv)Sv] +

H2

βh
2βv

2S∗∗h S∗∗v

(
1−
Iv∗∗

d
Iv

d

)
(βv

2IdSv − µvIv
d ),

which after some algebraic manipulations is simplified to

Ż2 =
βv

2S∗∗v
µvH2

[
2µhS∗∗h − µhSh −

µhS∗∗2h
Sh

+ 2β1I∗∗c S∗∗h + 2βh
2Iv∗∗

d S∗∗h + 2β3I∗∗h S
∗∗
h −

β1I∗∗c S∗∗2h
Sh

− β1I∗∗c Sh

−
βh

2Iv∗∗
d S∗∗2h
Sh

−
βh

2Iv
dI
∗∗
d Sh

Id
−

β3I∗∗h S
∗∗2
h

Sh
− β3I∗∗h Sh

]
+

H2

βh
2βv

2S∗∗h S∗∗v

[
2µvS∗∗v − µvSv −

µvS∗∗2v
Sv

+ 2βv
2I∗∗d S

∗∗
v −

βv
2I∗∗d S

∗∗2
v

Sv
−

βv
2IdIv∗∗

d Sv

Iv
d

]
.

(22)

The above can be simplified to

Ż2 =
µhβv

2S∗∗h S
∗∗
v

µvH2
S∗∗h

(
2−
S∗∗h
Sh
− Sh
S∗∗h

)
+

µvH2

βh
2βv

2S∗∗h

(
2− S

∗∗
v
Sv
− Sv

S∗∗v

)
β1βv

2S∗∗h S
∗∗
v I∗∗c

µvH2

(
2−
S∗∗h
Sh
− Sh
S∗∗h

)
+

βv
2β3S∗∗h S

∗∗
v I∗∗h

µvH2

(
2−
S∗∗h
Sh
− Sh
S∗∗h

)
+

βh
2βv

2S∗∗h S
∗∗
v Iv∗∗

d
µvH2

(
4−
S∗∗h
Sh
− S

∗∗
v
Sv
−
ShIv

dI
∗∗
d

S∗∗h I
v∗∗
d Id

−
SvIv∗∗

d Id

S∗∗v Iv
dI
∗∗
d

)
.

(23)

As the arithmetic mean is greater than the geometric mean, the following inequalities
from (23) hold:(

2−
S∗∗h
Sh
− Sh
S∗∗h

)
≤ 0,

(
2− S

∗∗
v
Sv
− Sv

S∗∗v

)
≤ 0,

(
4−
S∗∗h
Sh
− S

∗∗
v
Sv
−
ShIv

dI
∗∗
d

S∗∗h I
v∗∗
d Id

−
SvIv∗∗

d Id

S∗∗v Iv
dI
∗∗
d

)
≤ 0.

Hence, Ż2 ≤ 0 forR0 > 1. Therefore, Z2 is a Lyapunov candidate in D�D0 and it is
concluded that the GAS of EEP is globally asymptotically stable forR0 > 1.

4. Optimal Control Analysis

In this section, time dependent controls will be considered for the model (1), in order
to obtain the optimal strategies for the control of the three diseases. They are defined
as follows:

• u1: COVID-19 prevention control: this represents all the efforts towards COVID-19
prevention (and these include COVID-19 vaccination, face-mask usage in public, use
of personal protective equipment (PPE) by health personnel, etc.);

• u2: Dengue prevention control: this represents all the efforts to prevent mosquito
transmission of dengue disease. These include minimizing, as much as possible,
the contacts between mosquitoes and humans, use of treated bed nets, and also
receiving dengue vaccination;

• u3: HIV prevention control: This involves efforts to prevent HIV transmission via
abstinence and effective condom use by sexually active individuals;

• u4: Control against co-infection: this involves combined efforts against all co-infections
(COVID-19/dengue, COVID-19/HIV, dengue/HIV as well as COVID-19/dengue/HIV).
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The optimal control problem assesses the scenarios where the number of infections,
as well as the cost of implementing the above preventive controls, u1, u2, u3, and u4, are
minimized subject to system (24). We have assumed that the above defined controls may
or may not be 100% effective in preventing infections. Therefore, they are bounded thus:
0 < u1, u2, u3, u4 ≤ 1.0. However, it is recommended that policies should be put in place to
step up preventive efforts at a very high level, so as to sufficiently reduce the co-spread of
the diseases under investigation.

The optimal system is thus given by

dSh
dt

= Λh −
(
(1− u1)

β1(Ic + Icd + Ich + Icdh)

Nh
+ (1− u2)

βh
2Iv

d
Nh

+ (1− u3)
β3(Ih + Ich + Idh + Icdh)

Nh

+ (1− u4)
β13Ich
Nh

+ µh

)
Sh,

dIc

dt
= (1− u1)

β1(Ic + Icd + Ich + Icdh)

Nh
(Sh + κR)− (φc + ζc + µh)Ic − (1− u4)

βh
2Iv

d
Nh
Ic

− (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Ic,

dId
dt

= (1− u2)
βh

2Iv
d

Nh
(Sh +R)− (φd + ζd + µh)Id − (1− u4)

β1(Ic + Icd + Ich + Icdh)

Nh
Id

− (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Id,

dIh
dt

= (1− u3)
β3(Ih + Ich + Idh + Icdh)

Nh
(Sh +R) + ζcIch + ζdIdh + ζcdIcdh − (φh + µh)Ih

− (1− u4)
β1(Ic + Icd + Ich + Icdh)

Nh
Ih − (1− u4)

βh
2Iv

d
Nh
Ih,

dIcd
dt

= (1− u4)
βh

2Iv
d

Nh
Ic + (1− u4)

β1(Ic + Icd + Ich + Icdh)

Nh
Id − (φcd + ζcd + µh)Icd

− (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Icd,

dIch
dt

= (1− u4)
β13Ich
Nh

(Sh +R) + (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Ic + (1− u4)

β1(Ic + Icd + Ich + Icdh)

Nh
Ih + ζdIcdh

− (φch + ζc + µh)Ich − (1− u4)
βh

2Iv
d

Nh
Ich,

dIdh
dt

= (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Id + (1− u4)

βh
2Iv

d
Nh
Ih + ζcIcdh − (φdh + ζd + µh)Idh

− (1− u4)
β1(Ic + Icd + Ich + Icdh)

Nh
Idh,

dIcdh
dt

= (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Icd + (1− u4)

βh
2Iv

d
Nh
Ich + (1− u4)

β1(Ic + Icd + Ich + Icdh)

Nh
Idh

− (φcdh + ζc + ζd + ζcd + µh)Icdh,

dR
dt

= ζcIc + ζdId + ζcdIcd −
(

κ(1− u1)
β1(Ic + Icd + Ich + Icdh)

Nh
+ (1− u2)

βh
2Iv

d
Nh

+ (1− u3)
β3(Ih + Ich + Idh + Icdh)

Nh
+ (1− u4)

β13Ich
Nh

+ µh

)
R,

dSv

dt
= Λv −

(
(1− u2)

βv
2(Id + Icd + Idh + Icdh)

Nh
+ µv

)
Sv,

dIv
d

dt
= (1− u2)

βv
2(Id + Icd + Idh + Icdh)

Nh
Sv − µvIv

d .

(24)

subject to the initial conditions

Sh0 = Sh(0), Ic0 = Ic(0), Id0 = Id(0), Ih0 = Ih(0), Icd0 = Icd(0), Ich0 = Ich(0), Idh0 = Idh(0),

Icdh0 = Icdh(0), R0 = R(0), Sv0 = Sv(0), Iv
d0 = Iv

d (0).
(25)

We will consider the objective functional as follows:

J
[
u1, u2, u3, u4

]
=
∫ T

0

[
Ic + Id + Ih + Icd + Ich + Idh + Icdh + Sv + Iv

d +
ω1

2
u2

1 +
ω2

2
u2

2 +
ω3

2
u2

3 +
ω4

2
u2

4
]
dt, (26)
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where T is the final time. The total cost consists of the cost for COVID-19, dengue, and
HIV preventive efforts, such as COVID-19 vaccination, treated bed nets for dengue, and
condoms for HIV prevention. Thus, the nonlinear cost function has been assumed. We seek
to find an optimal control quadruple, (u∗1 , u∗2 , u∗3 , u∗4), such that

J(u∗1 , u∗2 , u∗3 , u∗4) = min{J(u1, u2, u3, u4)|u1, u2, u3, u4 ∈ U}, (27)

where the control set U =
{
(u1, u2, u3, u4) : 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, 0 ≤ u3(t) ≤ 1,

0 ≤ u4(t) ≤ 1 for t ∈ [0, T]
}

, with u1, u2, u3, u4 being Lebesgue measurable.
The Hamiltonian is defined by

X = Ic + Id + Ih + Icd + Ich + Idh + Icdh + Sv + Iv
d +

ξ1

2
u2

1 +
ξ2

2
u2

2 +
ξ3

2
u2

3 +
ξ4

2
u2

4

+ $1

(
Λh −

(
(1− u1)

β1(Ic + Icd + Ich + Icdh)

Nh
+ (1− u2)

βh
2Iv

d
Nh

+ (1− u3)
β3(Ih + Ich + Idh + Icdh)

Nh

+ (1− u4)
β13Ich
Nh

+ µh

)
Sh

)
+ $2

(
(1− u1)

β1(Ic + Icd + Ich + Icdh)

Nh
(Sh + κR)− (φc + ζc + µh)Ic − (1− u4)

βh
2Iv

d
Nh
Ic

− (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Ic

)
+ $3

(
(1− u2)

βh
2Iv

d
Nh

(Sh +R)− (φd + ζd + µh)Id − (1− u4)
β1(Ic + Icd + Ich + Icdh)

Nh
Id

− (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Id

)
+ $4

(
(1− u3)

β3(Ih + Ich + Idh + Icdh)

Nh
(Sh +R) + ζcIch + ζdIdh + ζcdIcdh − (φh + µh)Ih

− (1− u4)
β1(Ic + Icd + Ich + Icdh)

Nh
Ih − (1− u4)

βh
2Iv

d
Nh
Ih

)
+ $5

(
(1− u4)

βh
2Iv

d
Nh
Ic + (1− u4)

β1(Ic + Icd + Ich + Icdh)

Nh
Id − (φcd + ζcd + µh)Icd

− (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Icd

)
+ $6

(
(1− u4)

β13Ich
Nh

(Sh +R) + (1− u4)
β3(Ih + Ich + Idh + Icdh)

Nh
Ic + (1− u4)

β1(Ic + Icd + Ich + Icdh)

Nh
Ih + ζdIcdh

− (φch + ζc + µh)Ich − (1− u4)
βh

2Iv
d

Nh
Ich

)
+ $7

(
(1− u4)

β3(Ih + Ich + Idh + Icdh)

Nh
Id + (1− u4)

βh
2Iv

d
Nh
Ih + ζcIcdh − (φdh + ζd + µh)Idh

− (1− u4)
β1(Ic + Icd + Ich + Icdh)

Nh
Idh

)
+ $8

(
(1− u4)

β3(Ih + Ich + Idh + Icdh)

Nh
Icd + (1− u4)

βh
2Iv

d
Nh
Ich + (1− u4)

β1(Ic + Icd + Ich + Icdh)

Nh
Idh

− (φcdh + ζc + ζd + ζcd + µh)Icdh

)
+ $9

(
ζcIc + ζdId + ζcdIcd −

(
κ(1− u1)

β1(Ic + Icd + Ich + Icdh)

Nh
+ (1− u2)

βh
2Iv

d
Nh

+ (1− u3)
β3(Ih + Ich + Idh + Icdh)

Nh
+ (1− u4)

β13Ich
Nh

+ µh

)
R
)

,

+ $10

(
Λv −

(
(1− u2)

βv
2(Id + Icd + Idh + Icdh)

Nh
+ µv

)
Sv

)
,

+ $11

(
(1− u2)

βv
2(Id + Icd + Idh + Icdh)

Nh
Sv − µvIv

d

)
,

(28)

where, $1, $2, . . . , $11 represent the adjoint variables.
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Existence

We report the results below:

Theorem 6. Let J be defined on the control set U, subject to system (24) with non-negative
initial conditions at t = 0, then there exists an optimal control quadruple u∗ = (u∗1 , u∗2 , u∗3 , u∗4)
such that J(u∗) = min{J(u1, u2, u3, u4)|u1, u2, u3, u4 ∈ U}, if the following conditions proposed
by [49] hold:

(i) The admissible control set U is convex and closed.
(ii) The state system is bounded by a linear function in the state and control variables.
(iii) The integrand of the objective functional in (26) is convex with respect to the controls.
(iv) The Lagrangian is no less than v1|u|v3 −v2, where v1 > 0, v2 > 0, v3 > 1.

Proof. Let U = [0, 1]4 be the control set, u = (u1, u2, u3, u4) ∈ U , x = (Sh, Ic,
Id, Ih, Icd, Ich, Idh, Icdh,R,Sv, Iv

d ) and f (x, u) be the right hand of (24), that is

f (x, u) =



Λh −
(
(1− u1)

β1(Ic+Icd+Ich+Icdh)
Nh

+ (1− u2)
βh

2Iv
d

Nh
+ (1− u3)

β3(Ih+Ich+Idh+Icdh)
Nh

. . .

· · ·+ (1− u4)
β13Ich
Nh

+ µh

)
Sh,

(1− u1)
β1(Ic+Icd+Ich+Icdh)

Nh
(Sh + κR)− (φc + ζc + µh)Ic − (1− u4)

βh
2Iv

d
Nh
Ic . . .

· · · − (1− u4)
β3(Ih+Ich+Idh+Icdh)

Nh
Ic,

(1− u2)
βh

2Iv
d

Nh
(Sh +R)− (φd + ζd + µh)Id − (1− u4)

β1(Ic+Icd+Ich+Icdh)
Nh

Id . . .

· · · − (1− u4)
β3(Ih+Ich+Idh+Icdh)

Nh
Id,

(1− u3)
β3(Ih+Ich+Idh+Icdh)

Nh
(Sh +R) + ζcIch + ζdIdh + ζcdIcdh − (φh + µh)Ih . . .

· · · − (1− u4)
β1(Ic+Icd+Ich+Icdh)

Nh
Ih − (1− u4)

βh
2Iv

d
Nh
Ih,

(1− u4)
βh

2Iv
d

Nh
Ic + (1− u4)

β1(Ic+Icd+Ich+Icdh)
Nh

Id − (φcd + ζcd + µh)Icd . . .

· · · − (1− u4)
β3(Ih+Ich+Idh+Icdh)

Nh
Icd,

(1− u4)
β13Ich
Nh

(Sh +R) + (1− u4)
β3(Ih+Ich+Idh+Icdh)

Nh
Ic + (1− u4)

β1(Ic+Icd+Ich+Icdh)
Nh

Ih + ζdIcdh . . .

· · · − (φch + ζc + µh)Ich − (1− u4)
βh

2Iv
d

Nh
Ich,

(1− u4)
β3(Ih+Ich+Idh+Icdh)

Nh
Id + (1− u4)

βh
2Iv

d
Nh
Ih + ζcIcdh − (φdh + ζd + µh)Idh . . .

· · · − (1− u4)
β1(Ic+Icd+Ich+Icdh)

Nh
Idh,

(1− u4)
β3(Ih+Ich+Idh+Icdh)

Nh
Icd + (1− u4)

βh
2Iv

d
Nh
Ich + (1− u4)

β1(Ic+Icd+Ich+Icdh)
Nh

Idh . . .
· · · − (φcdh + ζc + ζd + ζcd + µh)Icdh,

ζcIc + ζdId + ζcdIcd −
(

κ(1− u1)
β1(Ic+Icd+Ich+Icdh)

Nh
+ (1− u2)

βh
2Iv

d
Nh

. . .

· · ·+ (1− u3)
β3(Ih+Ich+Idh+Icdh)

Nh
+ (1− u4)

β13Ich
Nh

+ µh

)
R,

Λv −
(
(1− u2)

βv
2(Id+Icd+Idh+Icdh)

Nh
+ µv

)
Sv,

(1− u2)
βv

2(Id+Icd+Idh+Icdh)
Nh

Sv − µvIv
d .



(29)

To prove Theorem 6, we proceed as follows:

(i). The convexity of set U is obvious since it is 4D parallelepiped [50].
(ii). The control system (24) can be expressed as a linear function of control variables

(u1, u2, u3, u4), with the coefficients as functions of time and state variables:

f (x, u) = θ(x) + φ(x)u

with
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θ(x) =



Λh −
(

β1(Ic+Icd+Ich+Icdh)
Nh

+
βh

2Iv
d

Nh
+ β3(Ih+Ich+Idh+Icdh)

Nh
+ β13Ich

Nh
+ µh

)
Sh,

β1(Ic+Icd+Ich+Icdh)
Nh

(Sh + κR)− (φc + ζc + µh)Ic −
βh

2Iv
d

Nh
Ic − β3(Ih+Ich+Idh+Icdh)

Nh
Ic,

βh
2Iv

d
Nh

(Sh +R)− (φd + ζd + µh)Id −
β1(Ic+Icd+Ich+Icdh)

Nh
Id −

β3(Ih+Ich+Idh+Icdh)
Nh

Id,
β3(Ih+Ich+Idh+Icdh)

Nh
(Sh +R) + ζcIch + ζdIdh + ζcdIcdh − (φh + µh)Ih −

β1(Ic+Icd+Ich+Icdh)
Nh

Ih . . .

· · · − βh
2Iv

d
Nh
Ih,

βh
2Iv

d
Nh
Ic +

β1(Ic+Icd+Ich+Icdh)
Nh

Id − (φcd + ζcd + µh)Icd −
β3(Ih+Ich+Idh+Icdh)

Nh
Icd,

β13Ich
Nh

(Sh +R) +
β3(Ih+Ich+Idh+Icdh)

Nh
Ic +

β1(Ic+Icd+Ich+Icdh)
Nh

Ih + ζdIcdh . . .

· · · − (φch + ζc + µh)Ich −
βh

2Iv
d

Nh
Ich,

β3(Ih+Ich+Idh+Icdh)
Nh

Id +
βh

2Iv
d

Nh
Ih + ζcIcdh − (φdh + ζd + µh)Idh −

β1(Ic+Icd+Ich+Icdh)
Nh

Idh,
β3(Ih+Ich+Idh+Icdh)

Nh
Icd +

βh
2Iv

d
Nh
Ich +

β1(Ic+Icd+Ich+Icdh)
Nh

Idh − (φcdh + ζc + ζd + ζcd + µh)Icdh,

ζcIc + ζdId + ζcdIcd −
(

κ
β1(Ic+Icd+Ich+Icdh)

Nh
+

βh
2Iv

d
Nh

+ β3(Ih+Ich+Idh+Icdh)
Nh

+ β13Ich
Nh

+ µh

)
R,

Λv −
(

βv
2(Id+Icd+Idh+Icdh)

Nh
+ µv

)
Sv,

βv
2(Id+Icd+Idh+Icdh)

Nh
Sv − µvIv

d .



,

φ(x) =



β1(Ic+Icd+Ich+Icdh)
Nh

Sh
β2Iv

d
Nh
Sh

β3(Ih+Ich+Idh+Icdh)
Nh

Sh ∆1

− β1(Ic+Icd+Ich+Icdh)
Nh

(Sh + κR) 0 0 ∆2

0 − β2Iv
d

Nh
(Sh +R) 0 ∆3

0 0 − β3(Ih+Ich+Idh+Icdh)
Nh

(Sh +R) ∆4

0 0 0 ∆5
0 0 0 ∆6
0 0 0 ∆7
0 0 0 ∆8

κ
β1(Ic+Icd+Ich+Icdh)

Nh
R β2Iv

d
Nh
R β3(Ih+Ich+Idh+Icdh)

Nh
R β13Ich

Nh
R

0 βv
2(Id+Icd+Idh+Icdh)

Nh
Sv 0 0

0 − βv
2(Id+Icd+Idh+Icdh)

Nh
Sv 0 0



,

where,

∆1 =
β13Ich
Nh

Sh, ∆2 =
βh

2Iv
d

Nh
Ic +

β3(Ih + Ich + Idh + Icdh)

Nh
Ic,

∆3 =
β1(Ic + Icd + Ich + Icdh)

Nh
Id +

β3(Ih + Ich + Idh + Icdh)

Nh
Id ∆4 =

β1(Ic + Icd + Ich + Icdh)

Nh
Ih +

βh
2Iv

d
Nh
Ih,

∆5 = −
βh

2Iv
d

Nh
Ic −

β1(Ic + Icd + Ich + Icdh)

Nh
Id +

β3(Ih + Ich + Idh + Icdh)

Nh
Icd +

βh
2Iv

d
Nh
Ich,

∆6 = − β13Ich
Nh

(Sh +R)−
β3(Ih + Ich + Idh + Icdh)

Nh
Ic −

β1(Ic + Icd + Ich + Icdh)

Nh
Ih,

∆7 = − β3(Ih + Ich + Idh + Icdh)

Nh
Id −

βh
2Iv

d
Nh
Ih +

β1(Ic + Icd + Ich + Icdh)

Nh
Idh,

∆8 = − β3(Ih + Ich + Idh + Icdh)

Nh
Icd −

βh
2Iv

d
Nh
Ich −

β1(Ic + Icd + Ich + Icdh)

Nh
Idh.



Axioms 2023, 12, 773 18 of 30

In addition, it can be deduced that

‖ f (x, u)‖ ≤ ‖θ(x)‖+ ‖φ(x)‖‖u‖
≤ a + b‖u‖,

where a > 0, b > 0.
(iii). The optimal system’s Lagrangian is given by

L = Ic + Id + Ih + Icd + Ich + Idh + Icdh + Sv + Iv
d +

1
2

4

∑
i=1

ξiu2
i , (30)

which is also convex.
(iv). There exists constants v1, v2, and v3, such that the Lagrangian of the problem

L ≥ v1|u|v3 −v2, v1 > 0, v2 > 0, v3 > 1.
We now establish the bound on L. We note that ς4u2

4 ≤ ς4 since u4 ∈ [0, 1], so that
1
2 ς4u2

4 ≤
1
2 ς4. Now,

L >
ξ1

2
u2

1 +
ξ2

2
u2

2 +
ξ3

2
u2

3 +
ξ4

2
u2

4

≥ ξ1

2
u2

1 +
ξ2

2
u2

2 +
ξ3

2
u2

3 +
ξ4

2
u2

4 −
ξ4

2

≥ min
(

ξ1

2
,

ξ2

2
,

ξ3

2
,

ξ4

2

)(
u2

1 + u2
2 + u2

3 + u2
4

)
− ξ4

2

≥ min
(

ξ1

2
,

ξ2

2
,

ξ3

2
,

ξ4

2

)
|u1, u2, u3, u4|2 −

ξ4

2
.

Hence,

L ≥ v1|u|v3 −v2, where v1 = min
(

ξ1

2
,

ξ2

2
,

ξ3

2
,

ξ4

2

)
> 0, v2 =

ξ4

2
> 0 and v3 = 2 > 1.

Theorem 7. Suppose the set u = {u1, u2, u3, u4} minimizes J over U , then there exist adjoint
variables $1, $2, . . . , $11, satisfying the adjoint equations

−∂$i
∂t

=
∂X
∂i

,

with
$i(t f ) = 0, where, i = Sh, Ic, Id, Ih, Icd, Ich, Idh, Icdh,R,Sv, Iv

d . (31)

Furthermore,

u∗1 = min
{

1, max
(

0,
β1(Ic + Icd + Ich + Icdh)[Sh($2 − $1) + κR($2 − $9)]

ξ1Nh

)}
,

u∗2 = min

{
1, max

(
0,

βh
2Iv

dSh($3 − $1) + βh
2Iv

dR($3 − $9) + βv
2(Id + Icd + Idh + Icdh)Sv($11− $10)

ξ2Nh

)}
,

u∗3 = min
{

1, max
(

0,
β3(Ih + Ich + Idh + Icdh)[Sh($4 − $1) +R($4 − $9)]

ξ3Nh

)}
,

u∗4 = min
{

1, max
(

0,
β1(Ic + Icd + Ich + Icdh)[Id($5 − $3) + Ih($6 − $4) + Idh($8 − $7)] + Φ1 + Φ2 + Φ3

ξ4Nh

)}
,

(32)
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where

Φ1 = βh
2Iv

d [Ic($5 − $2) + Ih($7 − $4) + Ich($8 − $6)]

Φ2 = β3(Ih + Ich + Idh + Icdh)[Ic($6 − $2) + Id($7 − $3) + Icd($8 − $5)]

Φ3 = β13Ich[Sh($6 − $1) +R($6 − $9)]

Proof of Theorem 7. Consider U∗ = (u∗1 , u∗2 , u∗3 , u∗4) and S∗h , Ih∗
c , I∗d , I∗h , I∗cd, I∗ch, I∗dh, I∗cdh,

R∗,S∗v , Iv∗
d being the associated solutions. Pontryagin’s maximum principle [51] (stated in

Appendix B) is applied, such that there exist adjoint variables satisfying

− d$1
dt

=
∂X
∂Sh

, $1(t f ) = 0, − d$2
dt

=
∂X
∂Ic

, $2(t f ) = 0, − d$3
dt

=
∂X
∂Id

, $3(t f ) = 0,

− d$4
dt

=
∂X
∂Ih

, $4(t f ) = 0, − d$5
dt

=
∂X
∂Icd

, $5(t f ) = 0, − d$6
dt

=
∂X
∂Ich

, $6(t f ) = 0,

− d$7
dt

=
∂X

∂Idh
, $7(t f ) = 0,− d$8

dt
=

∂X
∂Icdh

, $8(t f ) = 0, − d$9
dt

=
∂X
∂R , $9(t f ) = 0,

− d$10
dt

=
∂X
∂Sv

, $10(t f ) = 0, − d$11
dt

=
∂X
∂Iv

d
, $11(t f ) = 0

(33)

On the interior of the set, where 0 < uj < 1 ∀ (j = 1, . . . , 4), we have that

0 =
∂X
∂u1

= ξ1Nhu∗1 − [β1(Ic + Icd + Ich + Icdh)[Sh($2 − $1) + κR($2 − $9)]],

0 =
∂X
∂u2

= ξ2Nhu∗2 − [βh
2Iv

dSh($3 − $1) + βh
2Iv

dR($3 − $9) + βv
2(Id + Icd + Idh + Icdh)Sv($11− $10)],

0 =
∂X
∂u3

= ξ3Nhu∗3 − [β3(Ih + Ich + Idh + Icdh)[Sh($4 − $1) +R($4 − $9)]],

0 =
∂X
∂u4

= ξ4Nhu∗4 − [β1(Ic + Icd + Ich + Icdh)[Id($5 − $3) + Ih($6 − $4) + Idh($8 − $7)] + Φ1 + Φ2 + Φ3],

(34)

where Φ = β13IchSh($6 − $1) + β13IchR($6 − $7).
Therefore,

u∗1 =
β1(Ic + Icd + Ich + Icdh)[Sh($2 − $1) + κR($2 − $9)]

ξ1Nh
,

u∗2 =
βh

2Iv
dSh($3 − $1) + βh

2Iv
dR($3 − $9) + βv

2(Id + Icd + Idh + Icdh)Sv($11− $10)

ξ2Nh
,

u∗3 =
β3(Ih + Ich + Idh + Icdh)[Sh($4 − $1) +R($4 − $9)]

ξ3Nh
,

u∗4 =
β1(Ic + Icd + Ich + Icdh)[Id($5 − $3) + Ih($6 − $4) + Idh($8 − $7)] + Φ1 + Φ2 + Φ3

ξ4Nh
.

(35)

u∗1 = min
{

1, max
(

0,
β1(Ic + Icd + Ich + Icdh)[Sh($2 − $1) + κR($2 − $9)]

ξ1Nh

)}
,

u∗2 = min

{
1, max

(
0,

βh
2Iv

dSh($3 − $1) + βh
2Iv

dR($3 − $9) + βv
2(Id + Icd + Idh + Icdh)Sv($11− $10)

ξ2Nh

)}
,

u∗3 = min
{

1, max
(

0,
β3(Ih + Ich + Idh + Icdh)[Sh($4 − $1) +R($4 − $9)]

ξ3Nh

)}
,

u∗4 = min
{

1, max
(

0,
β1(Ic + Icd + Ich + Icdh)[Id($5 − $3) + Ih($6 − $4) + Idh($8 − $7)] + Φ1 + Φ2 + Φ3

ξ4Nh

)}
.

(36)

5. Numerical Simulations

For the simulations carried out in this paper, demographic data and initial condi-
tions were related to the sexually active population in Argentina. All parameter values
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used were as presented in Table 1, except otherwise stated. The initial conditions used
were: Sh(0) = 28,000,000, Ic(0) = 80, 000, Id(0) = 240, Ih(0) = 70, Icd(0) = 100,
Ich(0) = 100, Idh(0) = 100, Icdh(0) = 80, R(0) = 1000, Sv(0) = 1,000,000, Iv

d (0) = 500,000.
Numerical experiments were carried out with the optimized system (24), adjoint
Equations (33), as well as control characterizations (36) and implemented in MATLAB
using the forward backward sweep method in [52]. It is worth mentioning that the weight
constants have a theoretical function, just to illustrate the control strategies adopted in this
work. The weight constants are assumed thus: ω1 = 50, ω2 = 50, ω3 = 80, ω4 = 100.

5.1. Strategy A: Assessment of COVID-19 and Dengue Combined Preventive Controls
(u1 6= 0, u2 6= 0)

Numerical experiments to assess COVID-19 and dengue combined preventive controls,
when the reproduction number is given by R0 = 2.8480, are depicted in Figure 2a–g. It
is observed that, when this intervention measure was adopted, 6,999,856 new cases of
COVID-19 were averted (as shown in Figure 2a). The strategy also averted 62,800 new
dengue cases (as noticed in Figure 2b). This control scenario saved 384,200 new HIV cases
(see Figure 2c). A total of 768,845 new co-infection cases were prevented using this strategy
(as seen in Figure 2d–g). In general, this control scenario saved a total of 8,215,701 single
and co-infection cases. The profiles for the combined effects of controls u1 and u2 that
constitute this strategy are given in Figure 2h. It can be observed that the control u1 was
at its peak for more than half of the simulation period, while the control u2 had a longer
peak value for almost all the simulation period. It is also interesting to mention that these
conclusions were reached based on the parameter values given in Table 1.

5.2. Strategy B: Assessment of COVID-19 and HIV Combined Preventive Controls
(u1 6= 0, u3 6= 0)

Numerical experiments to assess COVID-19 and HIV combined preventive controls
when the reproduction number is given by R0 = 2.8480, are depicted in Figure 3a–g. It
can be observed that this experimental scenario had a large positive impact on most single
and co-infection cases. In particular, a total of 6,999,860 COVID-19 cases were averted
under this intervention scheme (Figure 3a). The detrimental impact of this control scheme
can be observed for dengue infection (Figure 3b). In addition, this intervention scheme
saved 928,085 new HIV cases (Figure 3c). Co-infection cases averted were 769,235, as can
be observed in Figure 3d–g. The combined single and co-infection cases prevented using
this strategy were 8,697,180. The control profiles for the combined preventive efforts are
given in Figure 3h. It is observed that control u1 was at its peak for about 75 days from the
onset of simulation, before decreasing gradually to zero at the final time. Similarly, control
u3 was at its peak for about 112 days, before steadily reducing to zero at the end of the
simulation period. It is also interesting to note that these conclusions were reached based
on the parameter values given in Table 1.

5.3. Strategy C: Assessment of COVID-19 and Co-Infection Combined Preventive Controls
(u1 6= 0, u4 6= 0)

Numerical experiments to assess COVID-19 and co-infection combined preventive con-
trols when the reproduction number was given byR0 = 2.8480 are depicted in Figure 4a–g.
For instance, this intervention scheme saved a total of 6,999,843 new COVID-19 cases
(as seen in Figure 4a). The detrimental impact of this control measure was observed for
dengue infection (as noticed n Figure 4b). A total of 665,700 new HIV cases were also
averted using this measure (as seen in Figure 4c). In addition, 770,536 co-infection cases
were averted with this intervention scheme, as can be observed in Figure 4d–g. The control
profiles for the combined preventive efforts are given in Figure 4h. It can be observed that
control u1 was at its peak for the first 70 days from the beginning of the simulation, while
control u4 was also at its peak value for about 87 days before gradually declining at the end
of the simulation period.
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(h) Control Profiles for u1 and u2.

Figure 2. Assessment of COVID-19 and dengue combined preventive controls for human epidemio-
logical compartments. Here, β1 = 0.2642; β3 = 0.1425; β13 = 0.1541; βh

2 = 0.7427; βv
2 = 0.60, so that

R0 = max{R0c,R0d,R0h,R0ch} = 2.8480 > 1.
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(h) Control Profiles for u1 and u3.

Figure 3. Assessment of COVID-19 and HIV combined preventive controls for human epidemio-
logical compartments. Here, β1 = 0.2642; β3 = 0.1425; β13 = 0.1541; βh

2 = 0.7427; βv
2 = 0.60, so that

R0 = max{R0c,R0d,R0h,R0ch} = 2.8480 > 1.
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(h) Control Profiles for u1 and u4.

Figure 4. Assessment of COVID-19 and co-infection combined preventive controls for human
epidemiological compartments. Here, β1 = 0.2642; β3 = 0.1425; β13 = 0.1541; βh

2 = 0.7427; βv
2 = 0.60,

so thatR0 = max{R0c,R0d,R0h,R0ch} = 2.8480 > 1.

5.4. Strategy D: Assessment of Dengue and HIV Combined Preventive Controls (u2 6= 0, u3 6= 0)

Numerical experiments to assess dengue and HIV combined preventive controls when
the reproduction number wasR0 = 2.8480 are depicted in Figure 5a–g. In particular, this
control strategy had no positive impact on COVID-19 prevention, as noticed in Figure 5a.
Moreover, this intervention scheme saved a total of 62,800 new dengue and 927,381 new
HIV cases, respectively, as can be seen in Figure 5b,c. A total of 757,087 co-infection cases
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were averted, as observed in Figure 5d–g. A total of 1,747,268 single and co-infection
cases were averted using this intervention scheme. The control profiles for the combined
preventive efforts of this strategy are given in Figure 5h. It can be observed that the control
u2 was at its peak for almost all of the simulation period, while the control u2 showed the
highest impact for about 118 days, before declining to zero at the final time.
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(h) Control Profiles for u2 and u3.

Figure 5. Assessment of dengue and HIV combined preventive controls for human epidemiological
compartments. Here, β1 = 0.2642; β3 = 0.1425; β13 = 0.1541; βh

2 = 0.7427; βv
2 = 0.60, so that

R0 = max{R0c,R0d,R0h,R0ch} = 2.8480 > 1.
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5.5. Strategy E: Assessment of HIV and Co-Infection Combined Preventive Controls
(u3 6= 0, u4 6= 0)

Numerical experiments to assess HIV and co-infection combined preventive controls,
when the reproduction number wasR0 = 2.8480, are depicted in Figure 6a–g, respectively.
It can be seen from Figure 6a,b that this intervention scheme had a marginal or detrimental
impact on COVID-19 and dengue prevention. As expected, this intervention had a large
impact on HIV prevention, as it averted 912,600 new HIV cases (observed in Figure 6c).
The control strategy also had a marginal or detrimental impact on COVID-19 and dengue
co-infection prevention (as can be noticed in Figure 6d). The control scheme averted a total
of 727,252 new co-infection cases (involving HIV) (as seen in Figure 6e–g). In general, a total
of 1,639,852 single and co-infection cases were averted using this intervention measure.
The control profiles for the combined preventive efforts under this intervention scheme
are presented in Figure 6h. It is observed that the control u3 had a significant impact up
to about 87 days, while the control u4, showed a large impact for about 145 days, before
declining to zero at the end of the simulation period.
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(h) Control Profiles for u3 and u4.

Figure 6. Assessment of HIV and co-infection combined preventive controls for human epidemio-
logical compartments. Here, β1 = 0.2642; β3 = 0.1425; β13 = 0.1541; βh

2 = 0.7427; βv
2 = 0.60, so that

R0 = max{R0c,R0d,R0h,R0ch} = 2.8480 > 1.
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6. Conclusions

In this work, a new mathematical model for COVID-19, dengue, and HIV co-dynamics
was proposed. Qualitative analyses to assess the dynamical behavior of the model were
performed. A bifurcation analysis of the model showed that parameters accounting for
re-infection and susceptibility to additional infection could cause backward bifurcation
in the proposed model. For the scenario when the causes of backward bifurcation were
neglected, the model’s equilibria were shown, using well-constructed Lyapunov function
candidates, to be globally stable (in the asymptotic sense). To slow down the co-spread
of the three infections, time-dependent intervention measures were incorporated into the
model and analyzed using Pontryagin’s maximum principle. Numerical assessments of
the complete co-dynamical model revealed that efforts against incident infection with each
disease could reduce the burden and co-spread of all the diseases within the community.
We hope to study stochastic, delayed, and agent-based versions of the modified model in
future studies. Highlights of the simulations include:

(i) Upon implementation of the first intervention strategy (control against COVID-19 and
dengue), it was observed that a significant number of single and dual infection cases
were averted (as can be seen in Figure 2a–g).

(ii) Under the COVID-19 and HIV prevention strategy, a good number of new single and
dual infection cases were prevented (as can be observed in Figure 3a–g).

(iii) Under the COVID-19 and co-infection prevention strategy, a remarkable number of
new infections were averted (as presented in Figure 4a–g).

(iv) Comparing all the intervention measures considered in this study, it is concluded
that the strategies combining COVID-19/HIV averted the highest number of new
infections. Thus, this strategy would be the most ideal and optimal to adopt for
controlling the co-spread of COVID-19, dengue, and HIV.

The findings from this study can also guide public health agencies and policy makers
in developing integrated approaches for managing the co-infections of the three viral
diseases. For example, targeted interventions for COVID-19, dengue, and HIV, such
as increased surveillance, vaccination campaigns, and vector control measures could be
implemented. In addition, by integrating data on COVID-19, dengue, and HIV cases,
public health authorities could establish comprehensive surveillance systems to identify
trends, hotspots, and patterns of co-infection. Early detection and timely intervention
could also help prevent severe disease outcomes, reduce transmission, and improve patient
outcomes. Public health authorities and policy makers could also support health education
and awareness campaigns to promote knowledge about co-infections among high-risk
populations and the general public. Educating individuals about the risks, symptoms,
prevention, and available interventions can empower them to take appropriate action,
seek timely medical care, and adopt preventive behaviors. Furthermore, by providing
sufficient resources for testing, diagnosis, treatment, and supportive care for individuals
with COVID-19, dengue, and HIV co-infections, the co-circulation of the three diseases can
be reduced within the population and overall health outcomes improved.

This study is not without limitations. In order to avoid complications in the model,
asymptomatic classes of COVID-19 and dengue were not assumed. The model also only
considered the HIV infection stage, without considering the full-blown AIDS stage. In a
further study, we hope to incorporate these assumptions for the purpose of capturing reality.
Moreover, there is not much information available regarding vaccine or infection-acquired
cross-protection between COVID-19, HIV, and dengue.No detailed clinical information
yet exists as to whether the currently available COVID-19 or dengue vaccines could cross-
protect against infection with HIV. We realize that a lack of detailed clinical data may
have limited the accuracy and precision of the model’s predictions. Detailed clinical data,
such as disease progression, symptom severity, immune responses, and co-morbidities, are
important for capturing the complex interactions between COVID-19, dengue, and HIV.
Future research will aim to collect and analyze comprehensive clinical data, including
longitudinal studies, to better understand the interactions between the diseases and refine



Axioms 2023, 12, 773 27 of 30

the model’s parameters. Therefore, with more detailed and reliable information about the
co-interactions of the three diseases, further research in this direction is much desired by the
authors. Further research on these viral infections’ interactions with other diseases is also
anticipated, noting that mutations of diseases such as dengue and COVID-19 could occur.
Thus, a model for the co-dynamics of multiple COVID-19 and dengue strains with HIV
might be taken into consideration in the near future. Additionally, it was challenging to
obtain proper documented records for the three viral diseases. In a subsequent investigation,
we intend to fit the model to three sets of data (corresponding to the three diseases), as
this will provide better and more precise estimates of the parameters. In future, the co-
infection model’s findings will be validated using real-world data from diverse populations
and geographical locations. By comparing the model’s predictions with observed data,
researchers can assess its accuracy and reliability. Future research will also emphasize data
collection from different settings and population groups, to enhance the generalizability
of the model’s conclusions. Furthermore, future research will explore the effectiveness
of intervention strategies, such as vaccination campaigns, antiretroviral therapy, vector
control, and public health measures, within the context of co-infections. Investigating the
synergistic or antagonistic effects of interventions on the three diseases could help inform
the development of integrated strategies for optimal control of these three viral diseases.
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Appendix A. Center-Manifold-Theory

Theorem A1 ([47]). Consider the following system of ordinary differential equations with a
parameter ϕ

dy
dt

= h(y, ϕ), h : Rn ×R→ R and h ∈ C2(Rn ×R), (A1)

where 0 is an equilibrium point of the system (that is, h(0, ϕ) ≡ 0 for all ϕ) and assume that

(A1): A = Dyh(0, 0) =
(

∂hi
∂yj

(0, 0)
)

; linearization of system (A1) in the neighbourhood of the
equilibrium 0 with ϕ evaluated at 0. The matrix A has zero eigenvalue and other eigenvalues
have negative real parts;

(A2): Matrix A has a right eigenvector ψ and a left eigenvector v (each corresponding to the
zero eigenvalue).

Let hk be the kth component of h and

a =
n

∑
k,i,j=1

vkψiψj
∂2hk

∂yi∂yj
(0, 0),

b =
n

∑
k,i=1

vkψi
∂2hk

∂yi∂ϕ
(0, 0).
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The local dynamics of the system in the neighborhood of 0 are completely determined by the
signs of a and b.

(i). a > 0, b > 0. When ϕ < 0 with |ϕ| � 1, 0 is locally asymptotically stable and there exists an
unstable equilibrium; when 0 ≤ ϕ� 1, 0 is unstable and there exists a locally asymptotically
stable equilibrium;

(ii). a < 0, b < 0. When ϕ < 0 with |ϕ| � 1, 0 is unstable; when 0 < ϕ � 1, 0 is locally
asymptotically stable equilibrium, and there exists an unstable equilibrium;

(iii). a > 0, b < 0. When ϕ < 0 with |ϕ| � 1, 0 is unstable and there exists a locally asymptoti-
cally stable equilibrium; when 0 ≤ ϕ� 1, 0 is stable and an unstable equilibrium appears;

(iv). a < 0, b > 0. When ϕ changes from negative to positive, 0 changes its stability from stable to
unstable. Correspondingly, an unstable equilibrium becomes locally asymptotically stable.

In particular, if a > 0 and b > 0, then a backward bifurcation occurs at ϕ = 0.

Appendix B. Pontryagin’s Maximum Principle

Theorem A2 ([51]). Consider the optimal control problem:

max
u

∫ T

t0

f (x(t), u(t))dt

subject to

x′(t) = g(x(t), u(t))

x(t0) = x0,

where f : Rn → Rn, x : [0, ∞)→ Rn, u : [0, ∞)→ A ⊂ Rm and g : Rn × A→ R.
Suppose further, that the Hamiltonian is defined by

H(x(t), u(t), λ(t)) = g(x(t), u(t)) +
n

∑
i=1

λi(t) fi(x(t), u(t)).

For the optimality of control u∗(t) and corresponding trajectory x∗(t) with t ∈ [0, T], it
is necessary that there exists a nonzero adjoint vector function λ∗(t) that is a solution to the
adjoint system:

λ′(t) = −∂H(t, x(t), u(t), λ(t))
∂x

,

λ(T) = 0,

so that the Hamiltonian

H(x∗(t), u∗(t), λ∗(t)) =max
u∈U H(t, x∗(t), u(t), λ∗(t)).

Thus, the necessary conditions for optimizing the Hamiltonian are

∂H
∂u

= 0 =⇒ gu +
n

∑
i=1

λi(t)( fi)u = 0 (optimality equation),

λ′i(t) = −
∂H(x(t), u(t), λ(t)

∂xi
=⇒ λ′i(t) = −gxi −

n

∑
i=1

λi(t)( fi)xi (adjoint equation),

λ(T) = 0, transversality condition.

In addition, in a maximization problem, for each t ∈ [0, T],

∂2H
∂u2 ≤ 0 at u∗(t)

must hold from concavity.
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