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Abstract: The global fixed-time sliding mode control strategy is designed for the manipulator to
achieve global fixed-time trajectory tracking in response to the uncertainty of the system model, the
external disturbances, and the saturation of the manipulator actuator. First, aiming at the lumped
disturbance caused by system model uncertainty and external disturbance, the adaptive fixed-time
sliding mode disturbance observer (AFSMDO) was introduced to eliminate the negative effects of
disturbance. The observer parameters can adaptively change with disturbances by designing the
adaptive law, improving the accuracy of disturbance estimation. Secondly, the fixed-time sliding
surface was introduced to avoid singularity, and the nonsingular fixed-time sliding mode control
(NFSMC) design was put in place to ensure the global convergence of the manipulator system. Finally,
the fixed time saturation compensator (FTSC) was created for NFSMC to prevent the negative impact
of actuator saturation on the manipulator system, effectively reducing system chatter and improving
the response speed of the closed-loop system. The fixed-time stability theory and Lyapunov method
were exploited to offer a thorough and rigorous theoretical analysis and stability demonstration
for the overall control system. Simulation experiments verify that the designed control scheme has
excellent control effects and strong practicability.

Keywords: manipulator; trajectory tracking; fixed-time sliding mode control; saturation compensator;
adaptive fixed-time disturbance observer

MSC: 93D20

1. Introduction

Recently, industrial robots have been utilized in a variety of fields, becoming the most
widely used tool for industrial production [1–3]. With the further development of robots,
many research works have been devoted to the study of the uncertain dynamics and trajec-
tory tracking control of mechanical arms suffering from bounded external disturbances.
In meeting the increasing the operational task requirements and boosting the rate and
precision of manipulator trajectory tracking control in different operating environments,
PID control laws [4,5], neural network-based control law [6], fault-tolerant control [7], and
sliding mode control (SMC) techniques [8–10] were extrapolated to manipulator control.
SMC is highly considered due to its insensitivity to the model error of the controlled ob-
ject and bounded exterior interference. It is one of the most powerful methods for the
manipulator to accurately complete the trajectory tracking.

In conventional sliding mode control, the state errors can converge to zero asymptoti-
cally when the system state reaches the sliding mode surface. Although the parameters of
the sliding mode surface can be adjusted to increase the pace of asymptotic convergence, the
convergence effect of the system is still unsatisfactory, which greatly limits the popularity
of the control method. Based on this, researchers have proposed terminal sliding mode
control (TSMC) [11], which constructed the terminal sliding surface by introducing the
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nonlinear function into the sliding hyperplane. Although this improves the convergence
speed of SMC, it brings about system singularity problems, and the stability of the system is
also constrained by initial conditions. Hence, although TSMC overcomes the disadvantage
of asymptotic state convergence under linear sliding mode conditions, it is not optimal
based on convergence time.

On this basis, fast terminal sliding mode control (FTSMC) was presented by researchers.
The terminal attractor in the switch function predominantly determines the system conver-
gence time when the system state is far from zero, while the linear section of the switch
function determines the system convergence time when the system state is nearer to zero.
Therefore, FTSMC makes the system states converge in a limited time by introducing the
terminal attractor while maintaining the rapidity of linear SMC when approaching the
equilibrium state and achieving the fast and accurate convergence of the system state to the
equilibrium state. Adaptive fast terminal sliding mode control was proposed [12] in order
to solve the finite time convergence of attitude tracking speed error and comprehensive
disturbance, but the error convergence of rigid spacecraft under different initial states is
not considered. In addition, there is also a lack of research on the singularity problem of
terminal sliding mode control. Accordingly, although FTSMC is widely exploited because
of its fast dynamic response and limited time convergence, it has the same drawback as
TSMC; that is, in a specific region, the control input is infinite, which leads to the singular
phenomenon in the controller. Hence, different forms of nonsingular FTSMC (NFTSMC)
were proposed to solve the singular value problem [13–17]. These methods have accurately
completed the control task and solved the singularity problem of the system, but they
all have a common drawback, which is that they are greatly constrained by the initial
conditions of the system while solving the singularity problem. It should be noted that the
above sliding mode control is the finite time control, but the disadvantage of this type of
finite time algorithm is that the convergence time is related to the original conditions of
the system, which indicates that the convergence time of the system will increase without
limitation with the infinity of the initial conditions, which contradicts the primacy of the
finite time control theory.

To compensate for the shortcomings of the above control algorithm, the fixed-time
control of dynamic systems has gradually come to receive more and more attention. Fixed-
time stability theory realizes that the convergence time is no longer influenced by the initial
conditions of the system but only depends on the control design parameter. What is more,
the fixed-time control method can ensure the control system with faster transient response
speed and excellent control accuracy. For the relevant proof of the fixed-time control
theory, a detailed mathematical analysis of system stability was given in [18–20]. For the
purpose of studying rigid spacecraft attitude control in space maneuvering missions, the
nonsingular fixed-time terminal sliding mode (NFTSM) controller was designed in [21],
which effectively realizes the attitude control of spacecraft. However, this method is not
universal, and the system state is required to be measurable and can only be applied to
specific types of spacecraft. In view of the unknown external interference caused by the
space environment to various spacecraft systems, the work in [22] involved the coordinated
control of the precise attitude of various spacecraft systems by using the new nonsingular
fixed-time sliding mode tracking control method but does not consider the adverse effects
of actuator saturation on the system. By designing the variable gain, the fixed-time dynamic
surface control (FTDSC) method was suggested in [23] to achieve the required trajectory
tracking control operation requirements of pneumatic manipulator systems. However,
the disturbance observer designed in [23] cannot adaptively update the system-related
parameters with changes in disturbances, and the observer cannot converge within a
fixed time.

It is a pity that although the above methods require prior knowledge of the individual
characteristics of the dynamic system, this requirement is very difficult to achieve in
practical applications, and obtaining the maximum bound of uncertainty regarding external
interference is equally challenging. Therefore, using the disturbance observer to estimate
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the composite interference brought by system uncertainty and external disturbance is a
useful technique. The work in [24] designed the random disturbance observer for the ocean
environmental disturbances, which realized the online estimation of the slowly varying
disturbances. The design parameters of this control scheme are manually set and cannot be
changed in real-time, and it will reduce the estimation accuracy of disturbances. In [25],
the time-varying chattering-free disturbance observer was proposed to track the lumped
disturbance in a limited amount of time, and the uncertain manipulator control system’s
convergence accuracy was increased by the time-varying gains. However, the limited time
disturbance observer restricts the application of the approach in different practical projects.
The fixed-time disturbance observer was presented in [26] to remove the adverse effects of
external bounded disturbances so as to achieve the position and the posture tracking of
two rigid bodies and bring the observation error to zero in a set time.

Most practical systems are typically constrained by a variety of practical conditions due
to factors like safety regulations and physical restrictions. Among them, the input saturation
nonlinearity is also the typical input constraint. Compared to other nonlinear characteristics,
the actuator saturation is most likely to occur in the actual system operation process. In
other words, the actuator’s input will be indefinitely near or equal to a fixed value, and this
is equivalent to weakening the original control power of the input signal. The performance
of the controller will be seriously damaged because of actuator saturation. In [27], the
saturation controllers were designed to enable the AUV to track the target trajectory
and avoid exceeding the actuator limits, which the designed corresponding saturation
compensator did not systematically introduce fixed time theory, and the convergence time
was not optimal. The hyperbolic tangent function was proposed in [28] to reduce the risk
of actuator saturation, but the slope of the hyperbolic tangent function is very large when
approaching the saturation region, which will cause instability of the system and reduce the
actuator response speed. The literature [29] uses the smooth hyperbolic tangent function to
solve actuator saturation, but this method increases the complexity of the control design.
In [30], the saturation function is directly used to deal with the phenomenon of actuator
supersaturation, which directly leads to the loss of the nonlinear response of the actuator
and the deterioration of the performance of the system in the saturated state.

In summary, although researchers have devoted a mountain of research to fixed-time
stabilization, no research has shown that it is possible to design the fixed-time sliding mode
control method simultaneously considering the adaptive fixed-time disturbance observer
and the fixed-time saturation compensator to achieve rapid and precise trajectory tracking
control of uncertain manipulators under the condition of uncertain external interferences
and input saturation. On the strength of this, the global nonsingular fixed-time trajectory
tracking sliding mode control scheme is developed for the manipulator with mode un-
certain, external disturbance, and input compensation in this paper. The majority of its
contributions are depicted by:

(1) For the sake of eliminating the effect of external environment disturbance and un-
certainty on the system, the novel adaptive fixed-time sliding mode disturbance
observer (AFSMDO) is presented while guaranteeing the fixed-time convergence of
the observer. This method can not only break the limitation that the disturbance
observer depends on a constant upper bound of the disturbance’s change rate but
also improve the disturbance estimation accuracy of the observer by adjusting the
parameters adaptively.

(2) The nonlinear functions considering the tracking error of the manipulator are in-
troduced into the nonlinear fixed-time sliding mode control (NFSMC) to solve the
singularity problem of FTSMC. Based on the FTSMC, the tracking error of the ma-
nipulator converges to the arbitrarily small zero region in the fixed time by effective
combination with the designed AFSMDO.

(3) In view of the situation that the input torque of the manipulator trajectory tracking
control system is too large, leading to the supersaturation of the manipulator, the
fixed-time saturation compensator (FTSC) is designed in this paper. When the manip-
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ulator’s actuator torque occurs saturation, the FTSC can efficiently adjust the control
input by introducing a saturation function so that the designed control strategy can
maintain the operation of the manipulator normally and protect the manipulator from
damage. Additionally, compared to the other saturation compensators in previous
literature, the NFSMC-AFSMDO combined with the proposed saturation compen-
sator can effectively improve the manipulator trajectory tracking speed and reduce
joint chattering.

The structure of the essay is organized as follows. Lemmas and symbolic definitions
are all given in Section 2. In Section 3, AFSMDO-NFSMC-FTSC is presented in detail. The
stability proof is given in Section 4. The simulation comparisons are performed in Section 5.
Finally, Section 6 summarizes this work and the future direction.

2. Preliminaries and Notions
2.1. Preliminaries

Lemma 1. (Finite-time stability) [15]. Consider the following system,

.
x(t) = f (x), f (0) = 0, x(0) = x0, x ∈ D (1)

where x ∈ Rn is the system state variable and, f : D → Rn is continuous on an open neighborhood
D ⊆ Rn of the origin. The zero solution of (1) is finite-time convergent if there is an open
neighborhood U ⊆ D of the origin and a function T : U\{0} → (0, ∞) , such that ∀x0 ∈ U, the
solution trajectory x(t, x0) of (1) starting from the initial point ∀x0 ∈ U\{0}, is well-defined and
unique in forward time for t ∈ [0, T(x0)) and lim

x→T(x0)
x(t, x0) = 0. Then, T(x0) is the settling

time. The zero solution of (1) is finite-time stable if it is Lyapunov stable and finite-time convergent.
When U = D = Rn, the zero solution is said to be globally finite-time stable.

Lemma 2. (Fixed-time stability1) [31]. Consider a scalar system is given,

.
y = −ζ1y

m
n − ζ2y

p
q , y(0) = 0 (2)

where ζ1 > 0, ζ2 > 0, m, n, p, and q are all positive odd numbers satisfying m > n and p < q.
Then, system (2) is fixed-time stable, and the convergence time is determined by T1, which satisfies
the following expression,

T1 ≤
1
ζ1

1
m
n −1

+
1
ζ2

1
1− p

q
(3)

Lemma 3. (Fixed-time stability 2) [31]. Consider a scalar system is given,

.
y = −ζ1y

m
n − ζ2y

p
q + ϕ, y(0) = 0 (4)

where m, n, p, and q are positive odd numbers satisfying m > n, p < q, and 0 < ϕ < ∞. Then,
system (4) can be stable in a fixed-time, and the region of convergence is

y ≤ min

{{
ϕ

(1− κ)ζ1

} n
m

,
{

ϕ

(1− κ)ζ2

} q
p
}

(5)

where 0 < κ < 1, ζ1 > 0, and ζ2 > 0. The convergence time is determined by T2, which satisfies
the following expression,

T2 ≤
1
ζ1

1
κ(m

n −1)
+

1
ζ2

1
κ(1− p

q )
(6)
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Lemma 4. For ∀x ∈ N+, the following inequalities are satisfied [31]:
n
∑

i=1
xi

ε ≥
(

n
∑

i=1
xi

)ε

, 0 < ε < 1

n
∑

i=1
xi

ε ≥ n1−ε

(
n
∑

i=1
xi

)ε

, ε > 1
(7)

2.2. Notions

(i).
siga(v) = vasign(v)

Siga(v) =
[
|v1|asign(v1), · · · , |vn|asign(vn)

]T (8)

where a > 0, sign(·) is a sign function.
(ii). For an n-dimensional vector x = [x1, x2, ..., xn]

T , xi(i = 1, ..., n) is the ith compo-
nent of x x. Norms of real symmetric matrices A ∈ Rn×n and vectors x are defined as
follows:

‖A‖ = tr(AT A) (9)

‖x‖ =
√

xTx (10)

λmin{A} and λmax{A} represent the smallest eigenvalue and the largest eigenvalue
of real symmetric matrices A.

(iii) The control forces and moment in practice are restricted to saturation nonlinearities
because of physical constraints and can be characterized as follows [32]:

sat(γ) =
{

γmaxsign(γ), |γ| ≥ γmax
γ , |γ| < γmax

(11)

where γmax is the maximum actuator input torque.
(iv) The following nonlinear functions, h(θ), are given [33] as:

h(θ) =
{

α1sigµ1(θ) + α2δ|θ|θ, |θ| < δ
sigµ2(θ), |θ| ≥ δ

(12)

where θ denotes the state variable, µ1 = µ2 + 1, µ2 = 1− δ, and δ ∈ (0, exp(−1)). The
constants α1, α2, and Z(θ) are defined as follows:

α1 =
−1− ln δ

µ2 − δ ln δ
, α2 = α1

δ2(µ2−1)

−1− ln δ
, Z(θ) = [h(θ1), h(θ2), ...h(θn)]

T (13)

Perform derivative operations on Equation (12),

.
h(θ) =

{
α1µ1|θ|µ1−1 + α2δ|θ|(|θ| ln δ + 1), |θ| < δ

µ2|θ|µ2−1, |θ| ≥ δ
(14)

Let
H = diag

{ .
h(θi)

}
(15)

2.3. Dynamic Model of the Manipulator

The n -joint rigid manipulator can be expressed as,

M(q)
..
q + C(q,

.
q)

.
q + G(q) = τ + τd (16)



Axioms 2023, 12, 883 6 of 26

where q,
.
q, and

..
q denote the vectors of position, velocity, and acceleration, respectively.

M(q) denotes the n× n symmetric positive-definite inertia matrix, and C(q,
.
q) denotes the

n× n centrifugal and Coriolis matrix. G(q) denotes the n× 1 gravitational torque vector,
τ is the n× 1 torque vector applied to the joint, and τd is the exterior interference to the
manipulator system.

Property 2.3.1 [34]. M(q) is symmetric, positive-definite, and satisfies m1 I ≤ M(q) ≤ m2 I,
where m1, m2 ∈ R+; I is the identity matrix of the corresponding dimension.

Property 2.3.2 [34]. M(q) − 2C(q,
.
q) is a skew-symmetric matrix such that

xT(M(q)− 2C(q,
.
q)
)

x = 0, ∀x ∈ Rn.
As the manipulator system has nominal parts and unknown parts, then, the model

parameters of the system are rewritten into the following form:

M(q) = M0(q) + ∆M(q)
C(q,

.
q) = C0(q,

.
q) + ∆C(q,

.
q)

G(q) = G0(q) + ∆G(q)
(17)

where M0(q), C0(q,
.
q), and G0(q) denote the nominal parts; ∆M(q), ∆C(q,

.
q), and ∆G(q)

represent the uncertain parts. By introducing Equation (17), Equation (16) can be re-
described as

..
q = −M0(q)

−1(C0(q,
.
q)

.
q + G0(q)) + d + M0(q)

−1τ (18)

where d = M0(q)
−1(τd − ∆M(q)

..
q− ∆C(q,

.
q)

.
q− ∆G(q)

)
is the lumped disturbance of the

manipulator system.

3. System Control Scheme Design

The nonsingular fixed-time sliding mode control scheme was developed for uncertain
robotic manipulator trajectory tracking control problems in conjunction with the distur-
bance observer and saturation compensator. Three steps constitute the bulk of the control
scheme design procedure. Above all, the adaptive fixed-time sliding mode disturbance ob-
server (AFSMDO) was raised to deal with the lumped disturbance caused by time-varying
disturbance and the uncertainty of the manipulator model. Subsequently, the trajectory
tracking task was made possible via the fixed-time sliding mode controller. At last, the
novel saturation compensator was created to address the issue of input saturation. The
schematic diagram of the global control strategy of the manipulator is displayed in Figure 1.
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+
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= = −
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= −
 

(21) 

The AFSMDO is designed as follows: 

1 2

1 1 2 1 3 1
ˆ ˆ( ) ( ) ( )

a ad sig s sig s sign s  = + +  (22) 

where 1a  , 2a  , 1  , and 2   are positive constants with 1 1a   , 2 1a   , 1  , 2 0   . 

3 d  ; 3  is an uncertain constant, and 3̂  is the estimated value of 3 . 

At the same time, the adaptive expression for 3̂  is given as: 

3 4 1
ˆ s =

 
(23) 

where 4 0   is the design parameter. 

Remark 1. This section proposes that the change rate of disturbances is actually present and 

bounded. The designed AFSMDO no longer relies on the assumption that the disturbance changes 

slowly and its derivative is zero but considers that the upper bound of disturbances’ change rate is 

an unknown time-varying value. The designed adaptive law can estimate a time-varying upper 

bound on the rate of change of the lumped disturbance. The application range of the observer has 

been expanded, greatly improving the estimation accuracy of the observer. 

Theorem 1. The adaptive fixed-time disturbance observer, designed based on Equations (22) and 

(23), allows the system to estimate and compensate for lumped disturbances within the fixed time, 

Figure 1. Structure of the composite controller.

3.1. The Design of the Adaptive Fixed-Time Sliding Mode Disturbance Observer

Focusing on the issues of the uncertainty of the manipulator and external bounded
interference, the AFSMDO was created to effectively eliminate the negative impact of
lumped disturbance under the condition that the upper bound of lumped disturbance is
unknown, which plays a significant role in precise tracking control of the manipulator.

The sliding mode surface is created in the manner described below:

s1 =
.
χ (19)
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where χ =
.
q− q0, q0 is the estimated value of

.
q, thus:

.
q0 = M0(q)

−1τ −M0(q)
−1(C0

.
q + G0) + d̂ (20)

where d̂ is the lumped disturbance estimator.
Taking the derivative of a sliding mode surface s1, then:

s1 =
.
χ =

..
q− .

q0
= −M0(q)

−1(C0(q,
.
q)

.
q + G0(q)) + d + M0(q)

−1τ

−(−M0(q)
−1(C0(q,

.
q)

.
q + G0(q))− d̂ + M0(q)

−1τ)

= d− d̂

(21)

The AFSMDO is designed as follows:

.
d̂ = ε1siga1(s1) + ε2siga2(s1) + ε̂3sign(s1) (22)

where a1, a2, ε1, and ε2 are positive constants with a1 > 1, a2 < 1, ε1, ε2 > 0. ε3 ≥
∣∣∣ .
d
∣∣∣; ε3 is

an uncertain constant, and ε̂3 is the estimated value of ε3.
At the same time, the adaptive expression for ε̂3 is given as:

.
ε̂3 = ε4|s1| (23)

where ε4 > 0 is the design parameter.

Remark 1. This section proposes that the change rate of disturbances is actually present and
bounded. The designed AFSMDO no longer relies on the assumption that the disturbance changes
slowly and its derivative is zero but considers that the upper bound of disturbances’ change rate
is an unknown time-varying value. The designed adaptive law can estimate a time-varying upper
bound on the rate of change of the lumped disturbance. The application range of the observer has
been expanded, greatly improving the estimation accuracy of the observer.

Theorem 1. The adaptive fixed-time disturbance observer, designed based on Equations (22) and
(23), allows the system to estimate and compensate for lumped disturbances within the fixed time,
TDO. The introduction of the adaptive law enables the observer to account for varying disturbance
rates, removing the assumption of the constant disturbance rate.

Proof. The following definition of the Lyapunov function is related to s1 and ε̃3:

V1 =
1
2

s1
2 +

1
2ε4

ε̃3
2 (24)

where ε̃3 = ε3 − ε̂3. �

If the derivative operation is performed on the above formula V1, then:

.
V1 = s1

.
s1 +

1
ε4

ε̃3
.
ε̃3

= s1
.
s1 +

1
ε4

ε̃3(
.
ε3 −

.
ε̂3)

= s1(
.
d−

.
d̂)− 1

ε4
ε̃3

.
ε̂3

= s1(
.
d− ε1siga1(s1)− ε2siga2(s1)− ε̂3sign(s1))− 1

ε4
ε̃3

.
ε̂3

= s1
.
d− ε1|s1|a1+1 − ε2|s1|a2+1 − ε̂3|s1| − 1

ε4
· ε4 · ε̃3|s1|

≤ −ε1|s1|a1+1 − ε2|s1|a2+1

(25)

With the derivation of the above formula due to
.

V1 ≤ 0 so that s1 and ε̃3 are asymptot-
ically convergent and bounded, the disturbance observer is asymptotically stable. Subse-
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quently, it continues to prove that the above system is stable for a specific amount of time.
Now, we present the new Lyapunov function V′1:

V′1 =
1
2

s1
2 (26)

Then,

.
V
′
1 ≤ −ε1|s1|a1+1 − ε2|s1|a2+1 − 1

ε4
ε̃3

.
ε̃3

≤ −ε1 · 2
a1+1

2 ·
∣∣∣ s1

2

2

∣∣∣ a1+1
2 − ε2 · 2

a2+1
2 ·

∣∣∣ s1
2

2

∣∣∣ a2+1
2

+ 1
ε4

ε̃3

∣∣∣ .
ε̂3

∣∣∣
≤ −ε1 · 2

a1+1
2 ·

∣∣∣ s1
2

2

∣∣∣ a1+1
2 − ε2 · 2

a2+1
2 ·

∣∣∣ s1
2

2

∣∣∣ a2+1
2

+ |ε̃3||s1|

(27)

where n1 = ε12
a1+1

2 , n2 = ε22
a2+1

2 , n3 = |ε̃3||s1|.
According to Lemma 3, it can be known that:

.
V
′
1 ≤ −n1

(
1
2 s1

2
) a1+1

2 − n2

(
1
2 s1

2
) a2+1

2
+ n3

≤ −n1V1
′

a1+1
2 − n2V1

′
a2+1

2 + n3

(28)

Combining Lemma 3 and the derivation of inequality (28), this means that system (26)
is stable in fixed time TDO. The TDO satisfies

TDO ≤
1
n1

(
2

κ(a1 − 1)

)
+

2
n2 · κ(1− a2)

, 0 < κ < 1 (29)

So far, the above stability proof has been completed.

Remark 2. According to the derivation of V1, it can be concluded that s1 and ε̃3 are both asymp-
totically stable and bounded. In the derivation process of Equation (27), n3 is the parameter with
regard to s1 and ε̃3, so it can be determined that n3 is also the asymptotically stable and bounded
value greater than zero.

Remark 3. The proof process of this AFSMDO is divided into two stages. The proof results of
V1 indicate that the disturbance estimation error s1 and parameter ε̂3 of AFSMDO can achieve
asymptotic convergence and boundedness, ensuring the asymptotic stability of the designed observer
system. Secondly, the derivation of V1

′ further proves that the disturbance observation error of
AFSMDO can converge to zero in the minimal domain within time TDO, indicating that the observer
designed in this paper is fixed-time stable.

3.2. Nonsingular Fixed-Time Sliding Mode Controller Design

The nonsingular fixed-time sliding mode control method was presented to achieve the
perfect tracking of the rigid manipulator to the target track in the setting time while avoiding
the adverse effects of singularity on the controller. This control approach effectively solves
the singularity issue existing in previous control schemes, and the setting time was not
completely influenced by the initial condition. In conjunction with the AFSMDO, the
system can effectively compensate for the lumped disturbance and attain precise and quick
tracking of the anticipated trajectory.

The tracking errors vector e is denoted as:

e = q− qd (30)

where qd is the target joint angles position.
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In combination with Equation (13), the nonsingular fixed-time sliding mode surface s
is depicted as follows:

s =
.
e + C1Z(e) + C2Sigµ3(e) (31)

where s = [s1, s2, · · · , si], si(i = 1, ..., n) is the ith vector of s, and n is the degree of freedom

of manipulator. Z(e) = [h(e1), h(e2), ...h(en)]
T , h(e) =

{
α1sigµ1(e) + α2δ|e|e, |e| < δ

sigµ2(e), |e| ≥ δ
,

δ ∈ (0, exp(−1)), sigµ1(e) = |e|µ1 sign(e), Sigµ3(e) = [|e1|µ3 sign(e1), |e2|µ3 sign(e2), · · · ,
|en|µ3 sign(en)]T , C1 = diag[c1i], c1i > 0, C2 = diag[c2i], c2i > 0, µ3 > 1.

Remark 4. The selection of δ affects the changes in the parameters of the sliding mode surface.
In fact, the smaller the value of δ, the faster the transient response of the controller. However,
experimental verification shows that the overshoot will gradually increase. Therefore, the value of δ
needs to be reasonably selected based on the actual situation.

Thus,
.
s =

..
e + C1H

.
e + C2D

.
e

= M0(q)
−1(τ − C0(q,

.
q)

.
q− G0(q))−

..
qd + C1H

.
e + C2D

.
e + d

(32)

where H is given by Equation (15), D = diag
[
µ3|ei|µ3−1

]
.

Then, the fixed-time sliding mode control law with disturbance observer is devised as follows:

τ = M0(q)(
..
qd − K1Sigv1(s)− K2Sigv2(s)− K3sign(s))

−M0(q)(C1H
.
e + C2D

.
e + d̂) + C0(q,

.
q)

.
q + G0(q)

(33)

where d̂is obtained from Equation (22), and K1, K2, and K3 ∈ Rn×n denote three positive diagonal
matrixes and K3 ≥

∣∣∣d̃∣∣∣, v1 > 1, and 0 < v2 < 1.

3.3. Fixed-Time Saturation Compensator Design

The NFSMC requires a significant control moment while ensuring the control speed
and accuracy, which will lead to the over-saturation of the actuator. In this paper, the FTSC
was designed to compensate for the negative effects of actuator saturation.

The design of the auxiliary system:

.
η =


0 , ‖η‖ < η0

−‖η‖−2
(
‖sTΛ−1diag(

.
ei

1−µ2)∆τ‖+
α3
2 (∆τT∆τ + ηTη)

)
η − α1ηv1 − α2ηv2 + α3∆τ, ‖η‖ ≥ η0

(34)

where η = [η1, η2, · · · , ηi]
T is the auxiliary variable, ηi(i = 1, ..., n) is the ith vector of η, n is

the degree of freedom of manipulator, and v1 > 1, 0 < v2 < 1, ∆τ = τ − sat(τ), Λ is the
known symmetric positive matrix. s is the proposed sliding mode surface in (31), and α1
and α2 are defined as in Equation (13), and α3 > 0.

The fixed-time saturation compensator is designed as follows:

τsc = −K4M0(q)η (35)

where K4 is the positive-definite diagonal matrix with matrix elements less than 1.

Remark 5. The FTSC designed in this article only works when the manipulator control system
experiences brake saturation, and the existence of −α1ηv1 − α2ηv2 ensures that the saturation
compensator can converge within a fixed time. In addition, as the transient response of the designed
manipulator controller increases, the control torque increases. Considering that the unreasonable
selection of α1 and α2 can lead to overcompensation, the design parameter α3 should be adjusted to
avoid possible overcompensation. However, the designed FTSC can only weaken the negative impact
of the saturation phenomenon and cannot completely eliminate it. Therefore, the gain parameters
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of the controller can be adjusted to avoid the oversaturation phenomenon of the controller as much
as possible.

Theorem 2. The designed saturation compensator (35) with the auxiliary system (34) can effectively
compensate for the saturation of the mechatronic arm within the fixed-time Ta, thereby improving
system stability.

Proof. The Lyapunov function of η is given as follows:

V2 =
1
2

ηTη (36)

Then,
.

V2 = ηT .
η

= ηT
(
−‖η‖−2(‖sTΛ−1diag(

.
ei

1−µ2)∆τ‖+ α3
2 (∆τT∆τ + ηTη)

)
η − α1ηv1 + α3∆τ − α2ηv2

)
≤ −α1

n
∑

i=1
(ηi)

(1+v1) − α2
n
∑

i=1
(ηi)

(1+v2) − α3
2 (∆τT∆τ + ηTη) + α3ηT∆τ

(37)

Taking into account the inequality below:

ηT∆τ ≤ ηTη

2
+

∆τT∆τ

2
(38)

Subsequently,

.
V2 ≤ −α1

n
∑

i=1
(ηi)

(1+v1) − α2
n
∑

i=1
(ηi)

(1+v2)

≤ −α1

(
n
∑

i=1
ηi

2
) 1+v1

2
· n

1−v1
2 − α2

(
n
∑

i=1
ηi

2
) 1+v2

2

≤ −α1(2V2)
1+v1

2 · n
1−v1

2 − α2(2V2)
1+v2

2

≤ −α1 · n
1−v1

2 · 2
1+v1

2 ·V2
1+v1

2 − α2 · 2
1+v2

2 ·V2
1+v2

2

(39)

According to the above derivation results and Lemma 2, the state η of system (36) can
be bounded and converge in the setting time Ta, which can be obtained via Equation (6):

Ta ≤
1

α1 · n
1−v1

2 · 2
v1−1

2

·+ 1

α2 · 2
1+v2

2 ( 1−v2
2 )
· (40)

where 0 < κ1 < 1.
The proof is completed. �

The controller of AFSMDO-NFSMC-FTSC can be expressed as:

τ1 = M0(q)
( ..

qd − C1H
.
e− C2D

.
e− d̂

)
+ C0

(
q,

.
q
) .
q + G0(q)

−M0(q)(K1Sigv1(s) + K2Sigv2(s) + K3sign(s))− K4M0(q)η
(41)

4. Stability Analysis

Theorem 3. For a manipulator trajectory tracking control system that includes model uncertainties
and external disturbances, the fixed-time sliding mode control law (33) designed based on the
adaptive fixed-time disturbance observer (22), (23) and the fixed-time saturation compensator (35)
can realize that the tracking error e of the manipulator system converges to the sliding surface within
the fixed time Tr and converges to the small neighborhood near the equilibrium point within the
fixed time Ts. The convergence time T of the entire closed-loop control system can be represented as
T ≤ TDO + Ta + Tr + Ts.
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4.1. Analysis of Stability in the Reaching Phase

The candidate for the Lyapunov function is taken as:

V3 =
1
2

sTs (42)

Taking the derivation of the (42), substituting (32), (34) and (41) then:

.
V3 = sT .

s
= sT(d− d̂− K1Sigv1(s)− K2Sigv2(s)− K3sign(s)− K4η)

≤ sT(d− d̂)− sT(K1Sigv1(s) + K2Sigv2(s) + K3sign(s) + K4η)

≤ sT(d− d̂)−
n
∑

i=1
K1i|si|v1+1 −

n
∑

i=1
K2i|si|v2+1 − K3|s| − K4sTη

≤ sT(d− d̂)− λmin(K1)n
1−v1

2 (
n
∑

i=1
|si|2)

1+v1
2 − λmin(K2)(

n
∑

i=1
|si|2)

1+v2
2 − K3|s| − K4sTη

≤ |s|
∣∣∣d̃∣∣∣− λmin(K1)n

1−v1
2 (

n
∑

i=1
|si|2)

1+v1
2 − λmin(K2)(

n
∑

i=1
|si|2)

1+v2
2 − K3|s| − K4sTη

≤ |s|(
∣∣∣d̃∣∣∣− K3)− λmin(K1)n

1−v1
2 (

n
∑

i=1
|si|2)

1+v1
2 − λmin(K2)(

n
∑

i=1
|si|2)

1+v2
2 − K4sTη

≤ −λmin(K1)n
1−v1

2 2
1+v1

2 (V3)
1+v1

2 − λmin(K2)2
1+v2

2 (V3)
1+v2

2 − K4sTη

≤ −λmin(K1)n
1−v1

2 2
1+v1

2 (V3)
1+v1

2 − λmin(K2)2
1+v2

2 (V3)
1+v2

2 + K4‖sT‖‖η‖

(43)

The term ‖sT‖‖η‖ can be obtained by using Young’s inequality for products:

‖sT‖‖η‖ ≤ ‖s‖
2

2
+
‖η‖2

2
(44)

Therefore, continuing the derivation of Equation (43), we can obtain

.
V3 ≤ −λmin(K1)n

1−v1
2 2

1+v1
2 (V3)

1+v1
2 − λmin(K2)2

1+v2
2 (V3)

1+v2
2 + λmax(K4)‖s‖2

2 + λmax(K4)‖η‖2

2

≤ −λmin(K1)n
1−v1

2 2
1+v1

2 (V3)
1+v1

2 − λmin(K2)2
1+v2

2 (V3)
1+v2

2 + V3 + ϑ

≤ −λmin(K1)n
1−v1

2 2
1+v1

2 (V3)
1+v1

2 − λmin(K2)2
1+v2

2 (V3)
1+v2

2 + ϑ

(45)

where ϑ = λmax(K4)‖η‖2

2 , and it has been proved to be bounded by Lyapunov Function (36).
In light of Lemma 3, the designed control algorithm can achieve fixed-time stability

within setting time Tr, and the setting time Tr can be obtained via Equation (6):

Tr ≤ Tmax =
2

λmin(K1)n
1−v1

2 · 2
1+v1

2 · κ(v1 − 1)
+

2

λmin(K2) · 2
1+v2

2 · κ(1−v2)
(46)

where 0 < κ < 1.

Remark 6. For the derivation of Equation (45), it can be divided into two cases: the first case is
when 0 < V3 < 1 and the second case is when V3 > 1. Regardless of the value of V3, it is not
possible for it to exceed the values of the first two terms in the inequality (45), ensuring that the
derivative of the Lyapunov function is less than 0. Furthermore, when 0 < ϑ < ∞, the system (42)
fully satisfies the theory of fixed-time stability.

4.2. Analysis of Stability in the Sliding Phase

When the trajectory error e of the manipulator reaches the sliding surface (s = 0), then:

.
e + C1Z(e) + C2Sigµ3(e) = 0 (47)

According to the Equation (12), the following two cases need to be considered:
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Case 1. When |e| ≥ δ, the Equation (47) can be equivalently transformed into

.
e = −C1sigµ2(e)− C2Sigµ3(e) (48)

Obviously, according to Lemma 2, the position error e converges to the arbitrarily small set of
the origin point within settling time Ts1, and settling time Ts1 meets the following expression:

Ts1 ≤ Tmax1 =
1

C1

µ2

1− µ2
+

1
C2

1
µ3 − 1

(49)

Case 2. When |e| < δ, similarly, the Equation (47) can be equivalently transformed into

.
e = −C1(α1Sigµ1(e) + α2δ|e|e)− C2Sigµ3(e) (50)

The candidate for the Lyapunov function is taken as:

V4 =
1
2

eTe (51)

Taking the derivative of the Equation (51), then:
.

V4 = eT .
e = eT(−C1(α1Sigµ1(e) + α2δ|e|e)− C2Sigµ3(e))

≤ −α1
n
∑

i=1
c1i|ei|µ1+1−α2δ|e|λmin(C1)|e|2 −

n
∑

i=1
c2i|ei|µ3+1

≤ −α1λmin(C1)n
1−µ1

2 (e2)
1+µ1

2 − λmin(C2)n
1−µ3

2 (e2)
1+µ3

2 − α2δ|e|λmin(C1)|e|2

≤ −α1λmin(C1)n
1−µ1

2 (2V4)
1+µ1

2 − λmin(C2)n
1−µ3

2 (2V4)
1+µ3

2 − 2α2δ|e|λmin(C1)V4
≤ 0

(52)

The above results show that system (50) can converge asymptotically in accordance with the
Lyapunov stability theorem. The system stability has been fully proven so far.

Remark 7. In terms of practical applications of the controller, the designed control scheme can
swiftly and precisely guide the manipulator to the target track, and the control scheme is beneficial
to some tracking tasks with high accuracy and time requirements. However, the fixed-time stability
theory exists as the problem that the initial control torque is too large, which restricts its practical
application. Therefore, the saturation compensator introduced in our work can decrease the input
control torque of the manipulator. The designed controller with saturation compensator has the
advantage of a higher rate of trajectory tracking and less joint chattering than before compensation.

5. Simulation Comparisons

This section evaluates the feasibility of the control approach devised in this work
through simulated verification with the following manipulator. Figure 2 depicts the sim-
plified model of the 2-DOF rigid manipulator. The parameters related to the dynamics
of the manipulator are given in detail below [31]. To demonstrate the effectiveness of the
designed fixed-time sliding mode trajectory tracking control scheme with the adaptive
fixed-time disturbance observer and the fixed-time saturation compensator, the other two
controllers in [35,36] are introduced for making comparison. The parameter selection of the
three controllers adopts the following unified standards and values.

M(q) =
[

(m1 + m2)r1
2 + m2r2

2 + J1 + 2 m2r1r2 cos(q2) m2r2
2 + m2r1r2 cos(q2)

m2r2
2 + m2r1r cos(q2) m2r2

2 + J2

]
C(q,

.
q) =

[
−m2r1r2 sin(q2)

.
q1 − 2m2r1r2 sin(q2)

.
q1

0 m2r1r2 sin(q2)
.
q2

]
G(q) =

[
(m1 + m2)r1g1 cos(q1) + m2r2g1 cos(q1 + q2)

m2r2g1 cos(q1 + q2)

] (53)
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Figure 2. Two-link manipulator.

The parameters of the manipulator are as follows: J1 = J2 = 5.0 kg ·m, m1 = 0.5 kg,
m2 = 1.5 kg, r1 = 1.0 m, r2 = 0.8 m, g = 9.8 m/s2, δ = 0.3, µ3 = 1.9, M0 = 0.65I ∆M(q) =
0.1M(q), ∆C(q,

.
q) = 0.1C(q,

.
q), ∆G(q) = 0.1G(q), v1 = 1.1, v2 = 0.5, C1 = [5 , 0; 0, 5],

C2 = [5 , 0; 0, 5], K1 = [5 , 0; 0, 5], K2 = [5, 0; 0, 5], and K3 = [0.5 ; 0.5].
The parameters of the AFSMDO are set as ε1 = 80, ε2 = 80, a1 = 1.1, a2 = 0.5, and

ε4 = 0.1.
The design parameters of the fixed-time saturation compensator are set as α1 = 0.15,

α2 = 0.1, α3 = 0.01, and K4 = [0.1 , 0; 0.1, 0].
The expected trajectory of the manipulator is set as qd1 = sin(3t) and qd2 = cos(3t);

the external disturbance is set to τd1 = 1 + 0.5 · sin(2πt) and τd2 = 1 + 0.5 · sin(2πt).
Controller 1. The proposed global fixed-time sliding mode controller based on adaptive

fixed-time disturbance observer with input compensation in this paper.
Controller 2. The fixed-time sliding mode controller based on a fixed-time disturbance

observer [35].

τ2 = M0(q)(
..
qd − C1H

.
e− C2D

.
e− d̂) + C0(q,

.
q)

.
q + G0(q)

−M0(q)(K1Sigv1(s) + K2Sigv2(s) + K3sign(s))
(54)

Controller 3. The global finite-time sliding mode controller with input saturation
compensation [36].

τ3 = M0(q)
( ..

qd − C1H
.
e + d̂− K2Sigv2(s)− K3sign(s)− K4M0(q)η

)
+ C0(q,

.
q)

.
q + G0(q) (55)

Controller 4. Traditional fixed time non-singular fast terminal sliding mode controller
based on fixed time disturbance observer (ASMDO-NFTSMC).

τ4 = M0
..
qd −M0d̂−M0

(
k1l1|e|l1−1 .

e+
.
e
)

k2l2| .e|l2−1 + C0(q,
.
q)

.
q + G0(q)

−M0(q)(K1Sigv1(s) + K2Sigv2(s) + K3sign(s))
(56)

The parameter designs of the NFTSMC sliding surface are as follows: l1 = 2, l2 = 1.2,
k1 = diag{1, 1}, and k2 = diag{1, 1}.

The simulation verification of this article was carried out in two stages. First, in order
to highlight the advantages of the control strategy proposed in this article, the initial joint
angles of the manipulator system were selected as [1 rad, 2 rad] and [80 rad, 80 rad], and
the above three controllers were simulated and verified, respectively. The second stage
verified the effectiveness of the fixed time saturation compensator in compensating the
input torque of the closed-loop system and reducing system chattering.

Figures 3–7 display the outcomes of the simulation verification for the three control
systems mentioned previously. The manipulator system trajectory tracking curve under



Axioms 2023, 12, 883 14 of 26

the initial condition [1 rad, 2 rad] is shown in Figure 3a. Obviously, when the selected
initial state approaches the origin, the three controllers enable the manipulator to effectively
track the expected trajectory. The manipulator can complete the desired track tracking in
0.4 s under the control of controllers 1 and 2 and in 0.7 s under the control of controller
3. When the initial state is selected as [80 rad, 80 rad], the trajectory tracking accuracy
of the manipulator is exhibited in Figure 3b. The aforementioned findings demonstrate
that controllers 1 and 2 produce superior control results than controller 3, regardless of the
manipulator starting position. The simulation graphs for tracking errors corresponding
to the initial values [1 rad, 2 rad] and [80 rad, 80 rad] are given in Figures 4a and 4b,
respectively. Figure 5 indicates the tracking speed curves under different initial states.
The corresponding velocity tracking errors are displayed in Figure 6. Figures 5a and 6a
independently display the velocity curve and velocity error curve for the initial condition of
[1 rad, 2 rad]. Figures 5b and 6b represent the velocity tracking curve and the velocity error
curve under the initial state of [80 rad, 80 rad], respectively. This phenomenon confirms
that our designed control strategy can rapidly and precisely follow the desired trajectory
without requiring the initial condition of the system and has a better dynamic process
than the finite-time control approach. Figure 7 exhibits the control torques of the three
controllers. As opposed to controller 1 and controller 2, the initial control input of controller
3 is tiny, but it affects the control precision. Although the initial control torques of controller
1 and controller 2 are larger than that of controller 3, they are still within the range of
the maximum control input that the manipulator can bear. Figure 8 shows the effect of
interference observer of controller 1 and controller 3 on lumped disturbance estimation,
respectively. By comparison, the fixed-time disturbance observer has better performance in
disturbance tracking accuracy and response speed.

Axioms 2023, 12, x FOR PEER REVIEW 16 of 28 
 

  
(a) (b) 

Figure 3. Position tracking comparison. (a) Position tracking curve at the initial values [1 rad, 2 rad]. 

(b) Position tracking curve at the initial values [80 rad, 80 rad]. 

  
(a) (b) 

Figure 4. Position tracking error. (a) Position tracking error curve at the initial values [1 rad, 2 rad]. 

(b) Position tracking error curve at the initial values [80 rad, 80 rad]. 

  
(a)  (b) 

Figure 5. Joint velocity tracking comparison. (a) Joint velocity tracking curve at the initial values [1 

rad, 2 rad]. (b) Joint velocity tracking curve at the initial values [80 rad, 80 rad]. 

Figure 3. Position tracking comparison. (a) Position tracking curve at the initial values [1 rad, 2 rad].
(b) Position tracking curve at the initial values [80 rad, 80 rad].



Axioms 2023, 12, 883 15 of 26

Axioms 2023, 12, x FOR PEER REVIEW 16 of 28 
 

  
(a) (b) 

Figure 3. Position tracking comparison. (a) Position tracking curve at the initial values [1 rad, 2 rad]. 

(b) Position tracking curve at the initial values [80 rad, 80 rad]. 

  
(a) (b) 

Figure 4. Position tracking error. (a) Position tracking error curve at the initial values [1 rad, 2 rad]. 

(b) Position tracking error curve at the initial values [80 rad, 80 rad]. 

  
(a)  (b) 

Figure 5. Joint velocity tracking comparison. (a) Joint velocity tracking curve at the initial values [1 

rad, 2 rad]. (b) Joint velocity tracking curve at the initial values [80 rad, 80 rad]. 

Figure 4. Position tracking error. (a) Position tracking error curve at the initial values [1 rad, 2 rad].
(b) Position tracking error curve at the initial values [80 rad, 80 rad].

Axioms 2023, 12, x FOR PEER REVIEW 16 of 28 
 

  
(a) (b) 

Figure 3. Position tracking comparison. (a) Position tracking curve at the initial values [1 rad, 2 rad]. 

(b) Position tracking curve at the initial values [80 rad, 80 rad]. 

  
(a) (b) 

Figure 4. Position tracking error. (a) Position tracking error curve at the initial values [1 rad, 2 rad]. 

(b) Position tracking error curve at the initial values [80 rad, 80 rad]. 

  
(a)  (b) 

Figure 5. Joint velocity tracking comparison. (a) Joint velocity tracking curve at the initial values [1 

rad, 2 rad]. (b) Joint velocity tracking curve at the initial values [80 rad, 80 rad]. 
Figure 5. Joint velocity tracking comparison. (a) Joint velocity tracking curve at the initial values
[1 rad, 2 rad]. (b) Joint velocity tracking curve at the initial values [80 rad, 80 rad].

Axioms 2023, 12, x FOR PEER REVIEW 17 of 28 
 

  

(a)  (b) 

Figure 6. Joint velocity tracking error. (a) Joint velocity tracking error curve at the initial values [1 

rad, 2 rad]. (b) Joint velocity tracking error curve at the initial values [80 rad, 80 rad]. 

 

Figure 7. Control torques of joint 1 and 2. 

Figure 6. Joint velocity tracking error. (a) Joint velocity tracking error curve at the initial values
[1 rad, 2 rad]. (b) Joint velocity tracking error curve at the initial values [80 rad, 80 rad].



Axioms 2023, 12, 883 16 of 26

Axioms 2023, 12, x FOR PEER REVIEW 17 of 28 
 

  

(a)  (b) 

Figure 6. Joint velocity tracking error. (a) Joint velocity tracking error curve at the initial values [1 

rad, 2 rad]. (b) Joint velocity tracking error curve at the initial values [80 rad, 80 rad]. 

 

Figure 7. Control torques of joint 1 and 2. Figure 7. Control torques of joint 1 and 2.

Axioms 2023, 12, x FOR PEER REVIEW 18 of 28 
 

 

Figure 8. Disturbance observation. 

In order to more specifically demonstrate the superior performance of the controller 

proposed in this paper, the integrated absolute error (IAE), absolute average error (AAE), 

control input energy (ECI), control output energy average (AECI), and absolute input 

buffeting error (AICE) are used to compare the control effects of the three controllers. The 

specific mathematical expression is as follows. 

1

( )
N

i iIAE
k

e e k
=

=
 

(57) 

1

1
( )

N

i iAAE
k

e e k
N =

= 
  

(58) 

1

( )
N

i iECI
k

k 
=

=
  

(59) 

1

1
( )

N

i iAECI
k

k
N

 
=

= 
  

(60) 

1

1

1
( 1) ( )

N

i i iAICE
k

k k
N

  
−

=

= + −
  

(61) 

where N  is the total number of samples, and i  is the number of joints. 

Figures 9 and 10 and Figures 11 and 12 represent the IAE and AAE of three controllers 

under initial conditions [1 ,2 ]rad rad  and [80 ,80 ]rad rad , respectively. According to the 

numerical display of the stacked bar chart, compared with controller 2 and controller 3, 

the integral absolute error and absolute average error of controller 1 are significantly 

Figure 8. Disturbance observation.



Axioms 2023, 12, 883 17 of 26

In order to more specifically demonstrate the superior performance of the controller
proposed in this paper, the integrated absolute error (IAE), absolute average error (AAE),
control input energy (ECI), control output energy average (AECI), and absolute input
buffeting error (AICE) are used to compare the control effects of the three controllers. The
specific mathematical expression is as follows.

|ei|IAE =
N

∑
k=1
|ei(k)| (57)

|ei|AAE =
1
N

N

∑
k=1
|ei(k)| (58)

|τi|ECI =
N

∑
k=1
|τi(k)| (59)

|τi|AECI =
1
N

N

∑
k=1
|τi(k)| (60)

|∆τi|AICE =
1
N

N−1

∑
k=1
|τi(k + 1)− τi(k)| (61)

where N is the total number of samples, and i is the number of joints.
Figures 9 and 10 and Figures 11 and 12 represent the IAE and AAE of three controllers

under initial conditions [1 rad, 2 rad] and [80 rad, 80 rad], respectively. According to the
numerical display of the stacked bar chart, compared with controller 2 and controller 3, the
integral absolute error and absolute average error of controller 1 are significantly reduced,
which indicates that the controller designed in this paper greatly improves the accuracy of
the control system.
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of the robotic arm and verify that the control scheme proposed in this study can effectively
track different expected trajectories, the same expected trajectories and disturbance inputs
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as those in reference [31] are used for simulation verification. The design parameters of
the fixed-time saturation compensator are reset as α1 = 0.15, α2 = 0.1, α3 = 0.01, and
K4 = [2, 0 ; 0, 2].

qd1 = 1.25− 7
5 exp(−t) + 7

20 exp(−4t)

qd2 = 1.25 + exp(−t)− 1
4 exp(−4t) τd =

[
2 sin(t) + 0.5 sin(200πt)
cos(2t) + 0.5 sin(200πt)

]
(62)

Figure 13 describes that the manipulator can effectively follow the intended trajectory
under the control of controller 1 and controller 2. The speed tracking curve in Figure 14
shows that controller 1 and controller 2 also have a good and fast response performance
under the same disturbance as [31]. The position error curve and speed error curve in
Figure 15 further show that controller 1 and controller 2 also have good control accuracy
for more complex target trajectories and external disturbances.
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Figures 16 and 17 illustrate the comparison of controller torque before and after
introducing a saturation compensator into the controller of the two joints of the manipulator.
The simulation curve clearly shows that by introducing a fixed-time saturation compensator,
the manipulator can effectively reduce control inputs, making the control torque curve
smoother and reducing torque chatter, which fully embodies the benefit of our designed
control strategy.
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Figure 17. Control torque of joint 2.

The disturbance estimation curves of the two joints of the manipulator are shown in
Figure 18. According to Figures 8 and 18, it can be concluded that the adaptive disturbance
observer designed in this study can achieve real-time, fast, and accurate disturbance
estimation for different disturbances, improving the robustness of the system. Finally,
Figures 19–21 show ECI, AECI, and AICE stacked bar charts in controller 1 and controller 2
to verify the effect of the FTSC designed in this paper on the brake saturation of the control
system. The AICE in Figure 21 measures the absolute control torque oscillation error of
two controllers. The numerical results show that after introducing FTSC into the system,
the absolute control torque buffeting errors of joint 1 and joint 2 decreased by 88.219% and
52.9%, respectively, indicating the effectiveness of the controller designed in this work.
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The following simulation curves verify the superiority of the proposed NFSMC over
the traditional NFTSMC. The target trajectory and disturbance are also in the form of
Equation (62).

Figures 22 and 23 show the trajectory tracking and velocity tracking curves of the
controller in this paper and the nonsingular fast terminal sliding mode control design.
Figures 24 and 25 show the position tracking error and velocity tracking error of controller 1
and controller 4. The error curve indicates that the trajectory tracking and velocity tracking
of controller 1, designed in this article, can converge to a small neighborhood of origin
within 1 s, and the response speed of the controller has been greatly improved, which is
significantly better than the tracking performance of controller 4.
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To summarize, the control scheme described in this work has achieved the expected
control objectives and demonstrated significant anti-interference ability and faster response
speed coupled with satisfactory trajectory tracking accuracy, which is more favorable for
practical application.

6. Conclusions

In this paper, the fixed-time trajectory tracking control problem for an input-saturated
manipulator with exterior disturbances and model uncertainties has been researched. For
the lumped disturbances in the manipulator system, the designed fixed-time disturbance
observer could achieve fast and accurate estimation and compensation for the lumped
disturbance, and the adaptive law could change the observer’s parameters to vary with the
disturbance. The suggested nonsingular fixed-time sliding mode controller could converge
the tracking error to an allowable range of error within a fixed amount of time and had
the advantage of eliminating singularity. The introduction of the fixed-time saturation
compensator greatly reduced the input torque chattering of the manipulator, making the
proposed control strategy very suitable for practical industrial applications. Compared
with the existing control method, the control scheme developed in this paper offers higher
tracking accuracy, faster convergence speed, and less chattering. Future studies on this
research will concentrate on how to accurately predict system stability time and develop
the designed control algorithm into a predefined time sliding mode control.

Author Contributions: J.N. conceptualized the proposed system and is the author of the proposed
controller design and control architecture. L.H. developed and executed the simulation program of
the designed application. Data analyses were performed by X.L. The first draft of the manuscript was
written by J.N., H.W. and C.S. analyzed and revised previous versions of the manuscript. All authors
have read and agreed to the published version of the manuscript.
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