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Abstract: An extension of the Generalized Autoregressive Score (GAS) model is presented for time
series with excess null observations to include explanatory variables. An extension of the GAS
model proposed by Harvey and Ito is suggested, and it is applied to precipitation data from a city
in Chile. It is concluded that the model provides adequate prediction, and furthermore, an analysis
of the relationship between the precipitation variable and the explanatory variables is shown. This
relationship is compared with the meteorology literature, demonstrating concurrence.
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1. Introduction

In recent times, models with varying parameters have gained increasing popularity
for working with time-series data. One of these models is the Generalized Autoregressive
Score (GAS), or the Dynamic Conditional Score (DCS). According to Creal et al. [1], these
models belong to the class of observation-driven models.

Sometimes, a significant proportion of observations in a time series is zeros, while the
remaining observations are positive and are measured on a continuous scale. An example
of this is daily precipitation, where there are many days with no rainfall, resulting in these
days being recorded as zeros. To work with this type of data, it is necessary to utilize the
zero-augmented distributions introduced by Hautsch et al. [2]. This approach, developed
by Harvey and Ito [3], provides a framework for working with GAS models in the presence
of a significant frequency of zeros.

The objective and contribution of this paper is to extend the model proposed in [3]
to include explanatory variables. To achieve this, this research is structured as follows:
Section 2 briefly introduces the necessary theory for conducting this study and incorporates
the explanatory variables. Section 3 presents the obtained results, which are discussed in
Section 4. Finally, the conclusions are drawn in Section 5.

2. Materials and Methods

This section provides a summary of the GAS models [1], the zero-augmented distri-
butions [2], and the integration of these concepts. The goal is to subsequently expand the
model using explanatory variables.

Axioms 2024, 13, 15. https://doi.org/10.3390/axioms13010015 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13010015
https://doi.org/10.3390/axioms13010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-5231-1693
https://orcid.org/0000-0003-3075-4922
https://orcid.org/0000-0003-3475-2203
https://doi.org/10.3390/axioms13010015
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13010015?type=check_update&version=1


Axioms 2024, 13, 15 2 of 17

2.1. GAS Models

GAS models [1], also known as DCS models [4], are observation-driven models.
Blasques et al. [5] define these models for an observed time series y1, . . . , yT with a density
given by yt ∼ py(yt| ft, y1:t−1; θ), t = 1, . . . , T. This density depends on the time-varying
parameter ft, past observations y1:t−1 := {y1, y2, . . . , yt−1}, and static parameters θ. The
time-varying parameter ft is defined as the function ft := ft(y1:t−1; θ).

An example of the updated equation is ft+1 = ω + β ft + αs(yt, ft; θ), where θ =

(ω, α, β), s(yt, ft; θ) = St( ft; θ)
∂ log p(yt | ft ,y1:t−1;θ)

∂ ft
is the weighted score, St( ft; θ) = I−d

t ,

d = 0, 1, and It = −Et

[
∂2 log py(yt | ft ,y1:t−1;θ)

∂ f 2
t

]
.

Since the vector θ is unknown, it is estimated using the maximum likelihood method,
maximizing ℓ(θ) := ∑T

t=1 log py(yt| ft, y1:t−1; θ).

2.2. Zero-Augmented Distribution for Non-Negative Variables

Consider a non-negative continuous random variable X with independent observa-
tions {Xt}n

t=1. To account for excess zeros, Hautsch et al. [2] allocate a probability mass at
the exact zero value and define probabilities π := P(X > 0) and 1 − π := P(X = 0).

Conditional on X > 0, X follows a continuous distribution with density gX(x) :=
fX(x | X > 0), which is continuous for x ∈ (0, ∞). Consequently, the unconditional
distribution of X is semicontinuous with a discontinuity at zero. This implies the density
fX(x) = (1 − π)δ(x) + πgX(x)I(x>0), where 0 ≤ π ≤ 1, δ(x) is a point probability mass
at x = 0, and I(x>0) denotes the indicator function that takes the value 1 for x > 0 and 0
otherwise. The probability π is treated as a parameter of the distribution that determines
how much probability mass is assigned to the strictly positive part of X support. In [3], a
GAS model using a aero-augmented distribution is presented and applied to precipitation
data. In that work, the possibility of extending the model using explanatory variables is
raised, which is addressed in this paper.

2.3. Dynamic Model for the Zero-Augmented Distribution Model

To model time series with excess null observations, Harvey and Ito [3] defined a
probability density function g(·) for which it is possible to identify a scale parameter φ. In
the context of GAS models, it is necessary to use a link function to introduce dynamics to
the parameter, making φ = exp(λ).

According to Harvey and Ito [3], in a parameter-driven model, the dynamics should
be introduced through the parameter λ. Conversely, the DCS model is observation-driven,
with the predictive distribution defined conditional on a filtered value of λ, denoted
as λt|t−1.

For an observed time series y1, y2, ..., yT , let yt ∼ f (yt | λt|t−1; θ), where f (·) is the
probability density function of yt obtained from a zero-augmented distribution. In other
words, f (yt | λt|t−1) = (1 − π)(1 − I(yt>0)) + πg(yt | λt|t−1)I(yt>0). Harvey and Ito [3]
introduced dynamics to π through a logistic transformation, so when πt depends on λt|t−1,
it yields:

πt|t−1 =
exp(δ0 + δ1λt|t−1)

1 + exp(δ0 + δ1λt|t−1)
. (1)

Thus, the probability density function associated with yt takes the form:

f (yt | πt|t−1; λt|t−1) = (1 − πt|t−1)(1 − I(yt>0)) + πt|t−1g(yt | λt|t−1)I(yt>0). (2)

2.4. Derivation of the Model’s Score

To obtain the score of the model, (2) is rewritten as follows:

f (yt | λt|t−1) =

{
1 − πt|t−1, if yt = 0
πt|t−1g(yt | λt|t−1), if yt > 0

. (3)



Axioms 2024, 13, 15 3 of 17

By taking the derivative of the logarithm of (3) with respect to λt|t−1 and considering
(1), the score of the model is given by:

∂ log f (yt | λt|t−1)

∂λt|t−1
=

−δ1πt|t−1, if yt = 0

δ1(1 − πt|t−1) +
∂ log[g(yt |λt|t−1)]

∂λt|t−1
, if yt > 0

.

When expressed in terms of the indicator function I(yt>0), this becomes:

∂ log f (yt | λt|t−1)

∂λt|t−1
= −δ1πt|t−1(1 − I(yt>0)) +

δ1(1 − πt|t−1) +
∂ log

[
g(yt | λt|t−1)

]
∂λt|t−1

I(yt>0). (4)

2.5. Generalized Beta Distribution of the Second Kind

For precipitation data, Harvey and Ito [3] recommend using the generalized beta
distribution of the second kind [6], which is given by:

g(y | a, b, p, q) =


a(y/b)ap−1

bB(p,q)[1+(y/b)a ]p+q , 0 < y < +∞

0, otherwise
, (5)

where, a, b, q, p > 0, with b being the scale parameter, and a, p, and q are the shape pa-
rameters. According to Kleiber and Kotz [7], the non-central moments of order k ∈ N are
given by:

E
(

Yk
)
=

bkB(p + k/a, q − k/a)
B(p, q)

=
bkΓ(p + k/a)Γ(q − k/a)

Γ(p)Γ(q)
(6)

At the same time, the density of a generalized beta distribution of the second kind
exhibits considerable flexibility, as demonstrated in Figure 1.

0

1

2

3

4

0 1 2 3

a = 1

a = 2

a = 3

a = 4

a = 6

a = 8

a =12

a =16

Figure 1. Generalized beta distribution of the second kind density function for b = 1, p = 0.5, q = 2.

Special cases encompass a broad range of distributions for non-negative variables. For
instance, when p = 1, the distribution becomes the Burr distribution, and when q = 1, it
becomes a log-logistic distribution (McDonald [8]).
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2.6. GAS Model for a Zero-Augmented Distribution

We work with the generalized beta distribution of the second kind for which the
density is given by (5). Using the exponential link function b = exp(λ) and incorporating
the time dynamics, it yields:

g(yt | λt|t−1) =


a(yt/ exp(λt|t−1))

ap−1

exp(λt|t−1)B(p,q)[1+(yt/ exp(λt|t−1))
a]

p+q , 0 < yt < +∞

0, otherwise
. (7)

Applying a logarithm to expression (7) and considering (4) results in

∂ log
[

g(yt | λt|t−1)
]

∂λt|t−1
= a(p + q)

[
yt exp(−λt|t−1)

]a

[
yt exp(−λt|t−1)

]a
+ 1

− ap. (8)

Thus, the model for yt in terms of the time-varying parameter λt|t−1 is:

yt ∼ f (yt | y1, . . . , yt−1, πt|t−1; λt|t−1; θ),

with a probability density function given by:

f (yt | y1, . . . , yt−1, πt|t−1; λt|t−1; θ) = (1 − πt|t−1)(1 − I(yt>0)) + πt|t−1g(yt | λt|t−1)I(yt>0),

where g(·) is the density of a generalized beta distribution of the second kind given in (7),
θ = (a, p, q, ω, ϕ, κ, δ0, δ1), πt|t−1 is defined in (1), and

λt+1|t = ω + ϕλt|t−1 + κut,

where ut is the conditional score of the model and κ is the weight assigned to it.

2.7. Explanatory Variables

In Harvey and Luati [9], it is demonstrated that for a model for which the location
parameter denoted by µ is time-varying, the model depends on a set of explanatory
variables denoted by a k × 1 vector wt as well as the past values and the score through the
following formulation:

µt|t−1 = ω + w′
tβ + µ†

t|t−1, t = 1, . . . , T, (9)

µ†
t+1|t = ϕµ†

t|t−1 + κut, t = 1, . . . , T, (10)

where β is also a k × 1 vector representing parameters that are estimated in the model for
each explanatory variable.

2.8. Diagnosis

Diebold et al. [10] state that to evaluate whether a model yt is well-fitted, it should be
demonstrated that the probability integral transform (PIT) of

zt =
∫ yt

−∞
pt(u)du

is independent and identically distributed as the uniform distribution U(0, 1), where pt(·)
represents the density forecasts of the generating process fy(yt).

2.9. Prediction

To obtain predictions, Blasques et al. [5] create confidence bands for the time-varying
parameter ft+1. They consider the model for an observed time series y1, y2, . . . , yT given by
yt ∼ py(yt | ft; θ) with the update equation
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ft+1 = ϕ(yt, ft; θ). (11)

In GAS models, fT+1, by construction, depends on y1, y2, . . . , yT , so the parameters
need to be obtained from time T + 2.

Harvey and Ito [3] accomplish this through computational simulation, following the
steps outlined below for n ≥ 2:

(A) Given the point estimate by maximum likelihood θ̂T and the filtered value f̂T+1

obtained from (11) for θ = θ̂T and t = T, simulate S realizations y1
T+1, . . . , yS

T+1 from
the estimated conditional density at time T + 1. In other words,

ys
T+1 ∼ py

(
yT+1 | f̂T+1; θ̂T

)
, s = 1, . . . , S.

(B) Given the simulated observations y1
T+1, . . . , yS

T+1 and equation (11), obtain the filtered
values f̂ 1

T+2, . . . , f̂ s
T+2, conditioned on θ̂T and f̂T+1, using:

f̂ s
T+2 = ϕ

(
ys

T+1, f̂T+1; θ̂T

)
, s = 1, . . . , S.

(C) For f̂ s
T+2, s = 1, . . . , S, repeat steps (A) and (B) for the periods T + 2, . . . , T + n.

(D) Use f̂ s
T+n to calculate forecast bands at the desired percentiles.

2.10. Brier Probability Score

To evaluate the quality of the prediction, the Brier probability score (BPS) will be used
as a measure of accuracy. This metric is widely employed in such cases (Wilks [11]). BPS
was introduced by Brier et al. [12] and is given by:

BPS =
1
n

n

∑
t=1

(pt − αt)
2,

where n represents the number of predicted values, pt is the predicted probability at time t,
and αt takes the value 1 if the event occurred at time t and 0 otherwise. Since 0 ≤ BPS ≤ 1,
Salvador [13] suggests that predictions are acceptable if BPS ≤ 0.35.

2.11. Application

The zero-augmented GAS model to be formulated will be applied to precipitation
data. Let yt represent the amount of precipitation in period t. Then,

yt ∼ py(yt | y1, . . . , yt−1, λt|t−1; θ).

It is assumed that the data-generating process for precipitation follows the zero-
augmented generalized beta distribution of the second kind. As a result, the conditional
density of yt is defined as:

p(yt | y1, . . . , yt−1, λt|t−1; θ) = (1 − πt|t−1)(1 − I(yt>0)) + πt|t−1g(yt | λt|t−1)I(yt>0),

where πt|t−1 is given in (1), g(yt | λt|t−1) is the density of the generalized beta distribution
of the second kind, which, according to Harvey and Ito [3], for improved estimates, should
be reparameterized from (7) in terms of the reciprocal of the tail index: η̄ = 1/η, where
η = aq is the tail index. This leads to:

g(yt | λt|t−1) =


a(yt/ exp(λt|t−1))

ap−1

exp(λt|t−1)B(p, 1
aη̄ )[1+(yt/ exp(λt|t−1))

a]
p+ 1

aη̄
, 0 < yt < +∞,

0, otherwise,



Axioms 2024, 13, 15 6 of 17

where a, p > 0 are shape parameters, and exp(λt|t−1) is the scale parameter modeled
through λt|t−1, which acts as the location parameter. Replacing it with µt|t−1 in Equations (9)
and (10) results in:

λt|t−1 = ω + w′
tβ + λ†

t|t−1, t = 1, . . . , T, (12)

λ†
t+1|t = ϕλ†

t|t−1 + κut, t = 1, . . . , T.

where ϕ and κ are parameters to be estimated; w′
t = (w1, w2, . . . , wk), where wi with i ∈

{1, . . . , k} are the explanatory variables; β = (β1, β2, . . . , βk), where βi with i ∈ {1, . . . , k}
are the parameters to be estimated; and ut is the conditional score of the model, given by:

ut =
∂ log p(yt | y1, . . . , yt−1, λt|t−1; θ)

∂λt|t−1

= −δ1πt|t−1(1 − I(yt>0)) +

δ1(1 − πt|t−1) +
∂ log

[
g(yt | λt|t−1)

]
∂λt|t−1

I(yt>0),

where
∂ log[g(yt |λt|t−1)]

∂λt|t−1
is given by Equation (8).

The conditional mean, obtained directly from (6), is given by:

E(yt | Yt−1) = πt|t−1 exp (λt|t−1)
B(p + 1/a, 1/(aη̄)− 1/a)

B(p, 1
aη̄ )

. (13)

2.12. Dataset

The employed time series corresponds to the daily precipitation in the city of Puerto
Montt in Chile, as shown in Figure 2. This variable is measured in millimeters (mm) and
is equivalent to the liters of water that have fallen per square meter. The dataset was
divided into two parts: the first part was used for model estimation and covers from
1 January 2011 to 31 December 2020 with a total of 3653 observations, out of which 1648
data points are zeros. The second part consisted of the following 244 observations, of which
127 data points were zeros. The data used were obtained from the website of the Dirección
Meteorológica de Chile “http://www.meteochile.gob.cl/ (accessed on 22 November 2022)”,
and the records belong to the El Tepual Puerto Montt Ap Station (code 410005).
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Figure 2. Precipitation in Puerto Montt, Chile.

http://www.meteochile.gob.cl/


Axioms 2024, 13, 15 7 of 17

As explanatory variables, the following were used: w1 := relative humidity, measured
in percentage (%); w2 := atmospheric pressure, measured in hectopascals (hPa); and
w3 := temperature, measured in degrees Celsius (◦C). The daily maximum values reached
by these variables were used.

Figures 3–5 present the graphs of the explanatory variables, while Table 1 shows the
descriptive statistics of these explanatory variables.

Table 1. Descriptive statistics.

Precipitation Humidity Pressure Temperature

Mean 3.9453 96.4646 1009.912 14.7442
Standard Deviation 7.2298 2.8045 5.1589 4.2798
Minimum 0 71 987.3 4
Maximum 69 100 1028 34.1
Asymmetry 2.9967 −1.3453 −0.0555 0.4220
Kurtosis 15.6330 9.0157 3.6322 2.9062
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Figure 3. Humidity in Puerto Montt, Chile.
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Figure 4. Pressure in Puerto Montt, Chile.
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Figure 5. Temperature in Puerto Montt, Chile.

2.13. Parameter Estimation

The estimation of the vector θ = (ω, ϕ, κ, δ0, δ1, a, p, η̄, β1, β2, β3) was performed using
the method of maximum likelihood, formulating the maximization problem as:

θ̂ = arg max
θ

T

∑
t=1

log p
(

yt | y1, . . . , yt−1, λt|t−1, θ
)

.

The calculations were performed in the R programming language using the GB2
package (Graf et al. [14]), maxLik package (Henningsen and Toome [15]), pracma package
(Borchers [16]), and DEoptim package (Mulle et al. [17]).

3. Results

In Table 2, the parameter estimates of the model are presented, along with their
statistical significance and standard deviation in parentheses.

Table 2. Estimated parameters of the model.

Parameters Estimation

ω 0.0647 (1.0330)
ϕ 0.3356 *** (0.0603)
κ 0.2418 *** (0.0323)
δ0 −4.3049 *** (1.0917)
δ1 2.1178 *** (0.1693)
a 0.9785 *** (0.1001)
p 1.0032 *** (0.1384)
η̄ 0.4585 *** (0.1114)
β1 0.0457 *** (0.0085)
β2 −0.0010 *** (0.0003)
β3 −0.0884 *** (0.0071)

*** p < 0.01.

Figure 6 presents a graph of the precipitation in Puerto Montt and the adjusted mean.
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Figure 6. Fitted model for rainfall in Puerto Montt, Chile.

Figure 7 depicts the empirical cumulative distribution function (ECDF) plotted against
transformed integral probabilities for positive observations, while Table 3 displays the
result of the Kolmogorov–Smirnov test along with its p-value.
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0.00 0.25 0.50 0.75 1.00
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Figure 7. Probability integral transform (PIT) against the empirical cumulative distribution function
(ECDF).

Table 3. Kolmogorov–Smirnov test results.

Kolmogorov–Smirnov Test

p-value KS 0.0518
p-value bootstrap KS 0.0510

The graph for the predicted scale parameter is shown in Figure 8, and Figure 9 displays
the graph for the prediction of the conditional mean E(yT+ℓ | YT), as given in (13).
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Figure 8. Prediction of the scale parameter exp (λT+ℓ|T) with ℓ ∈ {1, 2, . . . , n} (T = 3653, n = 244)
and the confidence band for each time within the observation period.

Figure 9. Prediction of the conditional mean E(yT+ℓ | YT) with ℓ ∈ {1, 2, . . . , n} (T = 3653, n = 244)
and its corresponding confidence band for each time within the observation period.

Figure 10 illustrates the predictions for the probability of no rainfall. The shaded
regions represent the 95% confidence bands. Notably, BPS = 0.24.
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Figure 10. Prediction of (1 − πT+ℓ|T) with ℓ ∈ {1, 2, . . . , n} (T = 3653, n = 244) and the confidence
band for each time within the observation period.

4. Discussion

The goodness-of-fit of the model is evident from Figure 6 and is supported by the
information in Table 2, where most of the estimated parameters are significant.

Additionally, Figure 7 indicates that the plot of PITs against the ECDF suggests that the
data follow the distribution estimated by the model. This alignment is further confirmed
by the Kolmogorov–Smirnov test results presented in Table 3, which verify that the model’s
PITs follow a uniform distribution U(0, 1).

It is necessary to emphasize that to find out if the PITs had a uniform distribution
U(0, 1), two methods were considered:

(a) The classic Kolmogorov–Smirnov test;
(b) A permutation and bootstrap approach. For this, the algorithm described in Præst-

gaard [18] was implemented, as suggested by one of the reviewers.

Figure 8 illustrates the predictions of the scale parameter of the model, which, com-
bined with the estimated parameter vector θ, allows for density function forecasts at each
prediction time point. Using these density functions (obtained from estimated parameters),
conditional means are calculated and presented in Figure 9 as point estimates.

Figure 10 depicts the behavior of the parameter associated with the probability of yt
taking a value of zero in the predictions. These values contribute to calculating the Brier
probability score of the model, which has been calculated as 0.24, indicating adequate
model performance according to Salvador [13].

In Figures 8–10, from January to March, it can be observed that the predicted values
cluster around one end of the band. This behavior arises from the nature of the zero-
augmented distribution model, as explained below:

Initially, in period T + 1, the values of the scale and the probability of rainfall need
to be determined, yielding bT+1|T = 4.4489 and πT+1|T = 0.2416, respectively. As the
value of πT+1|T is close to 0, the simulations initially produce many zeros compared to
positive values. This phenomenon directly impacts the behavior observed at the lower end
of Figures 8 and 9 and at the upper end of Figure 10, as it corresponds to the predictions of
1 − πT+1|T .

With the values from the preceding paragraph along with the estimation of θ, the
density presented in Figure 11 is fully determined. Following the procedure outlined
by Blasques et al. [5], using this density, values of y are simulated. For this purpose,
1000 simulations were conducted, and the resulting histogram is displayed in Figure 12.
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Figure 11. Probability density function p(yT+1 | y1, . . . , yT , λT+1|T ; θ) with T = 3653.
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Figure 12. Simulations of yT+1 ∼ p(yT+1 | y1, . . . , yT , λT+1|T ; θ) with T = 3653.

As characteristic of a zero-augmented distribution density, Figure 12 exhibits a high
frequency of zeros since the probability of no precipitation is 1− 0.2416 = 0.7584. Therefore,
such a proportion of zeros was expected.

With the aforementioned results, the conditional score, ut, is obtained, as shown in
Figure 13. It is noticeable that it inherits the shape of the graph in Figure 11.

Now, it is possible to calculate the scale parameter for time T + 2, as depicted in
Figure 14, which exhibits a similar pattern to that of Figure 11.

From the histograms of Figures 12–17, the high frequency of zeros in the simulated
observations causes the calculated values to inherit the same pattern. Therefore, if a specific
point prediction is desired, such as the median, for instance, it should be approximated
towards the side where the highest frequency lies. As mentioned before, this situation
occurs during the period from January to March, which is natural due to it being the
summer season in Chile. In other words, the probability of no rainfall is significantly
higher compared to the other months. This pattern changes in the following months
as the probabilities of no rainfall decrease (see Figure 10), and this is reflected in the
corresponding predictions.
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Figure 13. Simulations of the score uT+1 with T = 3653.
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Figure 14. Scale simulations exp (λT+2|T) with T = 3653.

The same applies to the parameter for the probability of rain for time T + 2, which is
presented in Figure 15.
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Figure 15. Simulations of πT+2|T with T = 3653.



Axioms 2024, 13, 15 14 of 17

0

200

400

600

0.2 0.3 0.4 0.5 0.6 0.7

Probability of no rainfall

F
re

q
u

e
n

c
y

Figure 16. Simulations of 1 − πT+2|T with T = 3653.
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Figure 17. Simulations of E(yT+2 | YT) with T = 3653.

Next, the estimated coefficients of the explanatory variables β1, β2, and β3 are inter-
preted. From (12), it follows that:

λt|t−1 = ω + w1β1 + w2β2 + w3β3 + λ†
t|t−1.

Since the scale parameter of the model is

bt|t−1 = exp (λt|t−1),

when derived with respect to any of the explanatory variables, wi with i ∈ {1, 2, 3},
the result is:

∂bt|t−1

∂wi
=

∂bt|t−1

∂λt|t−1

∂λt|t−1

∂wi

= exp (λt|t−1)βi;

hence, the sign of βi determines whether bt|t−1 increases or decreases. If βi > 0, then
bt|t−1 grows, and if βi < 0, then bt|t−1 decreases. Additionally, higher values of the
scale parameter result in greater dispersion of the density, while lower values of the scale
parameter lead the density to concentrate more around zero. This concentration causes a
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decrease in the probabilities of high values of the variable, in contrast to when the density
becomes more spread out.

Regarding the probability of rain, πt|t−1 given in (1), when deriving it with respect to
any of the explanatory variables, wi with i ∈ {1, 2, 3}, the following is obtained:

∂πt|t−1

∂wi
=

∂πt|t−1

∂λt|t−1

∂λt|t−1

∂wi

=
δ1 exp(δ0 + δ1λt|t−1)[

1 + exp(δ0 + δ1λt|t−1)
]2 βi.

As seen in Table 2, where δ1 > 0, the sign of βi determines whether πt|t−1 increases
or decreases.

Finally, by differentiating the conditional mean, E(yt | Yt−1) given in (13), with respect
to any of the explanatory variables, wi with i ∈ {1, 2, 3}, we have:

∂E(yt | Yt−1)

∂wi
=

B(p + 1/a, 1/(aη̄)− 1/a)
B(p, 1

aη̄ )

∂

∂wi

(
πt|t−1bt|t−1

)
=

B(p + 1/a, 1/(aη̄)− 1/a)
B(p, 1

aη̄ )

(
∂πt|t−1

∂wi
bt|t−1 + πt|t−1

∂bt|t−1

∂wi

)
.

From this, the sign of βi determines whether the conditional mean increases or decreases.
If βi > 0, then bt|t−1, πt|t−1, and the derivatives within the last parentheses are positive,
and when βi < 0, the opposite occurs.

In summary, the following cases can be observed:

(I) If βi > 0, then the scale, bt|t−1, increases, increasing the dispersion for yt > 0, making
higher values more likely. Additionally, the probability of rain, πt|t−1, increases, and
the conditional mean, E(yt | Yt−1), also increases.

(II) If βi < 0, then the scale, bt|t−1, decreases, concentrating the density of the distribution
around zero for yt > 0, making higher values less likely. Additionally, the probability
of rain, πt|t−1, decreases, and the conditional mean, E(yt | Yt−1), also decreases.

Since β1 = 0.0457 > 0 (see Table 2) and is the coefficient associated with humidity and,
according to Llasat Botija et al. [19], humidity promotes the formation of clouds that will
lead to rainfall, this aligns with case (I).

On the other hand, β2 = −0.0010 < 0 (see Table 2), which is the coefficient associated
with pressure and corresponds to case (II). According to García de Pedraza [20], when
pressure increases, the skies are clearer, a condition that does not favor rainfall. Conversely,
if the pressure decreases, it is a condition that favors cloud formation and rain. Therefore,
the results align with meteorological science.

Meanwhile, β3 = −0.0884 < 0 (see Table 2), which is the coefficient associated with
temperature and also corresponds to case (II). Regarding this, Trenberth et al. [21] mention
that during the warm season over continents, higher temperatures are associated with
lower precipitation amounts, while in colder seasons, lower temperatures indicate higher
precipitation. Thus, an inverse relationship between temperature and rainfall would exist,
but it is more related to the time of year. It is worth noting that this relationship is complex,
and exceptions can occur. For example, higher temperatures could also promote cloud
formation through water evaporation.

5. Conclusions

A model has been extended for data originating from a zero-augmented distribution:
that is, it is to be used in time series where there is a high-frequency proportion of zeros.
Additionally, it has been considered that the non-zero data come from a continuous distri-
bution with support for positive values, following the GAS models guidelines of Harvey
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and Ito [3], as this would not be possible using classical models such as those of Box &
Jenkins [22]. This has been applied in meteorology with the precipitation data from a city
in Chile. The model has been successfully fitted and responds well to diagnostic tests.

When evaluating the predictive capability of the proposed model, the Brier PS score
yielded a value of 0.24, categorizing the model as suitable, in contrast to the values presented
by Harvey and Ito [3], which were around 0.72 and 0.75. The low value of the Brier PS
score for the proposed model could signal that by incorporating explanatory variables, the
fit of this type of model can be improved.

Regarding the explanatory variables, it was also very interesting to provide an in-
terpretation of the estimated coefficients associated with each explanatory variable and
to confirm that the results of the proposed model, regarding the relationship between
precipitation and the explanatory variables humidity, pressure, and temperature, generally
align with what is established in meteorology.

It is interesting to analyze how these models behave when the distribution associated
with the non-zero part is not necessarily positive and/or continuous. For example, a
discrete distribution could be used to analyze time series of the number of COVID-19
fatalities, where there is a high frequency of zeros. This could help determine whether the
prediction quality remains consistent under such circumstances.

When it comes to applications in meteorology, it would be compelling to explore
how to incorporate explanatory variables related to wind. These variables are known by
a specific term in the literature—they are referred to as ’circular data’—and they have a
distinctive treatment approach. This aspect has been studied in works by Harvey et al. [23]
and Fisher and Lee [24].

It could also be important to analyze the scenario where a specific distribution cannot
be identified for the non-zero part. In this case, it could be relevant to explore how to
incorporate a more advanced system into these models, such as kernel density estimations
for time series. These have also been studied in works such as those by Harvey and
Oryshchenko [25] and Harvey [4], where non-parametric statistical tools are used to create
distribution-free time-series models.
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