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Abstract: The vertex quadrangulation QG of a 4-regular graph G visually looks like a graph whose vertices
are depicted as empty squares, and the connecting edges are attached to the corners of the squares. In a
previous work [JOMC 59, 1551–1569 (2021)], the question was posed: does the spectrum of an arbitrary
unweighted graph QG include the full spectrum {3, (−1)3} of the tetrahedron graph (complete graph
K4)? Previously, many bipartite and nonbipartite graphs QG with such a subspectrum have been
found; for example, a nonbipartite variant of the graph QK5. Here, we present one of the variants of
the nonbipartite vertex quadrangulation QO of the octahedron graph O, which has eigenvalue (−1)
of multiplicity 2 in the spectrum, while the spectrum of the bipartite variant QO contains eigenvalue
(−1) of multiplicity 3. Thus, in the case of nonbipartite graphs, the answer to the question posed
depends on the particular graph QG. Here, we continue to explore the spectrum of graphs QG. Some
possible connections of the mathematical theme to chemistry are also noted.

Keywords: vertex quadrangulation; truncation; characteristic polynomial; graph spectrum; (matrix,
graph) divisor; equitable partition; straight-ahead walk; polychromatic coloring; band decomposition;
ribbon graph
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1. Introduction

Spectral graph theory is increasingly used in chemistry to study molecular graphs [1–14].
Since molecular graphs are used to solve various specific problems, studying their eigen-
value spectra can help solve these problems [12]. Without being able to consider this topic
in detail, we can name only a few examples of it. But some aspects that are not mentioned
here and are necessary for further presentation will be considered directly in the main
text. The most common use of eigenvalues (of the adjacency matrix) of molecular graphs
is for calculating electronic energy levels in the Hückel molecular orbital method [1–14].
The least modulus positive and negative eigenvalues determine the energy gap, which
determines whether a substance will be a conductor, a semiconductor, or an insulator
for electric current [14]. The spectrum of the molecular graph in the Hückel method also
determines the electronic energy of the molecule and thereby determines its stability [11].

In chemistry, there are problems that consider substitutional isomers when there is
constrained positioning of ligands on a molecular skeleton [15–18]. One constraint involves
‘restrictive ligands’ where two ligands (substituting radicals) of the same or different types
are forbidden to occupy adjacent sites in a molecular skeleton. This can arise because of
steric hindrance, or because of functional groups that, in close proximity in the molecule,
react to eliminate an “undesirable neighbor”. For instance, no pair of –OH groups attach
to the same C atom in a molecular skeleton [15]. In another case, malonic acid residues
−CH(COOH)2 decarboxylate, leaving no more than one decarboxylation in each residue.
Such chemistry problems make it possible to model a molecule with substituents in the
form of a molecular graph, in which substituents of different types are distinguished by
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different coloring of the corresponding vertices of the graph. Then, in a number of cases,
spectral graph theory comes to the rescue.

Here, we can adapt the following example from the literature for our discussion [19].
A perfect star packing in a cubic (3-regular) graph G is a spanning subgraph (covering all
vertices) of G whose every component is isomorphic to the 4-vertex star graph K1,3 (with a
central vertex and three incident edges). The authors investigated which fullerene graphs
allow such packings. It turned out that all fullerene graphs that admit such a packing must
have at least one eigenvalue −1 as a necessary (but not sufficient) condition; otherwise,
it is impossible. If we focus only on all the central vertices, we will notice that all these
vertices of the fullerene graph are located at a distance of no closer than three edges from
one another. That is, with at least two intermediate vertices on the shortest path connecting
any pair of central vertices of the stars. In total, if the graph is completely covered by
maximal stars, there will be exactly n/4 central vertices, where n is the number of vertices
in the graph or the number of carbon atoms in the corresponding fullerene molecule. As a
result, we are talking about the potential possibility of attaching to such a molecule of n/4
bulky substituents with the condition that they will not be located closer than what we
have defined for this on the graph.

However, we must admit that the use of spectral theory is not the only way to solve
problems similar to the one we considered above. Let G2 denote the square of a graph G
in which two vertices are adjacent if and only if they are at a distance of ≤2 in the graph
G. (Thus, the graph G2 is obtained from the graph G by adding new edges connecting all
pairs of vertices that are at a distance of 2 in G.) Then, the last nonzero coefficient α of the
independence polynomial I(G2; x) of G2 [20], which is called the independence number of G2,
in the case of interest to us is equal to n/4, which coincides with the number mentioned
in the first example, where the eigenvalue −1 of the molecular graph plays a special role.
Of course, speaking about the role of this eigenvalue, we are not disputing the role of any
other values, but we will be mainly interested in the eigenvalue −1. In addition, we note
that there are other “not our” studied cases [21–27], when this eigenvalue provides some
structural information about the molecules whose graphs have it.

There are several possible topics that, in a broader context, could lead to the QG type
of graphs indicated in the title of this text. One such topic, already sufficiently described in
our previous work [24], is the spectra of graphs with decorated vertices. In our particular
case, this means quadrangulating the vertices of the original 4-regular graph, or, in a simple
loose definition, replacing each of its vertices, depicted as a point, with a quadrilateral and
attaching connecting edges to the corners of adjacent quadrilaterals.

When dealing with operations on graphs, a graph spectra specialist usually seeks to
find a formula that uniquely determines the eigenvalues of the resulting graph G′ in terms
of the eigenvalues of the original graph G and the auxiliary graph, if any (in our case, this
is the 4-vertex cycle C4). Unfortunately, the vertex quadrangulation cannot have such a
general formula, since, in the general case, there are many nonisomorphic quadrangulations
QG of the same graph G that can have different spectra. Therefore, our attention is mainly
focused on studying a strictly defined type of quadrangulation, for which it is possible,
if not to describe the entire spectrum, then at least to prove the inclusion in it of the full
spectrum of the complete graph K4 (being a skeletal graph of a tetrahedron): {3,−13}.
In the case of bipartite vertex-quadrangulated graphs, this becomes the inclusion of the
full spectrum of the skeletal graph of the cube—{3, 13,−13,−3}—where each superscript
means the multiplicity of the corresponding eigenvalue. Moreover, of particular interest
is the subcase when there is not just inclusion of the spectrum of K4, but also a divisor
isomorphic to this graph (which in the general case is not always realized) [24].

Another approach to our work can be through the consideration of special proper
colorings of the resulting quadrangulated graphs QG. Here, a problem can be formulated
that, as it turns out, is equivalent to a spectral one. We are interested in the case when
graph QG’s vertices are colored in four different colors, with an equal number of vertices
of each color. This prevents any pair of vertices of the same color from being at a distance
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less than 3 from each other (as in the first case discussed above). A situation in chemistry
that illustrates what has been said is placing four types of substituents in a molecule (using
the same numbers of each of them), when, due to their size or interactions, they cannot be
placed in adjacent sites in a molecule or next to in distance (the case is quite familiar in
chemistry). More generally, other types of colorings are also important.

Speaking of chemical applications, we can recall the synthetic aspects of chemistry,
where QG graphs, and therefore any useful information about them, can play a role.
One such example has been discussed previously in [24], the desired synthesis of a two-
dimensional polymer [C4H4]p of cyclobutadiene, C4H4, which has not yet been realized.
If it comes true, then in the future it will also become possible to synthesize the same
polymer directly using cheaper and more readily available acetylene C2H2, from which
cyclobutadiene is obtained. Really existing polymers of a different chemical nature are
already known, which can be represented by the graph QG.

To the above aspects, we can add aspects related to the embeddings of the graphs
under consideration on surfaces and a certain type of walks on these graphs. We will try to
use all relevant nonspectral branches of graph theory to solve our spectral problems.

Here, we move on to the next mathematical sections with a more rigorous formulation
of the problems we solve and some theorematic results concerning the spectra of vertex-
quadrangulated graphs QG, and especially their eigenvalue −1.

2. Preliminaries

Let G = G(V, E) be a simple connected graph with the vertex set V and the edge set
E; |V| = n, |E| = m. A spanning subgraph H of G contains all vertices of G

(
V(H) ≡ V(G)

)
.

An r-factor of a graph G is an r-regular spanning subgraph (all of whose vertices have valency
r). A 1-factor is called a perfect matching; it is a cover of G by pairwise nonincident edges.
A 2-factor is an arbitrary vertex cover of G by cycles. Next, take a cycle C4 (quadrangle)
and denote one pair of its diagonal vertices by numbers 1 and 2, respectively. A garland
Gp [24] in our text is a cyclic construct formed from p cycles C4 (quadrangles), where
vertex 1 of each copy of C4 is connected by an edge to vertex 2 of an adjacent copy of
C4, and conversely. Thus, each quadrangle in Gp has two diagonal vertices of valency
3 and two other diagonal vertices that retain valency 2 and are not used in the construction
for contacts.

A vertex u of the 4-regular graph G is incident to the edges uv1, uv2, uv3, uv4 (following
their cyclic order in G embedded in a surface). One can replace the vertex u with a
square u1u2u3u4 and connect by an edge each vertex uj of the square to vertex vj of G
(j ∈ {1, 2, 3, 4}) (see Figure 1). The application of such an operation to every vertex of G
produces the vertex quadrangulation QG of G

(
|V(QG)| = 4n, |E(QG)| = 6n

)
; see Figure 3,

upper left. The vertex quadrangulation QG of a 4-regular graph G visually looks like a
graph whose vertices are depicted as empty squares, and the connecting edges are attached
to the corners of the squares. The quadrangulation graph QG is a 3-regular (cubic) graph.

The contraction to points of all quadrangles in QG always returns the original graph
G. In the general case, one can obtain a set of nonisomorphic vertex quadrangulations
of the same original graph G (see Figure 2). Later, we will specify exactly what type of
quadrangulation we will need for our reasoning.

Pajek

Figure 1. A 4-valent vertex (left) and its quadrangulation (right). [Used Pajek].
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As an example, we note that the skeleton graph TP of the truncation [28,29] of any
polyhedron with a 4-regular skeleton graph P is also a vertex quadrangulation QP of P;
see [24] and Figure 2, left. Other examples are a rhombitruncated cuboctahedron and a
rhombitruncated icosidodecahedron.

Figure 2. Two different vertex quadrangulations: bipartite (QO)1 and nonbipartite (QO)2 of the
skeleton graph O of the octahedron. The left graph (QO)1 is also the skeleton graph TO of the
truncated octahedron. The only difference between (QO)1 and (QO)2 is that (QO)1 has edges (1, 2)
and (9, 10), while (QO)2 has edges (1, 9) and (2, 10) instead, which are attached to a common
quadrangle (1, 10, 18, 13). [Used SageMath].

The characteristic polynomial Ch(Γ; x) of an arbitrary graph Γ is defined as the character-
istic polynomial Ch(A; x) of its adjacency matrix A = A(Γ) [30]:

Ch(Γ; x) := Ch(A; x) = det(xI − A), (1)

where I is the identity matrix of consistent dimensions. Also, the spectrum Spec(Γ) =
{λ1, λ2, . . . , λn} (λ1 ≥ λ2 ≥ · · · ≥ λn) of a graph Γ is the set of all eigenvalues λj(

j ∈ {1, 2, . . . , n}
)

of its adjacency matrix A, or all roots of the characteristic polynomial
Ch(Γ; x) ≡ Ch(A; x) [30].

It is briefly mentioned that the eigenvalues of the molecular graph in the simple
Hückel method in chemistry are associated with electron energy levels in the molecule (see
Ch. 8 in [1–14,30]). So, in the case of a molecule consisting of identical atoms, εi = α + βλi
(i ∈ {1, 2, . . . , n}), where εi, α, β are the energy of the i-th Hückel orbital, the Coulomb integral
of the atom, and the resonance integral, respectively, (α, β < 0).

The theme of the use of the spectral theory of graphs now often arises in chemistry. This
was also the case in our previous work [24], and here we further continue it. Examination
of the graph spectrum of a putative molecular graph may provide some assistance in the
mathematical planning of the synthesis of new molecules or logically reject the initial
candidate choice.

Here, it is necessary to explain our current interest in graphs QG. To do this, we use
an example from [24], in which QG serves as a template for an envisioned molecule.

The graph QG can be represented as the union H 1 ∪ H 2 of two edge-disjoint spanning
subgraphs H1 and H2, where H2 is a 2-factor whose components are vertex-disjoint quad-
rangles, and H1 is a 1-factor whose components are the remaining (connecting) edges of QG.
The chemical representation of the quadrangles in the subgraph H2 is the four-atomic cycles
(rings) in the corresponding molecule. In the envisioned polycyclobutadiene molecule
[C4H4]n represented by QG [24], each such ring is formed by four carbon atoms and be-
longs to the cyclobutadiene monomeric unit, C4H4, of this polymer. Here, we recall that
chemistry has taken the approach to depicting (organic) molecules with hydrogen-depleted
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graphs (ignoring the hydrogen atoms in the molecule), which can also represent a multiple
chemical bond with a single edge. Thus, the representation of a cyclobutadiene molecule
with two nonincident double bonds in its ring by such a graph gives us a simple 4-vertex
cycle C4, which also represents a single monomeric unit C4H4 in a polymer. The concomi-
tant subgraph H1 is a perfect matching of QG, which in chemistry corresponds to the Kekulé
structure of the corresponding molecule. The subgraph H1 in our context does not describe
any initial substance, but represents exactly those chemical bonds between cyclobutadiene
rings that should appear in the target polymer molecule [C4H4]n [24]. Note that the same
envisioned molecule is also the polymer [C2H2]2n of acetylene C2H2, which can be used to
synthesize it.

Also in chemistry, it is often customary to consider whole radicals (chemically bonded
groups of atoms) as separate generalized atoms. Regardless of the nature of such groups,
they can be denoted by one letter when writing structural formulas. Such formulas allow
one to further represent them graphically in a simplified form of molecular graphs, where
a grouping of atoms designated by one letter corresponds to one vertex of the molecular
graph. Due to that, one has more opportunities to look for examples of molecules that
can be represented by vertex-quadrangulated graphs. A class of such real molecules is the
organotin polymers with the general formula [SnR2O]2n [31] or shorter [GO]2n, where R is
a methyl, ethyl, n-butyl, or phenyl radical, and G represents the SnR2 group. The entire
connected molecular network of [SnR2O]2n (including all quadrangles and links between
them) is formed by Sn−O bonds, which can also be conceptualized as G−O bonds, where
the entire group G behaves like a generalized atom. Each Sn (res. O) atom in the network is
bonded to three O (res. Sn) atoms, and the attached radicals R are projected outside the
network [31].

An important notion is the divisor, quotient (orbit, or condensed, graph) D of a graph Γ [30]
(Ch. 4), [24]. Without going into details, we note here the main property of an arbitrary
divisor D of Γ. Namely, the characteristic polynomial Ch(D; x) of D divides the character-
istic polynomial Ch(Γ; x) of Γ (for which D is a divisor). [Hence, in fact, the explanation
of the term ‘divisor’ follows.] Thus, the spectrum of D is entirely included in the spec-
trum of G (taking into account all the multiplicities of its eigenvalues): Sp(D) ⊆ Sp(G),
where the equality holds for D = Γ. The definition of a graph divisor is closely related
to the definition of the equitable partition of the vertices of graph Γ into s sorts [32,33],
such that each vertex of the i-th sort has the same number sij of adjacent vertices of the
j-th sort (i, j ∈ {1, 2, . . . , s}; sij ≥ 0). The characteristic polynomial Ch(S; x) of the matrix
S = [sij]

s
i,j=1, composed of the numbers sij, divides the characteristic polynomial Ch(Γ; x)

(see Theorem 0.12 in [30]). The matrix S is the weighted adjacency matrix of a weighted
graph W, which is thus a weighted divisor of graph Γ. The case D = K4 is a special case
of an unweighted divisor, which is a simple graph; but in general, divisors are arbitrarily
weighted graphs or can also be multigraphs if their adjacency matrix S is a nonnegative
integer matrix. Add that a particular case of the equitable partition of graph vertices is their
partition into orbits induced by the automorphism (symmetry) group [33] or endomorphism
monoid [34] of the graph.

The equitable partition of vertices into s sorts can be marked by coloring the vertices
in s colors accordingly. The case when D = K4 corresponds to a proper coloring of the
vertices of QG in four colors, in which each vertex is adjacent only to vertices of three other
colors and exactly a quarter of all vertices is colored in one color (see Figure 3 and more
details [24]). But, in general, the equitable partition induces colorings in which vertices of
the same color can be adjacent to any number (from the presence) of vertices of any other
color and/or the same.
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Figure 3. Fragments of the vertex quadrangulation QTp,q of the toroidal graph Tp,q (upper left) and
another graph L from [35] (lower left), as well as their common unweighted divisor (right). [Courtesy
of O. Delgado-Friedrichs].

We continue the study [24] of vertex quadrangulations QG whose obligatory divisor
is the complete graph K4 with spectrum {3, (−1)3} and if QG is bipartite, then its spec-
trum contains the full spectrum {3, 13, (−1)3,−3} of the cube graph Q3. Note that the
existence of a divisor D = K4 of the graph QG is a sufficient condition for the presence of
the subspectrum {3, (−1)3} in the spectrum of the latter; however, this condition is not
necessary in the general case, since there are graphs with such subspectra that are not
vertex quadrangulations of simple graphs. The simplest examples are the graphs K4 and
Q3 themselves, respectively. Moreover, not even every vertex quadrangulation QG that
has eigenvalues {3, (−1)3} has a graph divisor D = K4, and the left graph in Figure 2
is an example of this. An example of a nonbipartite vertex quadrangulation QO of the
octahedron graph O, whose spectrum contains only two eigenvalues (−1), is shown in
Figure 2 (right), while the spectrum of the bipartite version of QO shown in Figure 2 (left)
has all three eigenvalues (−1) of K4 (and Q3).

In a previous work [24], the question was posed: does the spectrum of an arbitrary
unweighted graph QG include the full spectrum {3, (−1)3} of the tetrahedron graph
(complete graph K4)? As we now know, in the case of nonbipartite graphs QG, the answer
to the question posed depends on the particular graph QG. The case of bipartite vertex
quadrangulations is still less studied.

To proceed, we need to introduce some additional terminology. A straight-ahead walk,
or a SAW [36], in the embedded Eulerian graph G always passes from an edge to the
opposite edge adjacent to the same vertex; two edges are “opposite” at a vertex of valency
2k in an embedded graph if they are k edges apart in the cyclic ordering (rotation) of the
edges at that vertex induced by the embedding. The definition of SAW allows the use
of weak embedding, which requires only two conditions to be met: no vertex of the graph
coincides on the surface with another vertex or an interior point of an edge. Without loss
of generality, we can impose a third condition under which such an embedding is a knot
projection of a graph G [36], which prohibits the intersection of more than two edges at one
point of the surface. Obviously, if the graph is weakly embedded, then the observer can see
each individual vertex on the surface and distinguish between incident edges that project
radially from it. We also use the abbreviation SAC [24] to mean a simple cycle of G, along
which such a straight-ahead walk (closed simple path) is possible. Below, of particular
interest to us are the full vertex covers of G by its cycles that are all SACs.
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Let Σ be a decomposition of a simple 4-regular plane graph G into edge-disjoint cycles
such that every two adjacent edges on the face belong to different cycles of Σ. Such graphs,
called Grötzsch–Sachs graphs, can be viewed as the result of a superposition of simple
closed curves in a plane with forbidden tangency [37–43]. In this text, we will also consider
the more general case of not necessarily planar graph G embedded in an arbitrary surface.
The benefit of what has been said in the case of a 4-regular graph G is that the above set of
cycles Σ is the set of SACs of the graph G

(
cf. [36] for the general case of an arbitrary SAW

)
.

Now, as promised at the beginning, we need to decide which kind of vertex quadran-
gulation QG is of primary interest to us. Let a 4-regular graph G be embedded in some
surface. Keeping in mind the definition of opposite edges used in defining SAW above, we
can perform vertex quadrangulation in such a way that each pair of opposite edges of G
that are incident with a common vertex is attached to a pair of diagonal vertices of the
quadrangle that replaced this vertex. Locally, we call this version of vertex quadrangulation
consistent, and any other attachment option is inconsistent. But at the same time, we admit
the existence of several ways of embedding the graph in one or several different surfaces;
in this case, there must be several different consistent quadrangulations. But for us it is
only important to know if at least one of them exists. In general, this is not always the case.

Here, we come to the main part of our study.

3. The Main Part

First, we need to recall the famous 2-factor theorem discovered by Julius Petersen (see
Theorem 6.2.4, p. 218 in [44]).

Theorem 1 (Petersen). Let G be a regular graph whose degree is an even number, 2k. Then,
the edges of G can be partitioned into k edge-disjoint 2-factors.

Of particular interest to us is the following corollary (Corollary 7.1 in [24]).

Corollary 1. Let G be a 4-regular graph embedded in some surface and having a 2-factor F1, all
of whose components are SACs. Then, G has a complementary (to F1) 2-factor F2, all of whose
components are also SACs (F1 ∪ F2 = G).

Let G be the class of all 4-regular embedded graphs having two complementary SAC
factors F1 and F2 (F1 ∪ F2 = G) satisfying the conditions of Corollary 1 (see [24]); an
embedded graph G ∈ G has a consistent vertex quadrangulation. An example is the
above-mentioned toroidal graphs Tp,q [24] (see fragment in Figure 3, top left), which also
belong to G.

Here, we propose a strengthened version of [24]’s Theorem 10, which now uses the
term ‘consistent’ and one additional fact proved in [24] but omitted in the text of the
previous version.

Theorem 2. Let G be a 4-regular simple graph from the class G embedded in some surfaces. Then,
G has a consistent vertex quadrangulation QG with divisor D = K4, which gives its full spectrum
Sp(K4) = {3, (−1)3} into the spectrum of QG. Moreover, if G is a bipartite graph, a consistent
quadrangulation QG contains the full spectrum {3, 13, (−1)3, (−3)} of the cube graph Q3.

Proof. The assertion that the graph QG has a divisor D = K4 is proved in part 2 of the
Proof of Theorem 10 in [24]. The other two assertions in Theorem 2 are obvious.

Theorem 2, in particular, allows us to analyze various special cases of QG graphs,
such as the following. The spectrum of the left graph (QO)1 in Figure 2 contains the full
spectrum Sp(K4), but (QO)1 does not have a divisor K4 and, therefore, is not a consistent
vertex quadrangulation. It also turns out that the graph O of the octahedron is not a
graph from the class G at all, since traversing SAW paths in it splits O into three pairwise
intersecting SAC 4-cycles. This does not satisfy the definition of the class G, since it does
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not allow finding two complementary spanning graphs F1 and F2, all of whose components
are SAC cycles, as it should be satisfied for the graph G ∈ G.

As we briefly mentioned earlier, the topic of graphs from the class G intersects with the
topic of certain colorings of such graphs. Of particular interest in graph theory are proper
colorings. A coloring ρ of vertices of a graph Γ is called a proper coloring if Γ does not contain
any pair of adjacent vertices of the same color. Here, let us recall the upper-left colored
graph in Figure 3, which is a good example with which to illustrate the following corollary.

Corollary 2. Let G be a 4-regular simple graph from G and let QG be its (3-regular) vertex
quadrangulation with divisor D = K4. Then, there exists a proper coloring ρ of QG with four colors
such that (a) each vertex of any color is adjacent to exactly one vertex of each of the other three colors
(but not the same color), and (b) exactly a quarter of the vertices of QG is colored in each of the
colors. The converse of (a) is also true: from the coloring of ρ (as is), it mutually follows that QG
has a divisor D = K4.

Proof. For a surface-embedded graph G ∈ G, the existence of its vertex quadrangulation
QG with divisor D = K4 follows from Theorem 2. The presence of such a divisor means an
equitable partition of the set of all vertices of QG into four sorts such that a vertex of any
sort is adjacent to exactly one vertex each of the other three sorts (but not of the same sort).
Since each sort of vertex can be entirely colored in one of four different colors, this proves
part (a). The converse statement with respect to (a) follows from the reasoning about the
equitable partition of QG formed by vertices of different colors defined by ρ.

Now show that (b) of Theorem 2 follows from (a). Recall that all vertices of QG are
covered by quadrilaterals. Take any quadrilateral and number its vertices cyclically: 1, 2, 3, 4.
Color vertex 1 red. Since its adjacent vertices must be of different colors, color vertices
2 and 4 green and yellow, respectively. The remaining vertex 3 cannot be colored in any
of the three colors already used, since vertices 2 and 4 cannot have two adjacent vertices
of the same color. We can only color vertex 3 with another fourth color, e.g., blue. Thus,
we establish that according to (a), each quadrilateral of QG is colored with four different
colors. Since the quadrilaterals of QG cover all its vertices and do not overlap, it is easy
to deduce from their strict 4-chromaticity that the number of vertices of each color in QG
is exactly equal to a quarter of their total number. This proves (b), and we arrive at the
complete proof.

Touching upon the topic of graph colorings, it is worth mentioning one more. Here,
we use a more general interpretation of definitions than was originally done in [45]. Let ρ
be a k-coloring (not necessarily proper) of a graph G. We say that a face f of the graph G
embedded in a surface is polychromatic under ρ if all k colors appear in the boundary closed
walk of f . The coloring ρ is polychromatic if it is a k-coloring of G such that every face of G
is polychromatic; k ≤ g, where g is the girth of graph G (which is equal to the length of the
shortest cycle in G). An example of a graph with a polychromatic 4-coloring is shown in
Figure 3, upper left.

There is the following fact.

Proposition 1. Let QG be a surface-embedded vertex quadrangulation of a graph G ∈ G, and let ρ
be a proper 4-coloring of QG such that every vertex of any color is adjacent to exactly one vertex of
each of the other three colors (but not the same color). Then, ρ is a polychromatic coloring.

Proof. Obviously, each quadrilateral in QG is 4-colored and hence polychromatic. Each
quadrilateral in surface-embedded QG that has replaced a vertex in G is surrounded by
four adjacent faces, each of which shares one edge with the quadrilateral. Number the
vertices of the quadrilateral cyclically: 1, 2, 3, 4. Color these vertices red, blue, yellow,
and green, respectively. By the method of excluding forbidden options, we find that four
other vertices 1′, 2′, 3′, 4′, respectively, adjacent to four vertices of the quadrilateral with the
same numbers without a prime, have the colors yellow, green, red, blue. Consider four
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simple paths in which the central edge is one of the edges of the colored quadrilateral:
(1′, 1, 2, 2′); (2′, 2, 3, 3′); (3′, 3, 4, 4′); (4′, 4, 1, 1′). Each of these four paths is a part of the
corresponding face cycle of one of the four faces adjacent to the quadrangular under
consideration. Since the vertices of each of these paths are colored in four different colors,
we conclude that the four specified faces are polychromatic faces. Extending our reasoning
to all quadrilaterals, we obtain a proof that the coloring ρ of the entire graph QG is
polychromatic. Q.E.D.

In the definition of the vertex quadrangulation QG (back in [24]), we missed other
possible cases when an underlined 4-regular graph G has multiple edges and/or loops.
If we assume that the one-vertex graph Γ1 with two loops is 4-regular (judging by the total
number of lines entering and leaving the vertex), then it can also be quadrangulated, which
gives the often-mentioned graph K4 we use, the minimum graph with eigenvalues 3, (−1)3.
And if we take a two-vertex graph Γ2 with four edges, then after vertex quadrangulation
we can obtain the cube graph Q3 from it, with eigenvalues 3, 13, (−1)3,−3.

Any graph QG (|V(QG)| = 4n) embedded in a surface has exactly n quadrangular
face cycles if the original graph G does not contain double edges (which can be considered
digons, undirected 2-vertex cycles) and QG has more than n quadrangular cycles if such
double edges are present. An example is the vertex quadrangulation QΓ3 of the 4-vertex
cycle Γ3 with double edges (|E(Γ3)| = 8), which is the skeletal graph of an octagonal prism
with 8 > n = 4 quadrangular faces. This reminds us of the fact that every 3-connected
simple planar cubic graph Γ (including QG with such properties) is a skeletal graph of
a convex polyhedron. The last example of the octagonal prism graph is just the case of
embedding in a sphere in which each inner face has length l = 4 or 8.

Recall that, in the general case, the proper 4-coloring of a cubic graph (e.g., QG) is not
minimal in the number of required colors. Also, not every arbitrarily chosen proper coloring
satisfies the Corollary 2 conditions, whereas some of all possible proper colorings may
satisfy them. It follows from what has been said that an analysis of a possibly large number
of colorings is needed, all of which still need to be found. Meanwhile, we are only interested
in the fundamental existence or nonexistence of the required coloring. The question arises: Can we
not reduce our problem “as is” to some other problem that is easier to solve? Fortunately,
this can be carried out and brought to a simpler determination that some derived graph is
or is not properly 4-colorable. The latter no longer requires one to independently compose
a computer code, and it is enough to use a ready-made system of symbolic algebraic
calculations such as Maple, SageMath, and the like. Now demonstrate this.

For p ∈ N, the power Γp of a simple graph Γ(V; E) is defined as the graph with the same
vertex set V and with an edge between any pair of vertices that are distance at most p
away from each other in Γ; Γ1 := Γ. Thus, in particular, the square Γ2 of a simple graph Γ is
obtained by starting with Γ and adding edges between any two vertices whose distance in
Γ is 2.

The chromatic number χ(Γ) of a graph Γ is the smallest number of colors needed to
color the vertices of Γ in such a way that no two neighboring vertices have the same colors.
Moreover, the chromatic number χ(p, Γ) associated with the distance p in the graph Γ [46] is
the minimum number of colors that are sufficient to color the vertices of Γ in such a way
that any two vertices of Γ located at a distance not greater than p have different colors;
χ(1, Γ) := χ(Γ).

The following lemma (see [46], p. 422) plays a crucial role in reducing the original
problem of coloring the graph QG to a simpler problem of coloring its square (QG)2.

Lemma 1. Let Γp (p ∈ N) be the the p-th power of a simple graph Γ. Then, χ(p, Γ) ≡ χ(Γp).

Before using Lemma 1 in our target case for Γ = QG and p = 2, we still need to prove
one more technical lemma.

Lemma 2. Let H = QG be the quadrangulation of a 4-regular graph G that has a proper 4-coloring
ρ such that every vertex of any color is adjacent to exactly one vertex of each of the other three colors



Axioms 2024, 13, 72 10 of 16

(but not of the same color). Then, ρ is exactly a proper 4-coloring such that no pair of vertices at a
distance of ≤ 2 from each other is colored with the same color.

Proof. By the conditions of Lemma 2, no vertex satisfying the coloring ρ can have two
adjacent vertices of the same color. Or, equivalently, ρ does not allow any two vertices of
the same color in H to have a common neighbor, and hence be at a distance of 2. Since
the distance 1 is initially invalid by the definition of a proper coloring, we arrive at a
complete proof.

In the course of the previous discussion, we considered some connections between the
chosen graph-theoretic, spectral and chromatic, properties of vertex quadrangulations QG
of 4-regular graphs G. In some cases, some of these properties mutually entail each other,
while in others they are only one-sided consequences. We will try to partially reflect what
has been said by the following generalizing theorem.

Theorem 3. Let (QG)2 be the square of a consistent vertex quadrangulation QG of a 4-regular
graph G ∈ G. Then, the following statements are equivalent:

(a) χ(2, QG) ≡ χ[(QG)2] = 4;
(b) QG admits its proper 4-coloring ρ such that every vertex of any color is adjacent to exactly

one vertex of each of the other three colors (but not of the same color), where exactly a quarter
of the vertices of QG is colored in each of the colors;

(c) QG has a divisor D = K4. Furthermore, these statements imply:
(d) The spectrum QG includes the full spectrum {3, (−1)3} of the complete graph K4 if QG,

or the full spectrum {3, 13, (−1)3,−3} of the cube if QG is bipartite (but in the general case,
such subspectra can also exist for QG with χ(2, QG) = χ[(QG)2] > 4);

(e) QG has polychromatic 4-coloring;
(f) The adjacency matrix A(QG) of the graph QG can be reduced by a simultaneous permutation

of rows and columns to a 4 × 4 block form, where each nondiagonal (nonzero) block is an
n × n permutation matrix (having exactly one 1 in each row and column).

Proof. The 4-coloring we are interested in is the coloring due to the conditions of Lemma 2.
Such a coloring exists if and only if χ(2, QG) = 4. By Lemma 1, χ(2, QG) = χ[(QG)2],
which proves (a) ⇔ (b), wherein the fact that exactly a quarter of the vertices of QG is
colored with each of the colors is proved in Corollary 2. Moreover, from Corollary 2, we
obtain (b) ⇔ (c). Using the transitivity of equivalences, we also obtain (a) ⇔ (c). Item
(d) follows from Theorem 2 or item (c) of Theorem 3; (e) follows from Proposition 1;
(f) follows from the definition of equitable partition of vertices in QG and points (b) and (c)
of Theorem 3. This completes the proof.

Recall the graphs depicted in Figure 2. The spectrum of Υ1 = (QO)1 contains the
full spectrum of the complete graph K4, while the second graph Υ2 = (QO)2 does not.
Calculations using SageMath show that the squares Υ2

1 and Υ2
2 of both graphs have the

chromatic number χ = 5. This, due to the failure of item (a) of Theorem 3, clearly indicates
that both graphs Υ1 and Υ2 do not have a divisor D = K4, which is indeed the case.

The vertices of the vertex quadrangulation QG satisfying Theorem 3 can be numbered
in such a way that all vertices of the same color (out of four) are numbered consecutively.
Then, point (f) of Theorem 3 allows us to represent the adjacency matrix of such a graph as:

A(QG) =


O A12 A13 A14

A21 O A23 A24
A31 A32 O A34
A41 A42 A43 O

, (2)

where O is an n × n all-zero block, while each block Ajk = [Akj]
⊤ (j, k = 1, 2, 3, 4) is an n × n

permutation matrix.
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It is right to ask a question: is an arbitrary adjacency matrix of a graph, which has
the block form of the R.H.S. of (2), always the adjacency matrix of a simple graph QG?
The answer turns out to be negative. As an example, we studied adjacency matrices in
which all blocks Ajk are pairwise commuting; and it turned out that the graphs represented
by such matrices are, in general, disconnected. Moreover, we generally do not know
whether a connected graph with such an adjacency matrix is always a vertex quadran-
gulation QG, and not something else. Because of this uncertainty, we a priori admit that
even such connected graphs may not be vertex quadrangulations. Thus, there exists the
following problem.

Problem 1. Which set of blocks (permutation matrices) Ajk on R.H.S. of (2) will correspond to the
adjacency matrix A(QG) of a connected vertex quadrangulation QG satisfying Theorem 3?

Despite the general situation, we would like to note that the matrices of a commutative
cyclic group Cs (s odd) of matrices can be used as off-diagonal blocks Ajk on the R.H.S. of
(2) and form the adjacency matrix of a vertex-quadrangulated graph QG. Consider an
example of a 20 × 20 adjacency matrix, which can presumably be the adjacency matrix of a
quadrangulation QK5 of the minimum 4-regular simple graph K5. The group C5 related to
this case consists of the matrices:

π0 =

[ 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
, π1 =

[ 0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

]
, π2 =

[ 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

]
, π3 =

[ 0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]
, π4 =

[ 0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

]
. (3)

Let the off-diagonal blocks on the R.H.S. of (2) be chosen as: A12 = A21 = A34 =
A43 = π0; A13 = A42 = π1; A14 = A32 = π2; A23 = A41 = π3; A24 = A31 = π4.

This gives us the following matrix:

B =



0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0



. (4)

The matrix B actually turns out to be the adjacency matrix A(QK5) (of one of the
versions) of the vertex quadrangulation of the complete graph K5 (see Figure 4). This
version of the graph QK5 illustrates one of the possible (matrix) ways of constructing QG
graphs with divisor D = K4. The subsequent cyclic groups Cs (s ≥ 7, odd) of matrices can
be used in a similar way to construct other such QG graphs on 4s vertices.
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Figure 4. A vertex quadrangulation QK5 of the complete graph K5. [Used SageMath].

Note that QK5 has chromatic number χ(QK5) = 3 and its square (QK5)
2 has chro-

matic number χ[(QK5)
2] = 4, and the corresponding 4-coloring is unique up to the

choice of colors. The corresponding chromatic indices of these graphs are χ′(QK5) = 3
and χ′[(QK5)

2] = 8. An example of the specified coloring of the vertices of the graph
QK5 in Figure 4 is the one where vertices 1, 2, 3, 4, 5 are colored green; 6, 7, 8, 9, 10 red;
11, 12, 13, 14, 15 yellow; and the vertices 16, 17, 18, 19, 20 are colored blue. A coloring of
this type can be easily obtained by first coloring the vertices of one quadrilateral in four
different colors, and then, taking into account the conditions for the proper coloring of
the vertices in the graph (QK5)

2, color all other vertices, gradually moving from colored
vertices to adjacent ones. Luckily, as simple as it sounds in words, such an algorithm
guarantees a consistent coloring of QK5 without a conflict of the chosen colors.

One feature of the vertex coloring in our example is the stable pairs of colors used to
color the diagonal vertices of all quadrilaterals in the graph QK5. This is a pair of green
and red for the vertices of one diagonal, and a pair of yellow and blue for the vertices
of the other diagonal. Accordingly, when two quadrilaterals are connected by an edge,
the vertices at the ends of this edge are colored in one pair of diagonal colors, these are
also red and green or yellow and blue. That is, all adjacent quadrilaterals are in contact
only with their identically 2-colored diagonals, while the corresponding two colors in each
garland Gp of concatenated quadrangles in QK5 alternate along a garland circle. Taking
into account all eight operations of the D4 symmetry group of a regular quadrilateral, there
are in total three different colorings of its vertices in four colors. Thus, in a proper coloring
of the graph QK5 in four colors consistent with the graph (QG)2, only one of the three
types of coloring of all quadrilaterals can be realized. Using the conditions for coloring the
square (QK5)

2 of the graph QK5, we conclude that in order for a 4-colored graph QK5 to have
a divisor D = K4, it is necessary that all quadrilaterals in it be colored the same way.

The chromatic polynomial of the graph (QK5)
2 (calculated using SageMath) is:

x20 − 80x19 + 3080x18 − 75850x17 + 1339275x16 − 18007866x15 + 191104230x14−
1636570015x13 + 11463802105x12 − 66163172080x11 + 315342070205x10−
1238368915430x9 + 3979890644205x8 − 10343538772130x7 + 21343470596497x6− (5)

34021230739129x5 + 40183582717075x4 − 32886248746730x3 + 16496314221619x2−
3773051498982x.
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For the number of colorings in four colors (x = 4) this gives 24, which in turn, taking
into account 24 possible permutations of colors, corresponds to the only possible way of
coloring up to the choice of colors (made when coloring the vertices of the first quadrangle).

At the very beginning, we already noted that, in the case of a nonbipartite vertex
quadrangulation QG of a simple graph G, this can be a graph that either has a divisor
D = K4 or does not. Moreover, in the latter case, the spectrum of the graph QG may not
even contain the full spectrum {3, (−1)3} of the complete graph K4 (recall the right graph
(QO)2 in Figure 2). In the case of bipartite graphs QG, however, no definite assertion has
yet been made. Here, we should note that such bipartite graphs QG include all graphs of
truncated 4-regular (before truncation) polyhedra; an example is the left variant (QO)1 of
the vertex quadrangulation of the graph O of the octahedron in Figure 2. In the case of
QG bipartite graphs, the original 4-regular graphs (of polyhedra or any other) need not be
bipartite themselves.

Since not every graph is a planar graph of a convex polyhedron, we need to remember
that any graph can be embedded (drawn), not necessarily uniquely, in some surface of
minimum genus g (or some greater genus). A surface and a graph laying on it can be
represented in such a way that this surface is divided into (drawn) faces belonging to
some complex (nonconvex) polyhedron. Further, we can mentally create tubercles at the
locations of the vertices of the polyhedron; after that, it is easy to imagine what will happen
as a result of truncating all the corners obtained. What we get is a generalization of the
truncation of an ordinary convex polyhedron. In the case when we truncate the vertices of
the 4-regular graph G of the polytope, this gives us the vertex quadrangulation QG of the
original 4-regular graph G (see above). One feature of such a graph QG is reflected in the
following lemma:

Lemma 3. Let G be a 4-regular simple graph embedded in the surface s and let QG be the vertex
quadrangulation of the graph G obtained by truncating of the vertices of G on s. Then, all the faces
of QG drawn on the same surface s that the graph G was drawn are cycles of even length.

Proof. By definition of the vertex quadrangulation QG of G (see Figure 1), to each vertex
of G corresponds a cycle of an even length 4. Each other facial cycle f of the graph QG
corresponds to the facial cycle of the original graph G; the cycle f of a face in QG is formed
by an alternating sequence of edges, where one edge belonging to the quadrangle alternates
with an edge that belonged to the cycle G (before the quadrangulation), and vice versa.
Thus, each facial cycle is indeed a cycle of an even length.

Corollary 3. Let G be a 4-regular simple bipartite graph embedded in the surface s and let QG be
the vertex quadrangulation of the graph G obtained by truncating of the vertices of G on s. Then,
QG is a bipartite graph, and all the faces of QG drawn on the same surface s that the graph Gwas
drawn are cycles of doubly even lengths 4s (s ∈ N+).

Let us now turn our attention once again to other possibilities for decorating graphs.
In our work (see also [24]), we have so far used vertex quadrangulation, but it is also
possible, instead of vertices, to replace each edge with a quadrilateral, whereby each vertex
u of an original graph H is replaced by a cycle of length 2d (where d is a degree of u). In so
doing, two nonadjacent edges of each quadrilateral are elongated, as is usually done for
edges (after all, they replace edges), and two other nonadjacent edges are identified with
edges of connected cycles (or, in the general case, a looplike attachment of a quadrilateral
to one cycle is allowed). This decoration is called the band decomposition of the original
graph, which thus results in a ribbon graph. In a strict topological definition, this sounds as
follows. In a ribbon graph [47,48] representation, each vertex of a graph is represented by a
topological disk, and each edge is represented by a topological rectangle with two opposite
ends glued to the edges of vertex disks (possibly to the same disk as each other).

From a simple comparison of the set of all cubic graphs obtained by the vertex quad-
rangulation of 4-regular simple graphs and the set of all graphs obtained by band decompo-
sition of any simple graphs, it is clear that both sets consist of the same graphs. Indeed, any
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graph from either of the two sets is the union H1 ∪ H2 of edge-disjoint spanning subgraphs
H1 and H2, where H1 has as components edges, and H2 quadrilaterals. Here, it is important
to note that the two decorating operations under consideration produce the same decorated
graph from two different simple graphs. That is, if QG ∼= BH, where BH is the band
decomposition of a graph H, then G ≇ H; as well as QG ≇ BG and QH ≇ BH.

In specific cases, each of the two methods of decorating graphs, band decomposition
or vertex quadrangulation, may have certain technical advantages over each other or
limitations in their use. In particular (in relation to our context), the first allows one to get the
ribbon graph from any simple graph, but the second can only be applied to 4-regular graphs.
Also, the image of the corresponding graph in the form of a ribbon graph with long closely
spaced parallel lines in the picture can be convenient when considering nanobiotechnology
problems, when two such paired lines represent two complementary DNA strands. On the
other hand, vertex quadrangulation, in principle, can be done with an arbitrary subset of
vertices of valency 4 in the graph (which can also be useful in nanobiotechnology); but the
concept of partial band decomposition so far still looks ambiguous.

In this work, we have not yet paid attention to eigenvectors, but we want to make
some brief remarks here that may be useful in a wider context. Let v = (c1, c2, . . . , cn) be
the eigenvector of the adjacency matrix A of an arbitrary simple graph H for the eigenvalue
λ, which implies the equality:

Av = λv. (6)

Also, let N[u] denote the set containing an arbitrary vertex u and all vertices adjacent
to it in H; below, we will identify vertices from N[u] with the numbers assigned to these
vertices in H. In the case of the eigenvalue (−1), which is of particular interest in our work,
(6) leads to an equality for the eigenvector coefficients for the eigenvalue λ = −1:

∑
j∈N[u]

cj = 0 (u ∈ {1, 2, . . . , n}), (7)

where the sum runs over all the coefficients of the vector v associated with the vertices from
the set N[u]. (We do not give a proof for (7), since this follows simply from the definition
of the matrix-by-vector product.)

At the last stage of preparing this text, we learned from the literature that the full spec-
trum of the tetrahedron graph is always contained in the spectrum of any (3, 6)-cage (which
is the cubic graph of a simple polyhedron that has only 3-gons and 6-gons as its faces);
see p. 159 in [22] and Theorem 1.1 in [23]. Moreover, the following sequence of spectra
embeddings takes place: Spec(C) ⊂ Spec(LC) ⊂ Spec(L2C), where C denotes a (3, 6)-cage
graph, LC is its leapfrog transformation, and L2C is the double (sequential) leapfrog of
C [22] (p. 160). Thus, both Spec(LC) and Spec(L2C) also contain the full spectrum of the
tetrahedron graph (complete graph K4).

In conclusion, it is worth adding that the connection between the eigenvalue (−1) (of
multiplicity ≥1) and various structural features of arbitrary simple graphs was studied
in [19,21,24–26]. In the case of a bipartite graph, one can equivalently talk about the relation
of the eigenvalue (+1) [26,27] to the same structural features of the graph. Additional
examples can be found in the books by Cvetković et al. [30] and Cvetković et al. [49].

The spectral properties of vertex quadrangulations QG of 4-regular graphs G consid-
ered by us and some possible applications of the obtained results (see also [24]) are not the
last stage in the study of such graphs with divisor D = K4. Research is ongoing.
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19. Došlić, T.; Taheri-Dehkordi, M.; Fath-Tabar, G.H. Packing stars in fullerenes. J. Math. Chem. 2020, 58, 2223–2244. [CrossRef]
20. Levit, V.E.; Mandrescu, E. The independence polynomial of a graph—A survey. In Proceedings of the 1st International Conference

on Algebraic Informatics, Thessaloniki, Greece, 20–23 October 2005; pp. 231–252.
21. Dias, J.R. Structural origin of specific eigenvalues in chemical graphs of planar molecules. Molecular orbital functional groups.

Mol. Phys. 1995, 85, 1043–1060. [CrossRef]
22. Fowler, P.W.; John, P.E.; Sachs, H. (3, 6)-Cages, hexagonal toroidal cages, and their spectra. In Proceedings of the Dimacs

Workshop on Discrete Mathematical Chemistry, New Brunswick, NJ, USA, 23–24 March 1998; In DIMACS Series in Discrete
Mathematics and Theoretical Computer Science Volume 51; Hansen, P., Fowler, P., Zheng, M., Eds.; American Mathematical
Society: Providence, RI, USA, 2000; pp. 139–174.

23. DeVos, M.; Goddyn, L.; Mohar, B.; Šámal, R. Cayley sum graphs and eigenvalues of (3, 6)-fullerenes. J. Combin. Theory B 2009,
99, 358–369. [CrossRef]

24. Rosenfeld, V.R. The spectrum of the vertex quadrangulation of a 4-regular toroidal graph and beyond. J. Math. Chem. 2021,
59, 1551–1561. [CrossRef]

25. Rosenfeld, V.R. Covering automorphisms and some eigenvalues of a graph. Discret. Appl. Math. 2023, 331, 25–30. [CrossRef]
26. Dias, J.R. Algebraic method for solving multiple degenerate eigenvalues in [r]triangulenes. ACS Omega 2023, 8, 18332–18338.

[CrossRef]
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