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Abstract: The deterministic SIR model for disease spread in a closed population is extended to allow
infected individuals to recover to the susceptible state. This extension preserves the second constant of
motion, i.e., a functional relationship of susceptible and removed numbers, S(t) and R(t), respectively.
This feature allows a substantially complete elucidation of qualitative properties. The model exhibits
three modes of behaviour classified in terms of the sign of −S′(0), the initial value of the epidemic
curve. Model behaviour is similar to that of the SIS model if S′(0) > 0 and to the SIR model
if S′(0) < 0. The separating case is completely soluble and S(t) is constant-valued. Long-term
outcomes are determined for all cases, together with determination of the rate of convergence.
Determining the shape of the epidemic curve motivates an investigation of curvature properties of all
three state functions and quite complete results are obtained that are new, even for the SIR model.
Finally, the second threshold theorem for the SIR model is extended in refined and generalised forms.
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1. Introduction

The very well known general or SIR model of the spread of a disease in a large
population lends itself to a fairly complete qualitative understanding owing to the fact
that its fundamental system of three differential equations (DEs) possess two constants of
motion. See [1] or [2] for accounts of this topic. The first of these is common to very many
models: the size of the population is constant in time. The second constant of motion occurs
because the time variable can be eliminated between the DEs for the number of susceptible
and removed individuals, S(t) and R(t), respectively, to give a functional relation between
them that holds along each system trajectory.

Recall that the SIR model describes progression of susceptible individuals to possible
infection and then ultimate removal with no chance of infecting any in the susceptible
subpopulation. The mathematically simpler SIS model ([1,2]) allows for recovery of infected
individuals back to full susceptibility. These models are frequently named, respectively, the
general and the simple epidemic. In this paper, we consider an extension that interpolates
between these models. This extension allows for infected individuals, I(t) in number, to
either be removed at rate γ or to recover with immediate susceptibility at rate ρ. We assume
that γ + ρ > 0. The immediacy of recovery to a susceptible state can, perhaps, be justified
on the assumption that any period of immunity is so brief as to be negligible in comparison
with typical periods of infectiousness and susceptibility and that final states are essentially
achieved by times that are short relative to demographic changes.

So, assuming infection occurs from homogeneous mixing of infected and susceptible
individuals with rate β > 0, the governing DEs are

S′(t) = −βS(t)I(t) + ρI(t), (1)

I′(t) = βS(t)I(t)− γI(t)− ρI(t), (2)
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and
R′(t) = γI(t). (3)

Initial values are denoted by S0 > 0, I0 > 0 and R0 = 0. Thus, if all rate param-
eters are positive, transitions between compartments occur as for the SIR model with
an additional flux of individuals at rate ρ from the infected compartment back to the
susceptible compartment.

This model could be denoted by SIR∨S, pronounced ‘serves’, and this is, to the author’s
knowledge, due to Mulkern and Nosrati [3] (whose notation for the parameters differs).
They pursue the analytic consequences of the system equations to the extent of noting
the second constant of motion (with a minor error) and illustrate its behaviour with some
numerical calculation and graphical displays. The aim of this paper is to derive as far as is
possible the analytical consequences of the above system.

Before describing the structure of the paper, we recall the so-called first threshold
theorem for the SIR model. It is known for this model that limt→0 I(t) = 0 and I(t) either
decreases or initially increases and then decreases. These modes are taken to represent,
respectively, a minor or major epidemic. Their occurrence is determined by the sign of
the initial rate of infection, I′(0), specifically I′(0) > 0 for a major epidemic. These initial
conditions are characterised by the first threshold theorem asserting the obvious conclusion
from (2) that I′(0) > 0 iff S0 > γ/β. The lower bound is called the relative removal rate
and it is the threshold that separates a minor/major outbreak. The threshold criterion
is usually expressed in terms of the basic reproduction ratio R0 = βS0/γ, i.e., a major
outbreak occurs iff R0 > 1.

The basic reproduction ratio is similarly defined for other epidemic models in terms
of the sign of I′(0), and for the SIR∨S model it is clear from (2) that

R0 =
βS0

γ + ρ
. (4)

Restricted to the SIS or SIR models, R0 can be interpreted as the average number
of secondary infections caused by introducing a single infective into a large susceptible
population. This extends to the SIR∨S model, as follows. The number of infections, It,
by time, t, caused by a single infective arriving at t = 0 equals N (βS0t), where N (·) is
a unit-rate Poisson process. The duration, T, of infectivity is modelled as a competing
risks situation, i.e., T = min(ϵγ, ϵρ), where ϵγ and ϵρ are independent random variables
having exponential distributions with parameters γ and ρ and they are independent of
N (·). Hence, T has an exponential distribution with parameter γ + ρ. It thus follows that

E(IT) = E[N (βS0T)] = βS0E(T) =
βS0

γ + ρ
.

Many of the formulae derived for the SIR∨S model have γ > 0 appearing as a
denominator. Hence, the results for the SIS model cannot simply be read off from the general
results established in Sections 3–6. In addition, if γ > 0, then the fundamental property of
the SIR model that I(t) → 0 subsists for the SIR∨S model (Lemma 1), whereas the SIS model
admits an endemic level of infection under some circumstances. Consequently, we begin in
Section 2 by recalling (mostly) known facts about the SIS model. In addition to behaviour
determined by the sign of R0 − 1, where R0 = βS0/ρ, there are curvature behaviours of
I(t) that qualitatively differ according to the sign of the difference δ := βN − ρ.

In Sections 3–6, we assume that γ, ρ > 0, the full SIR∨S model, and derive (in Section 3)
the second constant of motion, a functional relation between S(t) and R(t), and its con-
sequence for the limiting values S∞ and R∞ of susceptible and removed numbers. This
reveals three cases (denoted 1, 2 and 3, respectively) according as βS0 > ρ, = ρ or < ρ,
where S0 = S(0). It is clear from (1) that these cases correspond, respectively, to S′(0) < 0,
S′(0) = 0 and S′(0) > 0. All three of these can occur for the SIS model and only the first is
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possible for the SIR model. Case 2 is a degenerate case having a complete elementary
solution. We also establish the existence of the long-term limits.

We show in Section 4 that the three state functions converge exponentially quickly to
their limiting values, with a common time constant, τ, that depends on the three parameters
and the final number S∞ of susceptibles.

In Section 5, we examine the curvature properties of the state functions. To appreciate
why, recall that the epidemic curve is defined as the production rate of new infectives,
−S′(t). Thus, the maximum c∗ of the epidemic curve will occur in (0, ∞) iff S(t) has an
infection point therein (Theorem 5 and Lemma 5). This invites a more thorough investiga-
tion of second-order properties. Observe too that, e.g., S′′(t) measures the instantaneous
acceleration of susceptible numbers. In particular, the speeding up, or slowing down, of
the state functions corresponds to regions of their convexity, or concavity. Inflection points
delineate, e.g., transition times from acceleration to deceleration. Much of this is new, even
for the SIR model. Case 3 exhibits the simplest behaviour—there are no inflection points
and, quite unlike the SIR model, S(t) is increasing. Case 1 shares behaviour with the SIR
model: S(t) decreases and both it and R(t) have at most one inflection and I(t) has one or
two inflections.

The second threshold theorem for the SIR model is an assertion of the final size, R∞
(i.e., total number of removed infected individuals), in the case that S0 is just a little larger
than the threshold, γ/β. More precisely, if S0 = γ/β + ϵ, where 0 < ϵ ≪ 1, and if I0 ≪ ϵ2,
then R∞ ≈ 2ϵ. Equivalently, S∞ ≈ γ/β − ϵ, i.e., final susceptible numbers end as far below
the threshold as they began above it. See [1,2]. This fundamental result, going back to the
pioneering work of Kermack and McKendrick, is usually derived by using a Maclaurin
expansion of the exponential function occurring in the functional equation relating S∞ and
R∞. See, e.g., p. 84 in [1] (where the constraint on I0 is stated a little obscurely—see the
equation just after (6.9)) or p. 28 in [2] (an imprecise assertion in that I0 is specified as being
‘small relative to ϵ’) and the proof on pp. 30, 31 where the assumption is I0 ≪ ϵ2.

In Theorem 8, we follow this mode of proof for the SIR∨S model with the precise
specification that I0 = cϵ2, where 0 ≤ c < ∞. The consequences of the general outcome
show that the general form of the second threshold theorem subsists for the SIR∨S model,
even if c > 0. If c = 0, then the above outcome for the SIR model is unchanged, i.e., the
parameter ρ is absent from the first-order of approximation. Lemma 6 asserts a consequence
of the proof of Theorem 9 in which we allow a larger initial number of infectives: I0 ∼
Cϵ1+ω, where ω ∈ [0, 1). Finally, by using a branch-point expansion of the Lambert
function we extend, in Theorem 9, the approximation (34) by estimating the quadratic and
cubic components of the O(ϵ2) term.

A concluding section ends the paper. The following derived constants frequently
occur:

α = β/γ and a = ρ/γ. (5)

The first of these is the reciprocal of the more commonly occurring relative removal rate.

2. The SIS Model

If γ = 0, then R0 = βS0/ρ and the DE (2) reduces to a logistic DE because in that case
S(t) + I(t) ≡ N. Defining δ = βN − ρ, its solution is

I(t) =


I0eδt

1+(I0β/δ)(eδt−1)
> 0 if δ ̸= 0,

I0
1+βt if δ = 0.

As is well known and clear from these expressions,

lim
t→∞

I(t) =

{
I∞ = N − ρ/β if δ > 0,

0 if δ ≤ 0.
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However, the finer aspects of I(t) (and S(t)) also depend on cases analogous to 1–3
specified above.

We observe first that if δ ≤ 0 (implying R0 < 1), then it is easy to check that I(t) is
convex-decreasing to zero, and hence S(t) is concave-increasing to N.

The case δ > 0 exhibits richer behaviour, as follows (but omitting algebraic detail).
Clearly, R0 = βS0/ρ > 1 implies that δ > 0 and that this latter can hold if R0 ≤ 1. The
above limit result for infective numbers takes the monotone form: As t ↑ ∞,

I(t)


↓ I∞ if I0 > I∞, i.e., R0 < 1;

≡ I∞ if I0 = I∞, i.e., R0 = 1;

↑ I∞ if I0 < I∞, i.e., R0 > 1.

Differentiation will show (for all possible values of δ) that I′′(t) has the same sign as
the product

(I∞ − I0)×
(

I∞ − I0 − I0eδt
)

. (6)

Hence, if δ > 0 and R0 < 1, i.e., I0 > I∞, then I(t) is convex-decreasing to I∞.
If R0 > 1, then the second factor in (6) decreases from I∞ − 2I0 to −∞. Hence, if

2I0 < I∞, equivalently,
R0 > 1 + βI0/ρ, (7)

then this second factor has a unique zero ti ∈ (0, ∞). We thus conclude: If 1 < R0 ≤
1 + βI0/ρ then I(t) is concave-increasing, and if (7) holds then there is a time of inflection,

ti = δ−1 log
R0 − 1
βI0/ρ

> 0,

such that

I(t) is

{
convex − increasing in (0, ti),

concave − increasing in (ti, ∞).

These results give a precise expression to the idea that the infection initially accelerates
if R0 is sufficiently larger than unity before necessarily slowing as it approaches its endemic
level, I∞. Recalling the interpretation of R0 as the initial relative per-capita rate of increase
of infectives, the dual quantity R̂0 = βI0/ρ is the initial per-capita relative rate of increase
of recoveries. Hence, we have a threshold result for the SIS model asserting that I(t) is
initially convex-increasing iff R0 − R̂0 > 1.

3. The Second Constant of Motion

We assume in the sequel that γ > 0 and ρ ≥ 0. Observe that, exactly as for the SIR
model, R′(t) > 0 for all t and hence R(t) ↑ R∞, say, and R∞ ≤ N. Next, dividing (3) into
(1) yields

dS
dR

= − βS − ρ

γ
, (8)

whose solution for t > t′ > 0 is

log
∣∣∣∣ βS(t)− ρ

βS(t′)− ρ

∣∣∣∣ = − β

γ

(
R(t)− R(t′)

)
.

This is valid for all parameter combinations because (3) implies that R(t) is strictly
increasing and hence the argument of the logarithm function must be less than unity.
Assuming that R(0+) = 0, then letting t′ → 0 and exponentiating the result we obtain for
t ≥ 0 that

|βS(t)− ρ| = |βS0 − ρ|e−(β/γ)(R(t). (9)
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It follows that the sign of βS(t)− ρ is the same as the sign of βS0 − ρ, i.e., the sign of
−S′(0). This invariance distinguishes three cases.

Case 1: βS0 > ρ ≥ 0. Here, susceptibles are initially being infected at a faster rate than they
are recovering. Recalling (5), the solution (9) becomes

βS(t) = ρ + (βS0 − ρ)e−αR(t). (10)

It is clear that susceptible numbers preserve the classical SIR behaviour: S(t) ↓ S∞,
say, as t ↑ ∞. Setting ρ = 0 yields the long-known relation for the SIR model.

Case 2: βS0 = ρ. In this case, we have the degenerate outcome that βS(t) ≡ ρ because,
independently of the value of γ, the rate of infection is exactly balanced by the rate
of recovery to the susceptible state. It then follows that (2) reduces to I′ = −ρI,
whence

I(t) = I0e−γt

and (3) yields
R(t) = I0

(
1 − e−γt).

Hence, infected numbers decrease convexly to zero and the final size of the epidemic
is R∞ = I0.

Case 3: βS0 < ρ, implying that ρ > 0. Here, (7) subsists with the result that S(t) ↑ S∞ as
t ↑ ∞.

We observe in passing that (25) in [3] is a rearrangement of (10), with a minor error
in that the first occurrence of γ2 on their right-hand side should be γ1. Observe too that it
is not obvious what should result from (10) if γ → 0 because then α → ∞ and, of course,
R(t) ≡ 0 in the actual limit value γ = 0 described in Section 2.

We wish to let t → ∞ in (10). As previously remarked, R∞ = limt→∞ R(t) exists
and hence so does I∞ = limt→∞ I(t). The following fundamental result generalises the
well-known, long-term outcome for the SIR model.

Lemma 1. If γ > 0, then the limit I∞ = 0.

Proof. If I∞ > 0, it follows from (3) that there exists t′ > 0 such that R′(t) > 1
2 I∞ if t > t′.

This implies that R(t) ↑ ∞, a clear contradiction.

This result shows that even the slightest degree of removal prevents an endemic
level of infection. In particular, S∞ + R∞ = N, so taking the limit in (10) yields the
functional equation

βS∞ − ρ = (βS0 − ρ)e−α(N−S∞). (11)

Defining x = S∞ − ρ/β and x0 = S0 − ρ/β, and recalling (5), identity (11) can be
recast as

−αxe−αx = −αx0ea−αN .

This functional equation has the form attributed (incorrectly) to J. Lambert, and we
write its solution as

βS∞ − ρ = −γW
(
−(αS0 − a)ea−αN

)
, (12)

where W(·) denotes the principal branch of the Lambert W-function [4]. This is the appro-
priate choice because, if not, then the left-hand side would be an unbounded function of
the argument of W(·). See [5] for the version with ρ = 0 and the references there.

Observe that we can let γ → 0 in (11) because α → ∞, which yields S∞ → ρ/β,
agreeing with the analytical outcome for the SIS model. The explicit solution (12) is also
consistent in this regard. To see this, observe for the SIS case that ρ < βN, implying that
the argument of W(·) tends to zero as γ → 0. In fact, we have the approximation

S∞ = ρ/β + (βS0 − ρ)e−(ρ−βN)/γ(1 + o(1)),
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as γ → 0.
Another consequence of (12) is that

S∞

{
> ρ/β in Case 1,

< ρ/β in Case 3.

4. The Rate of Convergence

We begin with a lemma that introduces the convergence exponent, which we denote
by τ.

Lemma 2. The function I(t) is log-concave in Case 1 and it is log-convex (hence convex) in Case 3.
In addition, the following limit exists:

τ := − lim
t→∞

I′(t)/I(t) = −(βS∞ − γ − ρ).

Proof. Simply observe from (2) that

d2

dt2 log I(t) = βS′(t)

and recall implications from Section 3.

Next, we establish that τ > 0.

Lemma 3. In all cases τ > 0, equivalently,

βS∞

γ + ρ
< 1.

Proof. For Cases 2 and 3, it follows from (11) that βS∞ − ρ ≤ 0 and hence that τ =
γ − (βS∞ − ρ) > 0. Assume now that Case 1 holds and recast (12) as

βS∞ − ρ + γW
(
−(αS0 − a)ea−αN

)
= 0.

The argument of the Lambert function is negative, and hence W(·) ≥ −1, implying
that 0 ≥ βS∞ − ρ − γ, i.e., τ ≥ 0. This inequality is strict provided that the positive-valued
term T = (αS0 − a)ea−αN < e−1, but S0 < N and hence T < (αN − a)e−(αN−a) ≤ e−1.

In what follows, we need only, and will, consider Cases 1 and 3. It follows from (10)
and its limiting form that

β(St − S∞) = (βS0 − ρ)
(

e−αR(t) − e−αR∞
)

= (βS0 − ρ)e−αR∞
(

e−α(R(t)−R∞) − 1
)

= (βS∞ − ρ)(−α(R(t)− R∞)(1 + o(1)),

i.e.,
S(t)− S∞ ∼ A(R∞ − R(t),

where
0 ̸= A =

βS∞ − ρ

γ
= 1 − τ/γ < 1.

Hence, S(t) and R(t) approach their limits at the same rate. In addition,

I(t) = N − S(t)− R(t) ∼ (1 − A)(R∞ − R(t)). (13)
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Hence, the state variables approach their limits at the same rate and hence it suffices
to determine how quickly I(t) → 0.

Theorem 1. If γ > 0, then
0 < lim

t→∞
eτt I(t) < ∞.

Proof. Let ℓ(t) = eτt I(t) and observe from Lemma 2 that

ℓ′(t) = τℓ(t) + I′(t)eτt = ε(t)ℓ(t),

where
ε(t) = τ + I′(t)/I(t) → 0 (14)

as t → ∞.
We infer from the monotone nature of S(t) and (2) that I(t) has at most one critical

point in (0, t), and if such exists then it must be at a global maximum. Hence, there exists
t′ > Argmax(I(t)) such that I′(t) < 0 if t > t′. The first equality in (14) is a differential
equation whose solution is

I(t) = ℓ(t′) exp
[
−τt +

∫ t

t′
ε(v)dv

]
. (15)

It follows from Lemma 2 and (2) that

ε(t) = β(S(t)− S∞) ∼ const.I(t), (t → ∞).

Next, it follows from (3) that
∫ ∞

0 I(t)dt = R∞/γ < ∞ and hence that
∫ ∞

t′ |ε(t)|dt < ∞.
The assertion now follows from (15).

Approaching the convergence rate through I(t) seems to be the simplest route. To
appreciate this, we could begin by defining δ(t) = R∞ − R(t) and observe that (3) yields

δ′(t) = −γ(N − S(t)− R(t)) = −γ(S∞ − S(t) + R∞ − R(t)) ∼ −τδ(t),

where we have appealed to (13) and Lemma 3. The problem thus reduces to estimating
τ + δ′(t)/δ(t). This looks to be less straightforward than the above proof.

5. Shape Properties

We now investigate the convexity/concavity properties of the state functions, begin-
ning with the simplest case.

Theorem 2. Assume Case 3, βS0 < ρ. Then the functions S(t) and R(t) are concave-increasing
and I(t) is convex decreasing.

Proof. Knowing that S(t) ↑ S∞ in Case 3, it follows from the definition of τ and Lemma 3
that βS(t)− γ − ρ < 0 and hence that I′(t) < 0 for all t > 0. We conclude from (3) that
R′′(t) = γI′(t) < 0.

Next, twice differentiating (10) yields

−βS′′(t) = α
(
−R′′(t) + R′(t)

)
(ρ − βS(t)).

Each factor on the right-hand side is positive, and hence S′′(t) < 0. The convexity
assertion for I(t) is now obvious.
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We now turn to Case 1. Recall that this case can occur if R0 ≤ 1 and if R0 > 1. The
next result concerns the first of these possibilities. We define the constant

R =
a

1 + a
=

ρ

γ + ρ
< 1

Recalling the stochastic model of infection from Section 1, we observe that R = P(ϵρ < ϵγ),
the probability of recovery occurring before removal. In relation to parts (ii) and (iii) of the
next result, note that

R0 − R =
βS0 − ρ

γ + ρ
> 0.

The following theorem embraces all three state functions.

Theorem 3. Assume Case 1, βS0 > ρ, and that R0 ≤ 1. The following hold.
(i) I(t) is decreasing and it is ultimately convex-decreasing.
(ii) If

I0 ≤ S0
(1 −R0)

2

R0(R0 − R)
, (16)

then I(t) is convex-decreasing in (0, ∞).
(iii) If

I0 > S0
(1 −R0)

2

R0(R0 − R)
, (17)

then I(t) is concave–convex with a unique inflection point, ti, which solves

(R0S(t)− S0)
2 = R0 I(t)(R0S(t)− aS0). (18)

(iv) R(t) is concave-increasing and S(t) is convex-decreasing.

Proof. Observe first that, since S(t) is decreasing and R0 ≤ 1,

βS(t)− γ − ρ < βS0 − γ − ρ ≤ 0,

i.e., I′(t) < 0 for all t > 0. The concavity of R(t) follows because, from (3), R′′(t) = γI′(t) <
0. A double differentiation of (10) yields the identity

S′′(t) = (βS0 − ρ)e−αR(t)
(
−αR′′(t) + (αR′(t))2

)
> 0,

and (iv) follows.
We now consider I(t). Differentiating (1) and using (2) to eliminate first-order deriva-

tives on the right-hand side yields the identity

I′′(t) = I(t)
[
(βS(t)− γ − ρ)2 − βI(t)(βS(t)− ρ)

]
. (19)

The right-hand side is asymptotically equal to [βS∞ − γ − ρ]2 I(t) > 0, and Assertion
(i) follows.

It follows from (19) that I(t) is convex or concave within intervals determined by the
sign of the right-hand side of (19). In addition, such intervals are separated by points of
inflection that are solutions of (18), and this equation is obtained by dividing (19) by γ + ρ
and equating the result to zero. We now show that (18) has at most one solution. As a
function of t, the right-hand side of (18) is strictly decreasing to zero. So, its maximum
value occurs at t = 0.
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The derivative of the left-hand side is

R0S′(t)(R0S(t)− S0) =
R0S0S′(t)

γ + ρ
(βS(t)− γ − ρ).

However, S(t) is strictly decreasing for Case 1, hence S′(t) < 0. In addition, the second
factor on the right-hand side decreases from

βS0 − γ − ρ = (γ + ρ)(R0 − 1) ≤ 0.

Hence, S′(t)(R0S(t) − S0) > 0, i.e., the left-hand side of (19) increases from
S2

0(R0 − 1)2 up to (R0S∞ − S0)
2 > 0. It follows that (19) either has no solution in (0, ∞),

i.e., I′′(t) > 0, or it has exactly one solution in (0, ∞). The latter case holds if (17) holds. All
assertions now are evident.

It follows from Theorem 3 (iii) that, although infected numbers decrease, if I0 is
sufficiently large then this decrease is initially quite slow—a concave decrease—before
gathering speed and then slowing again. Observe that for the SIR model, ρ = 0, Case 1 is
the only possibility, and then, e.g., (17) takes the form

I0 > S0

(
R−1

0 − 1
)2

.

Hence, the concave–convex behaviour is achieved if R0 is sufficiently close to unity.
We now consider the case R0 > 1 (implying Case 1), i.e., I(t) is increasing for small t.

The next result extends a fundamental result for the SIR model.

Theorem 4. If R0 > 1, then the function I(t) has a unique maximum, Imax, at the point tm > 0,
a solution of βS(t) = γ + ρ, i.e.,

R(t) :=
βS(t)
γ + ρ

= 1. (20)

In addition, the maximum number of infectives is

Imax = N − S0

R0

(
1 +

log((1 + a)R0 − a)
1 + a

)
(21)

and
S(tm) = S0/R0.

Proof. It follows from (2) that I′(t) = 0 for any t solving (20). In addition, R(0) = R0 > 1
by hypothesis, and since S(t) ↓ S∞, it follows from Lemma 3 that R(t) ↓ βS∞/(γ + ρ) < 1.
Hence, (20) has a unique positive solution, tm. Evaluation (21) follows from Imax = N −
S(tm)− R(tm), (20), (10) and the definition of R0. The final assertion follows from (2).

Remark 1. Note the simplification of (21) for the SIR model where a = 0.

The recovered numbers Equation (3) implies that R′′(t) = γI′(t), resulting in the
following consequence.

Lemma 4. If R0 > 1, then the removed numbers function,

R(t) is

{
convex − increasing in (0, tm)

concave − increasing in (tm, ∞).

The susceptible numbers function behaves in a more complicated manner.
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Theorem 5. (a) If R0 > 1, then the function S(t) is:
(a.i) log-concave and decreasing in (0, tm), and
(a.ii) convex-decreasing in (tm, ∞).
(b) In addition:
(b.i) If

I0 ≥
(

1 −R−1
0

)
S0, (22)

then S(t) is convex-decreasing in (0, ∞); and
(b.ii) If

I0 <
(

1 −R−1
0

)
S0, (23)

then there is an inflection point tsi ∈ (0, tm), such that

S(t) is

{
concave − decreasing in(0, tsi),

convex − decreasing in (tsi, ∞).

Proof. Twice differentiating the logarithm of each side of (10) gives the identity

d2

dt2 log S(t) = −ϕ1(t)R′′(t)− ϕ2(t)
(

R′(t)
)2,

where the ϕi(t) are positive-valued functions in (0, ∞). Assertion (a.i) follows from
Lemma 4.

Twice differentiating (10) yields the identity

βS′′(t) = −α(βS0 − ρ)e−αR(t)B(t), where B(t) = R′′(t)− α
(

R′(t)
)2. (24)

Assertion (a.ii) follows again from Corollary 5.1.
Next, it follows from (2) and (3) that

B(t) = γI(t)[βS(t)− γ − ρ − βI(t)].

The right-hand side is decreasing in (0, tm). Moreover,

B(tm) = −βγI2(t) < 0,

implying by continuity and (24) that S(t) is convex-decreasing in an interval (t′′, ∞) where
0 ≤ t′′ < tm.

Now,
S
¯0 − γ − ρ − βI0 = (γ + ρ)(R0 − 1 −R0 I0/S0).

The right-hand side ≤ 0 if (22) holds, and hence B(t) < 0 in (0, tm) and Assertion (b.i)
follows.

If (23) holds, then B(0) < 0 and, since B(tm) < 0 and B(t) is decreasing, it follows that
there exists exactly one number tsi ∈ (0, tm) such that S′′(tsi) = 0, and (b.ii) follows.

It follows from Theorem 5 that the epidemic curve has its maximum at t = 0 if (22)
holds and the maximum is at tsi < tm if (23) holds. The values of c∗ := maxt≥0(−S′(t)) are
stated in our next result.

Lemma 5. If (22) holds, then

c∗ = −S′(0) = I0(βS0 − ρ),

and if (23) holds, then

c∗ = I(tsi)(βS(tsi)− ρ) = I(tsi)(γ − βI(tsi)).
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These outcomes make intuitive sense in as much as they imply that if I0/S0 is large
(which is unlikely) then susceptible numbers initially fall at maximum speed, whereas if
I0/S0 is less than the critical number 1 −R−1

0 then the epidemic begins more slowly and,
in terms of the loss of susceptibles, it gathers pace until the time tsi, after which it slows
down. Observe too that the condition B(tsi) = 0 is equivalent to

R(tsi) = N − S0/R0.

It then follows from (10) that

βS(tsi) = ρ + (βS0 − ρ)e−α(N−S0/R0)

and hence the second evaluation in Lemma 5 is made explicit because

I(tsi) = N − S(tsi)− R(tsi) = S0/R0 − S(tsi).

Next, still assuming R0 > 1, we look at the shape of the infective curve in the interval
(0, tm). Recall that the sign of I′′(t) is the same as the sign of

σ(t) := (βS(t)− γ − ρ)2 − βI(t)(βS(t)− ρ). (25)

Theorem 6. Assume that R0 > 1 and 0 ≤ t ≤ tm.
(i) If σ(0) ≤ 0, then I(t) is concave-increasing in (0, tm).
(ii) If σ(0) > 0, then there is a single point of inflection, tii ∈ (0, tm), such that

I(t) is

{
convex − increasing in (0, tii),

concave − increasing in (tii, tm).

Proof. The proof relies on determining how σ(t) behaves along the trajectory of S(t) in
(0, tm). We know from (8) that

dR
dS

= − γ

βS − ρ

and that the right-hand side < 0 in (0, ∞). Hence,

dI
dS

= −1 +
γ

βS − ρ
=

βS − γ − ρ

βS − ρ

and the right-hand side is positive for t ∈ (0, tm).
It follows from (25) that

dσ

dS
= β[3(βS − γ − ρ)− βI]. (26)

Differentiating again yields

d2σ

dS2 = β2
[

3 +
βS − γ − ρ

S − ρ

]
, (27)

which is positive for t ∈ [0, tm], i.e., σ(t) is convex in S(t) as t traverses [0, tm], but
σ(tm) = −β2 Imax < 0. Assertions (i) and (ii) follow. In particular, if σ(0) > 0, then
tii is the unique number in (0, tm) at which σ(t) vanishes.

Remark 2. We note that (dσ/dS)|t=tm = −β2 Imax < 0.

Remark 3. The condition (22) for S(t) to be convex-decreasing is equivalent to βI0 ≥ βS0 − γ− ρ.
Hence,

(βS0 − ρ)βI0 ≥ (βS0 − ρ)(βS0 − γ − ρ) > (βS0 − γ − ρ)2,
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implying that I(t) is concave-increasing in (0, tm).

Remark 4. Condition (23) implies that σ(tsi) < 0, i.e., I(t) is concave-increasing in a neighbour-
hood of tsi and hence tsi > tii.

Finally, consider the shape of I(t) in (tm, ∞). We have shown it is concave around tm
and ultimately convex-decreasing. Hence, there is at least one inflection point in (tm, ∞).
Recalling that βS(t) < γ + ρ if t > tm, it follows from (26) that dσ/dS < 0, i.e., that σ(t) is
increasing in (tm, ∞). In addition, it follows from (25) that σ(tm) < 0 and σ(∞−) = τ2 > 0.
Hence, σ(t) vanishes at exactly one point t′ii > tm. This yields our final shape result.

Theorem 7. If R0 > 1, then there exists a unique critical point t′ii ∈ (tm, ∞), such that

I(t) is

{
concave − decreasing in (tm, t′ii)

convex − decreasing in (t′ii, ∞).

6. Threshold Theorems

The following result extends the well-known ‘second’ threshold theorem (p. 84 in [1]
or p. 29 in [2]), which dates back to the pioneering work of Kermack and McKendrick
in the 1920s. Our version is expressed in a slightly more precise manner than in [2]. Let
r = (γ + ρ)/β, the relative rate of removal or recovery and recall notation (4).

Theorem 8. Let ϵ ∈ (0, 1),
S0 = r + ϵ (28)

(implying R0 = 1 + ϵ/r) and let I0 ∼ cϵ2 (ϵ → 0), where c ∈ [0, ∞) is a constant. Then the final
size R∞ satisfies

R∞ ∼ A(ϵ) :=
ϵ

1 + αϵ

[
1 +

√
1 + (2c/α)(1 + αϵ)

]
. (29)

Proof. Observe first that (28) is equivalent to

αS0 − a = 1 + αϵ. (30)

Dividing (11) by γ renders it as

αS∞ − a = α(S0 + I0 − R∞)− a = (1 + αϵ)e−αR∞ .

Writing y = αR∞ and expanding the exponential term in powers of y yields, after
cancellation, the identity

(1 + αϵ)y2 − 2αϵy − 2αcϵ2 + O(y3) = 0. (31)

This implies that y = O(ϵ), which, neglecting the O(y3) term and solving the resulting
quadratic equation, yields the exact result R∞ = A(ϵ) + O(ϵ3).

Taking account of the last step of the proof, it follows from (29) that

R∞ =
(

1 +
√

1 + 2cγ/β
)

ϵ + O(ϵ2). (32)

Not surprisingly, if c > 0 then the number removed exceeds the initial excess, ϵ, of
susceptibles. What is surprising is that this dominant contribution is independent of the
recovery rate, ρ.

If c = 0, then (29) simplifies to the approximation

R∞ ≈ 2ϵ

1 + αϵ
=

2ϵ

αS0 − a
. (33)
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Using (28) and defining γ = γ/β and ρ = ρ/β, respectively, the relative removal and
recovery rates, then this approximation takes the form

R∞ ≈ 2γ

(
1 − γ

S0 − ρ

)
which reduces to a classical form when ρ = 0; e.g., (2.3.14) in [2].

It also follows from (33), or (38) with c = 0, that

R∞ = 2ϵ + O(ϵ2) (34)

and, since S∞ = N − R∞ = S0 − R∞ + O(ϵ2), we obtain the approximation

S∞ = r − ϵ + O(ϵ2) (35)

which generalises the known result for the SIR model. In particular, we still observe the
incremental change S0 − S∞ = R∞ ≈ 2ϵ.

The following result admitting a relatively larger value of I0 than in Theorem 8 is a
corollary of its proof. It asserts a substantially stronger progression of the epidemic than
seen in Theorem 8.

Lemma 6. Let ϵ ∈ (0, 1) and (28) hold. If I0 ∼ Cϵ1+ω, where C > 0 and ω ∈ [0, 1), then

R∞ ∼
√

2C
α

· ϵ
1
2 (1+ω).

Refinements to (35) can in principle be obtained by using more terms in the expansion
of e−y, giving rise to polynomial equations of an order exceeding two. A more direct
approach is using (12) and observing that outcome (35) corresponds to expanding the
Lambert function around its branch point at −e−1. We specify the following constants:

c1 =
√

1 + 2cγ/β, d1 =
2α

3c2
1

and d2 =
α2

2c2
1

.

Theorem 9. If the assumptions of Theorem 8 hold, then

R∞ = A1ϵ + A2ϵ2 + A3ϵ3 + O(ϵ4), (36)

where

A1 = 1 + c1, A2 =
1
3

(
c − α − α

c1

)
and A3 =

α2

36

(
7
c1

+ c3
1 + 8

)
.

Proof. The required Lambert function expansion is

W
(
−e−1−z2/2

)
= 1 − σ(z), (37)

where

σ(z) = z − z2

3
+

z3

36
+

z4

270
+ · · · . (38)

See #4.13.6 in [4], and [5] for a survey of Lambert function expansions. Write (12) in
the form

αR∞ = αN − a + W
(
−(αS0 − a)ea−αN

)
. (39)

Recalling (30), we have

a − αN = a − αS0 − αI0 = −1 − αϵ − αI0,
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and hence in (38) we choose (as expected)

z2 = 2[αϵ + αI0 − log(1 + αϵ)] = O(ϵ2).

Recalling the assumptions and notation of Theorem 8, expanding the log-term yields

z2 = (αc1ϵ)2
[
1 − d1ϵ + d2ϵ2 + O(ϵ3)

]
.

It follows that

z = αc1ϵ
[
1 − 1

2 d1ϵ − 1
2 (d2 − d2

1/4)ϵ2 + O(ϵ3)
]
,

whence
z3 = (αc1ϵ)3 + O(ϵ4).

Collecting powers of ϵ and substituting into (39) using (37) and (38) leads to Asser-
tion (36).

Observe that the leading term corresponds to (38). In the classical case, c = 0, (36)
simplifies to

R∞ = 2ϵ − 2α

3
ϵ2 +

(
2α

3

)2
ϵ3 + O(ϵ4),

the same form as (4.4) in [5] (with differing notation) derived for the SIR model.

7. Concluding Remarks

We have examined the SIR model modified to allow recovery from the infected to the
susceptible state at per-capita rate ρ. If γ = 0, then this is the SIS model that exhibits an
endemic level of infection if the derived parameter δ > 0. On the other hand, if γ > 0, then
I(t) → 0—the epidemic ultimately fades. The extended model behaves similarly to the
subcritical SIS model (δ ≤ 0) if ρ is sufficiently large (i.e., ρ > βS0, implying R0 < 1), in
that S(t) and R(t) both increase to positive-valued limits (Theorem 2).

Behaviour similar to the SIR model is manifested if ρ is small, i.e., 0 ≤ ρ < βS0. If
also R0 ≤ 1, then I(t) decreases, possibly with an inflection. The other state functions are
monotone with no inflections (Theorem 3). If R0 > 1, then curvature properties are more
complicated, as seen in Theorems 4–7. In particular, I(t) has a single positive mode at tm
with exactly one inflection in (tm, ∞), and it may, or may not, have an inflection in (0, tm).

Elucidating these shape properties depends on the existence of two constants of
motion—the total population size is constant the the relation (10) holds. The model can
be generalised at the expense of one or both of these invariants by allowing for birth and
death. In this case, it is usual to assume that newborns are susceptible. The first invariant is
preserved under the assumption of balanced growth—the birth and death rates are equal.
If they are not, then the population size either grows or diminishes exponentially fast. In
either case, a successful analysis probably will be limited to identifying equilibria and
determining their stability using results from the qualitative theory of differential equations.
The case of balanced growth for the SIS and SIR models is surveyed in [6], and some more
general models are treated there. The review paper [7] lists papers extending classical
models to allow varying total population sizes.
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