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1. Introduction

The concept of derivation originating from analysis has been delineated for a variety
of algebraic structures which come in analogy with the Leibniz rule

L ifer= TPzt fais)

Posner [1] introduced the derivation on prime rings (R, +, -) as a mapping d from R
to R such that for all x,y € R:

(V) d(x-y) =d(x) -y +x-d(y),

It implies that

(2) d(x +y) = d(x) +d(y).

(3) d(1) =0, (4) d(0) =0,

which are the 0-ary version of (1) and (2), respectively.
The derivations on lattices (L, V, \) were defined in [2] by Sz4sz and were developed
in [3] by Ferrari as a map 4 from L to L such that for all elements x, y in L:

(D) d(x ny) = (dx) Ay) vV (xAd(y)), (i) d(xVy) =d(x) Vd(y).

Xin et al. [4,5] investigated the derivations on a lattice satisfying only condition (i). In
fact, a derivation d on L with both the Leibniz rule (i) and the linearity (ii) implies that
d(x) = x A u for some u € L [6] (Proposition 2.5). If u is the maximum of a lattice, then
such a derivation is actually the identity. It seems that this is an important reason for
the derivations on, for instance, BCl-algebra [7], residuated lattices [8], basic algebra [9],
L-algebra [10], and differential lattices [6], which are defined with the unique requirement
of the Leibniz rule (i) (for the discussion in detail, cf. Section 2).

The derivation on an MV-algebra (A, &, *,0) was firstly introduced by Alshehri [11]
as a mapping d from A to A satisfying an (©, @)-condition: Vx,y € A,
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d(x©y) = (d(x) Oy) & (x ©d(y)),

where x ® y is defined to be (x* & y*)*. Then, several derivations on MV-algebras have
been considered in [12-15]. However, the interplay of the ring operations - and + is
more similar to the interplay between the MV-operations ©® and V rather than that between
the MV-operations ® and @®. In fact, the main interplay between - and + in rings is the
distributivity of - over +. In MV-algebras, © distributes over V, as in rings, while it is not
true that © distributes over @. It is also true that © distributes over A, but V is preferable
because the identity element of V is absorbing for ®, thatis, 0 © x = 0 for any element x
in an MV-algebra A, as in rings, while the same is not true for A. Therefore, the (®, V)-
derivation on MV-algebras [16] is a nature improvement of Alshehri’s celebrated work [11]
of the (®, ®)-derivation (cf. Section 2 for more discussion).

Let E and F be nonempty sets. A multifunction f: E — A(F) is a map (or function)
from E into A(F), the collection of nonempty subsets of F. The multifunction [17] is also
known as set-valued function [18]. Significantly, multifunctions have many diverse and
interesting applications in control problems [19,20] and mathematical economics [21,22].
Motivated by the role played by derivations on MV-algebras and the work of multideriva-
tions on lattices [23], it is imperative to undertake a systematic study of the corresponding
algebraic structure for derivations on MV-algebras.

This article is a continuation of work on (®, V)-multiderivations based on the nature
(®, V)-derivation on MV-algebras [16], that is, a set-valued generalization of point-valued
(®, V)-derivations. Section 2 starts with a review of the (®, V)-derivations on an MV-
algebra A. In Section 3, we first define a natural preorder on A(A) that M < N iff for every
m € M there exists n € N such that m < n. Then, we introduce (®, V)-multiderivations
on MV-algebras. The relations between (©®, V)-derivations and (©®, V)-multiderivations
on an MV-algebra are given (Propositions 5-7). In Section 4, we investigate the set of
(®, V)-multiderivations MD(A) on an MV-algebra A. Let 0,0’ € MD(A). Define 0 < ¢’
if o(x) < ¢/(x) for any x € A, and an equivalence relation ~ on MD(A) by ¢ ~ ¢ iff
0 < ¢’ and ¢’ < 0. Then, (MD(A)/~, <) is a poset. For an n-element MV-chain L,, we
show that (MD(L,)/~, <) is isomorphic to the complete lattice Der(L, ), the underlying
set of (®, V)-derivations on L, (Theorem 1), so we deduce that | MD(L,)/~| = | Der(Ly)|,
then [16] (Theorem 3.11) can be applied. Moreover, we define an equivalence relation ~ on
A(A), and present the fact that the poset A(L, x Ly)/~ is isomorphic to the complete lattice
Der(L,+1) (Proposition 11). However, the cardinalities of different equivalence classes
with respect to the equivalence relation ~ are different in general (Example 5). In Section 5,
by building a counting principle (Theorem 3) for (®, V)-multiderivations on an n-element
MV-chain L,, we finally obtain the enumeration of MD(Ly,): (7 - gn-l _pnt2 4 1)/2.

Notation. Throughout this paper, A denotes an MV-algebra; | X| denotes the cardinal-
ity of a set X; A(X) denotes the set of nonempty subsets of a set X; LI means disjoint union;
N denotes the set of natural numbers; “iff” is the abbreviation for “if and only if”.

2. Preliminaries

Definition 1 ([24]). Analgebra (A, ®,*,0) is an MV-algebra if the following axioms are satisfied:
(MV1) (associativity) x & (y & z) = (x P y) D z.
(MV2) (commutativity) x @y =y ® x.
(MV3) (existence of the unit 0) x ® 0 = x.
(MV4) (involution) x** = x.
(MV5) (maximal element 0*) x © 0* = 0*.
(MV6) (Lukasiewicz axiom) (x* @ y)* @y = (y* & x)* D x.

Define 1 = 0* and the natural order on A as follows: y > x iff x ® y* = 0. Then, the
interval [a,b] = {r € A|a <r <b}foranya,b € Aanda < b. Note that A is a bounded
distributive lattice with respect to the natural order [24] (Proposition 1.5.1) with 0, 1, and

xVy=x0y )y, xANy=x0 (x"By). (1)
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An MV-chain is an MV-algebra which is linearly ordered with respect to the natural order.

Example 1 ([24]). Let L = [0, 1] be the real unit interval. Define
x@y=min{l,x+y} and x* =1—x foranyx,y € L.
Then (L, ®,*,0) is an MV-chain. Note that x © y = max{0,x +y — 1}.

Example 2. Forevery2 <n € Ny, let

1 2 n—2
H{OITl—l’n—l,.”’n—l,l}.

Then the n-element subset Ly, is an MV-subalgebra of L.

Lemma 1 ([24,25]). If A is an MV-algebra, then the following statements are true Vx,y,z € A:
XOyZxVy>2x>2xANy>xQouy.

x@y=0iffx=y=0x0y=1iffx=y=1
Ify>x,thenyvz>xVz,yAz>xAz

Ify>xtheny®z>x®z,y0z>x0z

y = xiffx* >y~

xOWAz)=(xOy)A(xOz).

xOyVz)=(xOy)V(x®z).

xOyLziffx <y* Pz

O N L=

Let Q) be an index set. The direct product [ [;cy A; [24] of a family of MV-algebras { A;},.
is the MV-algebra with cartesian product of the family and pointwise MV-operations. We
denote Ay x Ay X --- X A, when Q) is a positive integer n. We call 2 € A idempotent if
a®a = a. Let B(A) be the set of idempotent elements of A and By« be the 2"-element
Boolean algebra. Note that By is actually Ly x L [24].

Lemma 2 ([24], Proposition 3.5.3). Let A be a subalgebra of [0,1]. Let AT = {x € A |x > 0}
and a = inf A" be the infimum of A*. If a = 0, then A is a dense subchain of [0,1]. Ifa > 0, then
A = Ly for somen > 2.

Definition 2 ([16]). If A is an MV-algebra, then a map d from A to A is an (®, V)-derivation
on AifvVx,y € A,

d(xOy) = (d(x) ©y) vV (x O d(y))- (2)

Let Der(A) be the set of (®, \VV)-derivations on A. For X = {x1,x2,- -+ ,xpyandamapd : X — X,
we shall write d as

( X1 X2 N X >
d(xy) d(x2) - d(xa))
The mappings Id4 and 04, defined by Id4(x) = x and 04(x) = 0 (Vx € A), respec-

, ifx=1
tively, are (©, V)-derivations on A. For u € A, the operator x(*)(x) := neonx i
x. otherwise

Der(A). More examples are given in [16].

Proposition 1 ([16]). If A is an MV-algebra and d € Der(A), then the followings hold for all

X,y € A:
1. 0=d(0).
2. x>d(x

3. Ifd(x) =x, thend(y) =y fory < x.
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Remark 1. Now let us give some explanations of the naturality of an (®, \V/)-derivation in Defi-
nition 2. The interplay of the ring operations - and + is more similar to the interplay between the
MV-operations © and V rather than that between the MV-operations © and .

Next we discuss why we include only Equation (2). Recall that d(0) = 0 is the 0-ary version of
d(x+y) = d(x) + d(y) in derivations on a ring. For MV-algebras, d(0) = 0 is the 0-ary version
of (a); see Proposition 1 (1). d(1) = 0 is the 0-ary version of d(x - y) = d(x) - d(y) in derivations
on a ring. Hence, it seems that the most faithful and natural derivation notion on A as a translation
of the ring-theoretic notion of derivation (cf. Introduction) would include:

(@) d(xoy)=(d(x)Oy)V (xOd(y)),

(b) d(1)=0,
(c) d(xVy)=d(x)Vvd(y),
@ d(0) =o.

Howewver, (b) and (c) imply that d is trivial (note that (a) is automatically assumed).

Lemma 3. If A is an MV-algebra and d : A — A is a map satisfying (a), (b) and (c) for any
x,y € A. Then, d = 04.

Proof. Assume x < y, it follows from (c) that d(y) = d(x Vy) = d(x) Vd(y) and thus
d(x) < d(y). Together with (b) d(1) = 0, we have d(x) = 0 for any x € A since x < 1.
Hence,d =0,4. O

Next, we consider what will happen if the condition (b’) d(1) = 1 replaces (b) d(1) = 0.

Lemma 4. Ifd : A — A is a mapping from an MV-algebra A to A with (a) and (b’) for any
x,y € A, then, d =1d4.

Proof. Assume d satisfies (a) and (b’). We obtain that d satisfies Proposition 1 (3) since
d satisfies (a). Both with (b’) d(1) = 1, we obtain d(x) = x for any x € A. Therefore,
d=1dy. O

Recall that for a given a € A, a principal (©®, V)-derivation d, on A [16] is defined
by d,(x) :=a®xforall x € A. An (®, V)-derivation d is isotone [16] if Vx,y € A,y > x
implies that d(y) > d(x). Note that 04 and Id,4 are both principal and isotone. More
generally, we obtain the following.

Proposition 2 ([16] (Proposition 3.19)). Let A be an MV-algebra and d be a map satisfying (a)
and (b”). Then, the followings are equivalent:

1.  disisotone;
2. d(l)ox=d(x)forallx € A;
3. d(x)Vvd(y) =d(xVy).

If d satisfies (b), then the principal derivations on MV-algebra A will not be included,
expect 04. Even identity derivations Id 4 will not be within our scope of consideration.
Hence, the scope of the study will be significantly narrowed.

Remark 2. Note that d is isotone if d satisfies (c). In fact, if x < y, then d(y) = d(xVy) =
d(x)Vd(y) and thus d(x) < d(y). The isotone case is a special case of d, thus the scope of research
will be narrowed. This case has been partially studied in [16], Section 3.3.

Therefore, we use the derivation meaning from Definition 2 in our series papers since [16] on.

3. (®, V)-Multiderivations on an MV-Algebra

Let X and Y be two nonempty sets. Recall that a set-valued function or multivalued
function (for short, multifunction) F between X and Y is amap F : X — A(Y). The set
F(x) is called the image of x under F (cf. [26], Appendix A).
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Definition 3. Let A be an MV-algebra and M, N € A(A). We define four binary operations
@, ®,V, A and an unary operation x on A(A) by:

M*N={m*n|me M,ne N}and M* = {m* | m € M}

where x € {®,®,V, A}

Remark 3.

1. Note that MV N means the pointwise m \ n operation from Equation (1) of sets, which is
different from the supremum of M and N. M A N has a similar meaning.

2. Weabbreviate M x {x} and {x}* by M x x and x*, respectively. But if {x} appears by itself
suchas M < {x}, we still use {x}.

We define a binary relation M =< N iff for every m € M there exists n € N such that
m < n.Denote M < Nif M < Nand M # N.

Then, < is a preorder on A(A). In fact, the reflexivity and transitivity of < are clear.
However, < does not satisfy antisymmetry in general. In fact, < satisfies antisymmetry iff
the MV-algebra A is trivial: If A is trivial, we have A(A) = {{0}} and {0} < {0}. Hence, <
satisfies antisymmetry. Conversely, suppose A is nontrivial, we have A # {1}, but {1} < A
and A < {1}, a contradiction.

Lemma 5. Let A be an MV-algebra and x,a,b,c,e, f € A. Then, the followings hold:

1.  Ifx <b®ec, then there exists t € Asuchthatt <bandx =t0Oc.

2. Ifx < bV, then thereexist t,s € Asuchthatt <b,s <candx =tVs.
3. [abloc=[adcbOc].

4. [a,b]Vie fl=[aVebVf]

Proof. (1) Assume x < b ® ¢, then
x=0boc)ANx=(0b0oc)0 (o) ®x)=bO((bOc)" ®x)Oc.

Thus, we may choose t = b ® ((b © ¢)* @ x).
(2) Assume x < bV c. Recall that A is a distributive lattice. So

x=(bVc)Ax=(bAx)V(cAx).

Hence, we can obtain x = t Vs by takingt =b A x,s =cAx.

(3) For each x € [a,b], we obtaina ®¢ < x®c¢ < b®c by Lemma 1 (4). Thus,
[a,b] ©c C [a®c,bOc]. It suffices to prove that [1 ® ¢,b ® c|] C [a,b] ®c. For any
10c<x<bOcby(1)thereist =b® ((b®c)* & x) < bsuchthatx =t ©®c. If we can
prove a < t, then the result follows immediately. Note that

t=bO((bO) " @x)=bO ("B ®x)=bA (" D).

Since a ® ¢ < x, we have a < ¢* @ x by Lemma 1 (8). Together with a < b, we obtain
a <bA(c*®x) =t Thus, we conclude that [a,b] ©c=[a O c,bOc].

(4) For any t € [a,b],s € [e, f], wehaveaVe < tVs < bV f by Lemma 1 (3). Thus,
[a,b] Ve, f] C[aVe,bV f]. It is enough to prove that [a Ve, bV f] C [a,b] V [e, f]. For any
aVe<x<bVf, thereexistt,s € A such that

t=bAx<b, s=fAx<fand x=1tVs
by (2). If we can prove a < t and e < s, then the result follows. Note that since a < b

anda < aVe < x, wehavea < bAx = t. Similarly, e < s. Therefore, [a Ve, bV f] =
[a,b] Ve f]l. O

The following result holds for any MV-algebra A since it is a distributive lattice under
the natural order.
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Lemma 6 ([23] (Lemma 2.1)). Let L be a lattice and M, N, P,Q € A(L). Then, the following
statements hold:

. MAN<M=MVN.

2. IfMNandP 2 Q,then MAP X NAQand MV P X NV Q. In particular, M < N
implies MAP < NAP.

3. MCMAMMCMYV M. If Mis asublattice of L, then M = MV M.

4 MVN=NVM.

5. (MVN)VP=MV (NVP).

6. IfMVNCM,then N <M.

7. If Lis distributive, then (MV N) AP C (M AP)V (N A P).

Remark 4.

1. Note that the converse inclusion of Lemma 6 (3),i.e., MAM C Mand MV M C M, does
not hold in general. For example, consider the Boolean lattice By = {0,a,b,1} (see Figure 1),
M= {a,b} CBythen0=aANbe MAMand1l=aVvbe MV M, but0,1¢ M.

2. The converse of Lemma 6 (6), i.e., N < M implies MV N C M may not hold. For example,
inLs, let N=1{0,3},M = {0,1}. Wehave N < M but MV N = {0,1,1} ¢ M.

3. The converse inclusion of Lemma 6 (7) holds if P is a singleton but need not hold in gen-
eral. This is slightly different from [23]. For example, let B = {0,a,b,c,u,v,w,1} be the
8-element Boolean lattice as Figure 2, M = {u}, N = {w} and P = {a,b,c}. We can check
thatu =aVvb= (uNa)V(wAb) €  MAP)V(NAP)butu ¢ P=(MVN)AP.

1
a b

0

Figure 1. Hasse diagram of By.

Figure 2. Hasse diagram of Bg.

According to Lemma 1, one obtains
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Lemma 7. Assume that A is an MV-algebra, M,N,P,Q € A(A), and m € M. Then, the
following statements hold:

1. IfFM<NandP 2 Q,then M®P I N@® Qand M® P X N ©® Q. In particular, M < N
implies MGP X N®Pand MOP X NOP.

mo(PVQ)=(moP)V(moQ).

m®(PUQ)=moeP)U(me Q).

MON<SMAN=<M=<MVN=<M®N.

IfFM®N C M, then N X M.

ARSI

Proof. (1) Suppose M < Nand P < Q. Foranyx =m @& p € M & P, there are n € N and
g € Qsuchthatm <nand p < q. It follows from Lemma 1 (4) thatm®p <mdqg<ndg,
wheren g € N® Q. Thus, M® P = N & Q. Similarly, we have MO P = NO Q.
In particular, we obtain M@ P < NG Pand MOP X NGO P.

(2) Foranyp e Pand g € Q, wehavem ® (pVq) =(moOp)V(meqg) € (m®P)V
(m® Q) by Lemma 1 (7). Thus,m ® (PV Q) C (m® P) V (m ® Q). The reverse inclusion
can be verified similarly. Therefore, m ® (PV Q) = (m® P)V (m® Q).

(3) We have x € m ® (P U Q), iff there is y € P U Q such that x = m © y, iff there is
yePorye Qsuchthatx =moy,iff xe mOPorx e meQ,iffx € (m®P)U (me Q).
Hence,m® (PUQ) = (me©P)U(me Q).

(4) Foranym € Mandn € N,weknowmo®n <mAn <m<mVn<méenby
Lemma 1 (1). The result follows immediately.

(5) Assume M@ N C M, then for any n € N, there exists m € M such thatm @& n € M.
So by Lemma 1 (1) we obtain n < m @ n. Therefore, N < M. O

To study whether (A(A), ®,*,{0}) is an MV-algebra, we first give

Lemma 8. If A is an MV-algebra, then, for any M, N, P € A(A), the followings hold:
(M&N)P=Me (NaP).

M®N=N®M.

M&0=M.

M** = M.

M@ 0* = {0*}.

SIS

Proof. (1)—(5) follow from (MV1)-(MV5), respectively. O

Remark 5. Since (MV1)-(MV5) are satisfied on A(A), it is natural to consider whether (MV6)
(M*@®&N)*@®N = (N* & M)* & M holds on A(A). The answer is no. For example, let M = {1}
and N = {0,1} on three-element MV-chain Lg. It is easy to see that (%* ®{0,1})*&{0,1} =
0,5} ©{0,1} = {0,3,1} # {51} = {01} & })* @ }. Thatis, (M* & N)* &N #
(N*®eM)* ¢ M.

If A is a nontrivial MV-algebra, and ¢ : A — A(A) is a multifunction on A. ¢ is called
additive and negative, if p(x ®y) = ¢(x) ® ¢(y) and ¢(x*) = (¢@(x))* forall x,y € A,
respectively.

Proposition 3. Let A be an MV-algebra and ¢ : A — A(A) be a multifunction on A. If ¢ is
additive and negative, then (¢(A), ®,*, ¢(0)) is an MV-algebra, where p(A) = {p(x) | x € A}.

Proof. Itis sufficient to prove (MV3), (MV5) and (MV6), since we know that (¢(A), ®,*, ¢(0))
satisties (MV1), (MV2) and (MV4) by Lemma 8. Since ¢ is additive and negative, it
follows that ¢(x) ® ¢(0) = ¢(x ®0) = ¢(x) and ¢(x) ® ¢(0)* = ¢(x B 0*) = ¢(0*) =
¢(0)*. Furthermore, (¢(x)" © ¢(y))" ® ¢(y) = ¢(x" D y)* D o(y) = o((x* Dy)* DY) =
p((y" @ x)"®x) =@(y" & x)" ®o(x) = (¢(y)” & ¢(x))" ® ¢(x) forany x,y € A. Thus,
(p(A),®,*, ¢(0)) is an MV-algebra. [
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Now let us define the (®, V)-multiderivation.

Definition 4. If A is an MV-algebra, a multifunction o : A — A(A) is called an (®, V)-
multiderivation on A if

o(xOy) = (0(x) Oy) V(x@(y)) 3)

for all x,y € A. Denote the set of (®, V)-multiderivations on A by MD(A).

Example 3. (i) Consider the MV-chain Ly. We define a multifunction o on Ly by 0(0) = {0},
c(3) ={0,1}, 0(3) ={0,3},0(1) = {0,1}. Then, we can check o is an (®, VV)-multiderivation
on Ly. In fact, o = By (see Corollary 1).

(ii) Consider the standard MV-algebra L = [0, 1]. We define a multifunction o : L — A(L)
by o(x) = [0, x] for all x € L. Then, we can verify that o is an (®, V)-multiderivation on L (see
Proposition 6).

(iii) Let A be an MV-algebra and S C A be a subalgebra of A. Define a multifunction
ogson Abyog(x) = x©®S,Vx € A, then 0s € MD(A), which is called a principal (®,V)-
multiderivation. In fact, for any x,y € A, since the subalgebra S must be a sublattice of A, it
follows that S = SV S by Lemma 6 (3). According to Lemma 7 (2), we immediately have og(x ©
Y)=x0y0S=x0y0(SVS) = (x0yoS)V(xoyos) = (rs(x) 0y) V(xOos(y)).

Proposition 4. If A is an MV-algebra and o € MD(A). Then, the followings hold for all x,y € A,

o(0) = {0}.

o(x) < {x}.

o(x)©o(y) 2o(xOy) 2 o(x) Valy).

x©o(l) 2 o(x).

If I is a lower set of A, then o(x) C I holds for any x € I.
Let1 € o(1). Then, x € o(x).

Sk L=

Proof. (1) Taking x = y = 0 in Equation (3), we obtain ¢(0) = ¢(0®0) = (¢(0) ®0) V
(0©0(0)) = {0}.

(2) Since x ® x* = 0, we know that {0} = ¢(0) = c(x ®x*) = (c(x) ©x*) V (x ®
o(x*)) by (1). Soo(x) © x* = {0} and we obtain o(x) < {x}.

(3) By Lemma 6 (3), we have o(x) ® o(y) C (¢(x) ©®c(y)) V (¢(x) ®o(y)). Moreover,
cx)©o(y) 2o(x) ©yand o(x) ©®o(y) < x ®o(y) by (2) and Lemma 7 (1). Thus,

o(x)©o(y) S (0(x) ©o(y)) V(e(x) ©o(y)) = (c(x) Oy) vV (xOo(y)) =c(xOy)

by Lemma 6 (2). Moreover, by Lemma 7 (1) and Lemma 6 (2) we have

c(xoy)=(c(x)oy) V(x©a(y)) 2 o(x)Va(y).

(4) Since x = 1 @ x, it follows that o (x) = (1 © x) = o(x) V (x ©® ¢ (1)) by Equation (3).
Then, we can obtain x ©® ¢(1) < o(x) by Lemma 6 (6).

(5) For any x € I, we know o(x) =< {x} by (2). It induces that y < x holds for any
y € 0(x). Then, y € I since I is a lower set. Thus, c(x) C I.

(6) Since 1 € ¢(1), there must exist y € o(x) such that x = x ©1 < y by (4). Moreover,
by (2) we know y < x always holds for y. Hence, we obtain x =y and x € o(x). O

Now, let us explore the relations between (®, VV)-derivation d and (®, V)-multiderivation
oon A.

On the one hand, given an (®, VV)-derivation d on A, how can we construct an (®, V)-
multiderivation on A? We get started with a direct construction. Assume d € Der(A).
Define a multifunction w : A — A(A) as follows:

a(x) ={d(x)} forany x € A.
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Then, « € MD(A).
Proposition 5. If A is an MV-algebra and d € Der(A), define a multifunction p : A — A(A)

on A as follows
p(x) := {0,d(x)}.

Then, p € MD(A) iffd(x) ©y = x © d(y) holds for any x,y € A with d(x) ©y > 0 and
x®d(y) >0

Proof. Assuming f € MD(A), it follows that

{0,d(xOy)} = pxOy)
= (B(x) 0y) vV (x©B(y))
= ({0,dx)}oy) Vv (x©{0,d(y)})
=1{0,d(x) Oy} V{0, xOd(y)}
=1{0d(x) Oy, x@d(y),d(x Oy)}
for any x,y € A. From the chain of equalities, we know that d(x) ®y,x ©®d(y) € {0,d(x ®
y)}. Ifbothd(x) ©y >0and x ®d(y) > 0, thend(x) Oy =d(x O y) = x ©d(y).

Conversely, let x,y € A.
Then,

Blxoy) ={0dxoy)}
and

(B(x) 0y) VvV (x©By) ={0,d(x) Oy, x ©d(y), d(x ©y)}.

There are only two cases:
Ifd(x) ©y = 0or x ©®d(y) = 0, without loss of generality, assume that d(x) ©y = 0.
Then,
dxoOy) =0V (x©d(y)) =xod(y).

Thus, (B(x) ©y) V (x© B(y)) ={0,d(x O y)} = p(x O ).
Ifd(x) Oy = x©®d(y), then

dxoy)=d(x) oy =x0d(y).

Thus, (B(x) ©y) V (x© p(y)) = {0,d(x O y)} = f(x O y).
Consequently, we infer € MD(A). O

Corollary 1. If A is an MV-algebra, and a € A, a multifunction B, : A — A(A) on A is defined

as follows
Ba(x) := {0, da(x)}.
Then B, € MD(A).

Proof. If d = d, in Proposition 5, then for any x,y € A, weknow d(x) Oy =aOx Oy =
x ® d(y). Hence, we infer that , € MD(A) by Proposition 5. [

Remark 6. The conclusion is not necessarily true for general (®, V)-derivations. For example,
0 1\ .
d = (O §> is an (®, V)-derivation on Ly. But /3( ©1) = {0,3} + {0,3,3} =

{0.33v{0 3} =03 onvEe{oih)=BG3 oD vEop)

Proposition 6. Let A be an MV-algebra and d € Der(A). Define a multifunction v : A — A(A)
on A as follows

[N
WINWIN

7(x) = [0,d(x)].
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Then v € MD(A).

Proof. Since d € Der(A), we obtain y(x ®y) = [0,d(x @ y)] = [0, (d(x) @ y) V (x @ d(y))].
Moreover, we have

(r(x)oy)V(xory)) = ([0dx)]oy)V(x®[0,d(y)]) (Definition 3)
=[0,d(x) 0yl V[0,x©d(y)] (Lemma 5 (3))
=[0,(dx)oOy)V(xod(y))] (Lemma 5 (4))

Hence, we conclude that vy € MD(A). O

On the other hand, if there is a given (©®, V)-multiderivation ¢ on A, then we can
construct a corresponding (©®, VV)-derivation d from o. We need the following lemma
to prepare.

Lemma 9. If A is an MV-algebra, and M, N € A(A), if both sup(M) and sup(N) exist, then

1. sup(M ® N) exists and sup(M ® N) = sup(M) ® sup(N).
2. sup(MV N) exists and sup(M V N) = sup(M) V sup(N).

Proof. Denote my = sup(M) and ng = sup(N).

(1) Firstly, we prove that mg © ng is an upper bound of M © N. For any m € M and
n € N, we immediately have m ©n < mg ® ng by Lemma 1 (4). Hence, it is enough to show
that mg © ng is the least upper bound. Assume that m ©n < x forallm € M,n € N. It tells
us that m < n* @ x and so my < n* @ x by Lemma 1 (8) and the definition of least upper
bound. Then, we have my ®n < x. Similarly, we obtain n < mgj @ x and ng < mg @ x.
Thus, we can prove that my © ng < x. Finally, sup(M ® N) = sup(M) ®@ sup(N) holds.

(2) Forany m € Mand n € N, we have m < mpand n < ng. So, mVn < mgV ngp
and sup(M V N) < sup(M) V sup(N). Conversely, since MV N > M, N, it implies that
sup(M V N) > sup(M),sup(N) and thus sup(M V N) > sup(M) V sup(N). Therefore,
sup(MV N) = sup(M) Vsup(N). O

Proposition 7. If A is an MV-algebra, 0 € MD(A), and sup(c(x)) exists for any x € A, define
supo: A — Aby (supo)(x) =sup(c(x)). Then, supo € Der(A).

Proof. For any x,y € A, we have

(supo)(x Oy) =sup(c(xOy)) (Definition of sup o)
=sup((c(x) Oy) V(x©o(y))) (Equation (3))
=sup(c(x) ©y) Vsup(x © o (y)) (Lemma 9 (2))
= (sup(c(x)) ©sup{y}) V (sup{x} ©®sup(c(y))) (Lemma 9 (1))
= ((supo)(x) ©y) V (x ® (supo)(y)). (Definition of sup )

Hence, supo € Der(A). O

Remark 7. (1) If MV-algebra A is complete, then sup o is always an (®, V' )-derivation on A for
an arbitrary (©, V )-multiderivation o on A.

(2) If 0 € MD(A) and the image o(x) is finite for any x € A, then sup ¢ is always an
(®, V)-derivation on A.

Next, we construct (®, V)-multiderivations on subalgebras and direct products of
MV-algebras from a given (©®, V)-multiderivation.

Proposition 8. Let A be an MV-algebra and o € MD(A). If S is a subalgebra of A and o(x) C S
forany x € S, then o|g € MD(S).
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Proof. For any x,y € S, we know that o(x),c(y) C Sandsoo(x) @y, x ®@c(y) C S. Then,

ols(x0y) = (e(x) Oy) vV (x©a(y)) = (els(x) Oy) V (x O ols(y)) SSVS =S

by Lemma 6 (3). Thus, o|s € MD(S). O

Definition 5. If () is a nonempty set, for each i € (), let 0; be a multifunction on A;. The
direct product of {0;};cq [Ticq 0i : [Tica Ai = AT Ticn Ai) is defined by

(H crl-> =[] oi(8(®) = {(x)iea | xi € o1(g(i))}

icQ) i€eQ)

forall g € [Ticq Ai-

Lemma 10. Let Q) be a nonempty set, { A;};cq, be a family of MV-algebras, and M;, N; € A(A;).
Then, [Tiea(Mi V Ni) = ITiea Mi V Iicq Ni-

Proof. We first show that [T;cq(M; V N;) C ITica Mi VIlicq Ni. For any x € [T;cq(M; V
N;), there are m; € M;,n; € N; for any i € Q such that x = (m; V n;);cq. Denote
m = (m;)icq,n = (n;)icq, we have x = (m; V nj)icq = (mi)ieq V (ni)icq = mVn €
[Tica M; VITicq Ni. And vice versa. Therefore, [T;cq(M; V N;) = [Tiecq Mi VIlieca N;. O

Proposition 9. Assume that Q) is a nonempty set and { A;};.q, is a family of MV-algebras. Then,
0; € MD(A;) forany i € Qiff [Tieq 0i € MD(TTicq Ai)-

Proof. Denote A = [JicqA; and ¢ = [Jieqo;. Forall x = (x))icq, ¥y = (Vi)ica € A,
we have

U(ny) :U((xz)IEQQ(yZ lEQ Ho'z x1®yz)
ieQ)

(e(x)oy)V(xo(y)) = (H 7i(xi) © (vi zeQ) v ((xi)ie() © H@(%))

ieQ) i€eQ)
= [(ei(x) oyi) V[ [(xi © oi(yi))
ieQ) i€Q)
= H oi(xi) ©yi) V (xi © 03(yi)))- (Lemma 10)
i€Q)

We can immediately obtain 0; € MD(A4;) foralli € Qiffc(x Oy) = (c(x) ©Oy) V (x ®
o(y)) by Equation (3). O

Finally, we investigate the condition when an (®, V)-multiderivation ¢ is isotone.

Definition 6. If A is an MV-algebra, and ¢ € MD(A), we say ¢ is isotone if o(x) < o(y)
whenever x < y.

Proposition 10. If A is an MV-algebra, and 0 € MD(A), then o is isotone iff o(x A y) =<
o(x) Ny forall x,y € A.

Proof. Assume o is isotone, then,
cxANy) Co(xAy)Ao(xAy) 2o(x)ANo(y) 2o(x) Ay
by Lemma 6 (3) and (2). Conversely, assume that c(x Ay) < o(y) Ax forall x,iy € A. Let

x,y € Awithx <y. Then, o(x) = o(y Ax) = c(y) A x. Thus, for every a € o(x) there is
b € o(y)such thata < b Ax. Hence,a < bandsoc(x) <o(y). O
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Corollary 2. If A is an MV-algebra, and S C A is a subalgebra of A, then the principal (®, V)-
multiderivation o is isotone.

Proof. Method 1: Let x,y € Aand x < y. Foranys € S, Lemma 1 (4) impliesx ©®s <y ®©s.
Thus, o5(x) =2 05(y).

Method 2: It is enough to verify that os(x Ay) =< os(x) Ay for all x,y € A by
Proposition 10. For any s € S, Lemma 1 (6) implies

(xAy)Os=(x0s)A(y©s) < (xOs)Ay.
Thus, os(x Ay) = (x Ay) ©S <X (x©S) Ay =0s(x) Ay. O

4. The Order Structure of (®, V)-Multiderivations on a Finite MV-Chain
Let MF(A) be the set of multifunctions on an MV-algebra A. Define < on MF(A) by:

(Vo,0' e MF(A)) o=xoifo(x) 20'(x), Vx € A.

Then, < is a preorder on MF(A) and Oyg(4) < 0 < Iyp(a) for any o € MF(A), where
Onp(a) and 1y 4) are defined by Oygp(a)(x) := {0} and Lyjp(a)(x) := {1} forany x € A,
respectively. For any o € MD(A), we have Oyp(4) < ¢ < Idyp(a), where Idyp(a) (x) =
{x}, and it is plain that {0} < o(x) < {x}, Vx € A.

For 0,0’ € MF(A), set

(c®o')(x) :=o(x) Ko’ (x), (4)
foranyx € Aand X € {V,A,U,N}.

Remark 8.

1. Note that o(x) V ¢’ (x) is meant in the sense of Definition 3, rather than the supremum of
o(x) and o’ (x).

2. Note that o\ ¢’ is an upper bound of o and ¢’ by Lemma 6 (1) but is not necessarily a
least upper bound. For example, define o € MF(By) by 0(a) = o(b) = {a,b}, 0(0) =
{0},0(1) = {1}. Then,

(cvo)(a)=(cVo)(b)={ab1}.

It is clear that both o and o V o are upper bounds of o and o, but ¢ < oV 0. Ina word, oV o
is not a least upper bound of o and o.

More generally, let A be an MV-algebra which is not an MV-chain with two incomparable
elements a,b. Define o € MF(A) as o(a) = o(b) = {a,b}, o(x) = {x} for x € A\{a,b}.
oV o is not a least upper bound of o and ¢.

In the sense of category theory, a preordered set P is called complete [27] (Section 8.5)
if for every subset S of P both sup S and inf S exist (in P). Note that sup S and inf S need
not be unique. For example, let P = {a,b} and define a preorder < as follows: a < b, b < a.
Take S = {a,b}. Then, both a and b are sup S, also inf S. Therefore, we use “a” rather than
“the” concerning sup S and inf S in the following.

Let {0;}icq be a nonempty family of multifunctions on an MV-algebra A. Define a

multifunction J;c 0; on A, by

for any x € A.
Analogue to [28] (Theorem 1.4.2), we have the following.
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Lemma 11. If A is an MV-algebra, then (MF(A), <, Oyp(a), Ivr(a)) 5 a complete bounded
preordered set, where J;cq 0; is a least upper bound of {0;}icq, and o A o’ is a greatest lower
bound of o and ¢’ respectively.

Proof. Note that Oyp(4) < 0 < Typ(a) for any o € MF(A).

Let {0} }icq be a nonempty family of MF(A). Then, 0; < U;cq 0;- Now we will prove
that J;cq 07 is a least upper bound of {0 };cq. Assume that 0; <  for every i € Q). For any
Y € (Uica i) (x) where x € A, there exists k € Q) such that y € oy(x). Since o (x) = 7(x),
there is z € 7(x) such that y < z, which shows U;cq 0; < 7. Therefore, U;cq 07 is a least
upper bound of {0; };cq.

Let

X' ={A e MF(A) | A=< 0;,VieQ}

be the set of lower bounds of {0;}icq in MF(A). Next, we verify that [J, .y A is indeed
a greatest lower bound of {0;};cq. Forany i € Q and A € X!, we have A < ¢;. Thus,
UnextA < gjand Uycxe A € X!. Hence, Usexe A is a greatest lower bound of {0;}icq-
Therefore, MF(A) is complete.

For any 0,0’ € MF(A), since o Ao’ < 0,0, it follows that o A ¢’ is a lower bound of
and ¢’. To verify that o A ¢’ is a greatest lower bound, let 7 < ¢, ¢’. Then, for any y € 7(x)
(x € A), therearez € 0(x) and w € ¢/(x) such thaty < zand y < wby 5(x) < o(x),0’(x).
Hence,

y<zAweo(x)Ad (x).

Therefore, 7(x) < o(x) Ao’(x). Thus,n < o Ao'. O

As already mentioned, < is not always a partial order on A(A), where M < N iff
for each m € M there exists n € N such that m < n. The binary relation ~ on A(A)
defined by M ~ N iff M < N and N < M is an equivalence relation. Given M € A(A),
the equivalence class of M with respect to ~ will be denoted by M. If M = {x} is a
singleton, then we abbreviate m by X. Thus, we can obtain a partial order < on A(A)/~
defined by M < N iff M < N. We claim that < is well defined. In fact, if M ~ M’,N ~ N’
and M < N,then M’ < M <N < N’

Recall that for a subset M of A, the lower set generated by M [29] is the set

IM = {x € A | there exists m € M such that x < m}.
Lemma 12. Let M, N € A(A). Then, M = N iff LM = |N.

Proof. It is sufficient to show that M < N iff [M C | N.

Let M < N. For every x € | M, there is m € M such that x < m. Then, M < N gives
m < n for somen € N. Hence, x < nand x € |[N. Therefore, |M C |N.

Conversely, assume that |/M C | N. For any m € M, wehavem € |[M C |[N. Thus,
there exists n € N such that m < n. Hence, M < N.

Similarly, N < M iff [N C |[M. O

Corollary 3. In general, let A be an MV-algebra, M € A(A), and a € A. Then, M = @ iff sup M
exists and sup M = a € M.

Assume M = a. Then a is an upper bound of M since M < {a}. To prove a is a least upper
bound of M, let b be an upper bound of M. Since {a} < M, there exists m € M such that a < m.
Hence, a < m < b, which shows sup M = a € M.

Conversely, let sup M = a € M. It suffices to verify that |M = |a by Lemma 12. If x € | M,
then there is m € M such that x < m < a. It follows that x € laand |M C la. If x € |a, then
x <ae M. Thus, x € [Mand {a C | M. Therefore, |[M = |a.

Corollary 4. Let L, withn > 2 and M € A(Ly,). Then, M = sup M.
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Proof. Observe that sup M is exactly -£5 for a certain 0 < i < n — 1. It suffices to verify
that [M = |sup M by Lemma 12. Suppose x € |M, there is m € M such that x < m.
Since m < sup M, it follows that x < sup M. Hence, x € | sup M. Conversely, assume
x € |sup M, which means x < supM = ﬁ Since sup M € M, it follows that x € | M.
Therefore, |{M = [ supMand M =sup M. O

Note that the family of all lower sets of a poset A is a complete lattice by [30] (Example
0-2.8). We will prove that the family of all nonempty lower sets of A is also a complete
lattice, denoted by (Lo(A), ©).

Corollary 5. Let A be an MV-algebra, then A(A)/~ is isomorphic to the complete lattice

Proof. Since A has a least element 0, the intersection of a family of nonempty lower sets of
A is still a nonempty lower set. Therefore, Ly(A) is a complete lattice.

Define ¢ : A(A)/~ — Lo(A) by M — | M. Lemma 12 shows that ¢ is well defined
and injective, and ¢ is also surjective since M = |[M if M € Lo(A). As discussed in the
proof of Lemma 12, M < N iff [M C [N for all M, N € A(A), which gives both ¢ and ¢!
are order preserving. Hence, ¢ is an isomorphism. O

Next, we study the order structure on A(L,)/~. First, we need

Lemma 13. Let A be an MV-chain, M, N € A(A), and sup M, sup N exist.
1. IfM =< N, then sup M < sup N.
2. IfsupM <supN, then M < N.
3. M = N iff the following conditions hold:
(a) sup M = sup N.
() supMeM<&supN € N.

In particular, if A is a finite MV-chain, then M = N iff (a) holds.

Proof. (1) Suppose M < N, then M < N. For any m € M there is n € N such that
m < n < sup N. According to the definition of sup M, we have sup M < sup N.

(2) Let supM < sup N. Assume on the contrary M A N. Then, there is m € M
such that m > n for any n € N. The definition of sup N implies m > sup N. Thus,
sup N < m < sup M, which contradicts the fact that sup M < sup N.

(3) Assume that M = N. (a) follows from (1).

To prove that sup M € M < sup N € N, we assume sup M € M. Then, there exists
ng € N such that supM < ny by M < N. Since N <= M, we have ny < sup M. Hence,
ng = sup M. Therefore, sup N = sup M = ng € N by (a). Symmetrically, supN € N =
supM € M.

Conversely, assume that (a) and (b) hold, it suffices to show that |[M = [N by
Lemma 12. Assume that | M # | N; without loss of generality, thereis y € {[M buty ¢ |N.
That is to say, for arbitrary n € N we have n < y. So, sup N € N implies sup N < y. Since
y € |M, thereis m € M such that y < m. It follows supN < y < m < sup M by the
definition of sup N, which is contrary to sup M = sup N. Thus, M = N.

Assume A is a finite MV-chain, and (b) always holds. Hence, M = N iff (a) holds. O

Remark 9. Note that sup M = sup N may not imply M < N. For example, let A = [0,1] be
the standard MV-algebra and 3 € A. Define M = |1 and N = {a € A |0 <a < }}. Then,
supM =supN = %, but M £ N, since % € M, thereisnoy € N such that % <.

Example 4. Consider the MV-chain L, with n > 2. Then, A(Ly)/~ is order isomorphic to Ly.
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(cvd)(xoy) =

((
= ((
((
((

Proof. Define f : L, — A(L,)/~Dby f(x) =Xforany x € L,. If ¥ = ¥, then x = sup{x} =
sup{y} = y by Lemma 13 (3). Thus, f is injective. To prove f is surjective, assume
M € A(Ly,)/~, then f(sup M) = sup M = M by Corollary 4.

It is enough to verify that f and f~! are order preserving. If x < y, then f(x) =
X 2y = f(y) since {x} < {y} and Corollary 4. Conversely, suppose X < ¥, we have
x = sup{x} < sup{y} = y by Lemma 13 (1). Therefore, f is an isomorphism. [

We next investigate the preorder on the set of (®, V)-multiderivations.

Similar to A(A), we can define an equivalence relation on MD(A) by ¢ ~ ¢’ iff o < 0’
and ¢’ < ¢, and define & < ¢’ in MD(A) /~ iff ¢ < ¢’. Observe that < in MD(A)/~ is a
well-defined partial order by the hereditary order of <. Clearly, (MD(A)/~, <) is a poset.
By the definition of <, we know & = ¢ iff o(x) = ¢’(x) for any x € A.

For any ¢ € MD(A), Jo: A — A(A) is defined as (0)(x) = Jo(x). We claim that
7 = lo. Infact, 0 < | is trivial. For any y € o (x), there exists z € ¢(x) such thaty < z
by the definition of | (x). Therefore, lo(x) < o(x) forany x € Aand o < 0.

Lemma 14. If A is an MV-algebra, then:

1. oVo € MD(A) forallg,0’ € MD(A).
2. o e MD(A) forany o € MD(A).

Proof. (1) Leto, 0’ € MD(A) and x,y € A. Then, we have

=o(xOy)Vd(xoy) (Definition of oV ¢’)
o(x)Oy)V(x@a(y) V(e (x) Oy) V(x©d'(y))) (o,0" € MD(A))
o(x)Oy) V(@' (x)©y)) V((x@a(y)) V(x©c'(y)) (Lemmaé (4)and (5)
o(x) V' (x) Oy) V(x© (o(y) V' (y))) (Lemma 7 (2))
cVda)(x)oy)V(xe (cVd)(y)) (Definition of oV ¢”’)

andso o Vo' € MD(A).
(2) Assume ¢ € MD(A). Leta € (Jo)(xOy) = lo(xOy) =
o(y))). Thereexist x; € o(x)andy; € o(y) suchthata < (x;Oy) V (x

Hex)oy)v(xo

(o
©®y1). It follows that

a=an((x1Oy)V(xOHn))
=(@an(x1Oy))V(an(x®y1)) (Distributivity of A)
=boy)V(xeo), (Lemma 5 (1))

where b < x1 and ¢ < y1. Hence, a € ((10)(x) ©y) V (x ® (10)(y)).
Conversely, leta € ((J0)(x) @y) V (x® (47)(y)). There exist x; € o(x) andy; € o(y)
such that
a=boy)V(xoc) <(xoy) V(xoy),

where b < x1 and ¢ < y;. Thus, a € (J0)(x O y).
Therefore, o € MD(A). O

Remark 10. When A is an MV-chain, ¢V ¢/ € MD(A) is a least upper bound of o and o’ in
MD(A). We know o U ¢’ is a least upper bound of o and ¢’ in MF(A). Note that MD(A) C
MEF(A) and the preordered on MF(A). It suffices to verify that oV ¢’ ~ cUc’. Forall x € A,
(cUd’)(x) <X (0 ') (x) is trivial. Foranyy € (o V ¢')(x), there exist z € o(x) and z' € ¢’ (x)
such that y = z V z'. Since A is an MV-chain, y = z or y = z’. Hence, y € (¢ U¢”)(x), which
implies (0 V o) (x) < (cU0’)(x). Therefore, (cU0")(x) ~ (¢ o')(x) forall x € A, and hence,
oV o' € MD(A) is a least upper bound of o and o’ in MD(A).

At the end of this section, we characterize the lattice MD(L,, )/~ (n > 2).
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Theorem 1. If L, is the n-element MV-chain with n > 2, then the lattices MD(L,) /~ and
Der(L,,) are isomorphic.

Proof. Define a map f : MD(L,)/~ — Der(L,) by

f(o) =supo.

By Proposition 7 we know sup o € Der(L,). The order < on Der(L,) is defined as d < d’
iffd(x) <d'(x),Vx € Ly.

Firstly, we prove that f is well defined. Suppose & = ¢”, that is, o(x) = ¢’(x) for any
x € L. We get

(sup ) (x) = sup(o(x)) = sup(¢’(x)) = (supo’)(x)
for any x € L, by Lemma 13 (3). Thus, f () = sup(c) = sup(c’) = f(c”).
If f(¢) = f(c'), that is, sup(c) = sup(¢’), then sup(c(x)) = sup(c’(x)) for any

x € L. Lemma 13 (3) implies 0(x) = ¢’ (x) for any x € L, and thus ¢ = ¢’. Hence, f is
injective. For any d € Der(L,), there is 7; € MD(L, ) where ;(x) := [0, d(x)] such that

f(ra)(x) = (sup7a)(x) = sup(74(x)) = sup|0,d(x)] = d(x)

for all x € L, by Propositions 6 and 7. Thus, f(7;) = d and f is surjective.
To prove that f is an order-isomorphism, let & < ¢!, that is, for any x € L, o(x) <
o’ (x). Corollary 4 implies that o(x) = sup(c(x)) for any x € L. It follows that

(sup o) (x) = sup(c(x)) < sup(d’(x)) = (supo’)(x)

and thus (sup o)(x) < (supc’)(x) for any x € Ly since (sup c)(x) is a singleton. Hence,
f(@) =supo < supo’ = f(¢’). Conversely, assume d,d’ € Der(L,) and d < d’, which
means d(x) < d’(x) for all x € L,,. Now the construction in Proposition 6 gives 74 = f~1:

A — A(A), where 7y;4(x) = [0,d(x)]. Furthermore, we have

va(x) = [0,d(x)] 2 [0,d'(x)] = 7ar(x)
forany x € L, by the definition of <. Thus, 74 < vy and f~1(d) =93 < 7o = f~'(d’). O

Proposition 11. If L, is the n-element MV-chain with n > 2, then the lattices A(L, X Ly)/~
and Der(L,,41) are isomorphic.

Proof. Recall that Der (L, 1) is isomorphic to the lattice (A(L;+1), <) where A(L,41) =
{(x,y) € Lys1 X Lys1 | v < x}\{(0,0)} [16, Theorem 5.6] and < is defined by: for any
(x1,91), (x2,¥2) € Lyy1 X Lyga, (x1,y1) = (x2,42) iff x1 < x2 and y; < y2. Moreover,
A(Ly, x Lp)/~ is isomorphic to the lattice Lo(L,, x Ly) by Corollary 5.

Define amap f : A(L,11) — Lo(Ln X Lp) by:

(8 ={4

where 0 < k, ¢ < n—1. It is easy to see that f is injective. Now we show that f is
surjective. For any M € Lo(L, x L), we claim M has at most two maximal elements.
By way of contradiction, assume M has three different maximal elements denoted by
(an,by), n =1,2,3; then, there exist 1 < i < j < 3 such that b; = bj since b, € L. Thus,
(a;,b;) and (a;, bj) are comparable, which contradicts the fact that (a;, b;) and (a;, b;) are

different maximal elements. If M has only one maximal element denoted by (%, a), then

|
—_ )

:1/0)/ lf EZO,
L) UL(EEL 1), if >0,

=)
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fgk“ 0),  ifa=0;

k+1 k+1), if a=1.

n’ n

If M has exactly two maximal elements denoted by (%, 0) and (%, 1), then
M= (5,0 ULy, 1) = £(52, 52).
Therefore, f is surjective.

Since a bijection with supremum preserving is an order isomorphism, it suffices to
verify that f preserves the supremum, that is,

for all ( ) (
Case 1 If

S

|| I
m
b
—~
h
=
F
—_

Case2. If { = 0,49 > 0, then

f(£0)UF(h D) = L= 0 U (L 0 U LG D)

= y(maxdkpi =1 gy (4= 1)
:f((g,o) V(e D

The case ¢ > 0, g = 0 is similar.
Case3.1f £ > 0,9 > 0, then

FEL U = (o uidE ) u (L 0 Ul D)
= L 0) (P )
_ f(max{k,p}, maxif,q})
= f(EDHVvED).

Now we verify that f is an isomorphism of posets and hence an isomorphism of
lattices. For all x,y € A(L; 1),

xsyexVy=ye f()Uf(y)=f(xVy) = fly) & f(x) C fy)

Hence, f is an isomorphism of lattices.
Therefore, A(L, 1) = Lo(Ly x L) and then A(L, x Lp)/~ = Der(L,,1). O

Corollary 6. If L, is the n-element MV-chain with n > 2, then MD(L,,11 )/~ is isomorphic to
the lattice A(L, X Lp)/~.

Proof. It follows from Theorem 1 and Proposition 11. O
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Note that according to the isomorphism in Theorem 1, |[MD(L,)/~ | = |Der(L,) | =

w by [16] (Theorem 3.11). However, the following Example 5 shows that the
cardinalities of different equivalence classes with respect to the equivalence relation ~ are
different in general.

Example 5. Let n = 2 and define 6 € MF(Ly) by §(0) = {0},6(1) = {0,1}. Then, it is easy to
check that
MD(L2) = {Owmp(1,), Idmr(z,), 0}
MD(Lz)/~ = {{Omp(1,) }, {IdmE(1,), 0} }-
It is clear that | Ongp(r,) | = 1but | Idyg(r,) | = 2. Hence, 2 = [MD(Lp)/~ | { [MD(Ly) | = 3.
So, the cardinality of MD(L,,) is not easy to deduce from Theorem 1. In the next

section, we will investigate the enumeration of the set of (®, V)-multiderivations on L, by
constructing a counting principle (Theorem 3).

5. The Enumeration of (®, V)-Multiderivations on a Finite MV-Chain

In this section, we determine the cardinality of MD(Lj, ). For small values of #, this can
be performed with calculations using Python (see the Appendix A Figure A1) in Table 1:

Table 1. The cardinality of MD(Ly,).

n 2 3 4 5 6
|MD(Ly,)| 3 16 63 220 723

The result cannot be obtained after 7 > 6 due to the limitation of computing resources.
But we have shown the following general formula.

7-3171 224

Theorem 2. Let n > 2 be a positive integer. Then, |MD(L,)| = 7

In order to prove Theorem 2, we need the following Lemmas.

Lemma 15. Assume that A is an MV-chain and o € MD(A); then, the following results hold:

1. IfMCA thenM=MV M.

2. Foranyx € A,n € Ny, wehave o (x") = x" 1@ o(x), wherex® =1, x" =xOx©® - Ox.
—_————

n

Proof. (1) It follows immediately from Lemma 6 (3), as M is a sublattice.

(2) We prove ¢(x") = x"~! ® o(x) by induction on n. Obviously, o(x!) = o(x) =
100(x) =x"too(x).

Now, assume that ¢(x") = x"~! ® ¢(x). By Equation (3), we have

c(x") = o(x" @ x)
= (e(x") O x) Vv (x" ©o(x))
oe(x)ox) Vv (x"oo(x))
x"@a(x)

0 (2) holds. O

Note that an MV-chain can be completely characterized by (1). That is, if A is an
MV-algebra, then A is an MV-chain iff M = M VvV M for every M C A. In fact, by way
of contraposition, assume that x, ¥ € A and x, y are incomparable, denote z = x V y. Let
M = {x,y}. Then,z =xVy € MV Mbutz ¢ M. This leads to a contradiction.
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n%z)m foreverym € {1,2,--- ,n—1}.
So, any x € L,\{1} has a representation as a power of =%

Next, we give a counting principle for (©®, V)-multiderivations on a finite MV-chain L,,.

Letn € Ny and n > 2.In L,;, we know ”;’fl_l =(Z

Theorem 3. Let o be a multifunction on Ly, and v = "=2. Then, ¢ € MD(Ly,) iff o satisfies the
following conditions:

1. (@) =v"1o0o(v),Vme{l1,2,--- ,n—1}.

2. o(v)=0c(v)V(ver(l)).

3. o(v) X {v}.

Proof. Assume ¢ € MD(Ly,); then, for each m € {1,2,- — 1}, we have o(v™) =
v" 1 ® 0(v) by Lemma 15 (2), and 0(v) = (v ® 1) = (v ) (v ® o(1)) by Equation (3).

Thus, o satisfies (1) and (2). Furthermore, (3) holds by Proposition 4 (2).

Conversely, suppose that ¢ satisfies (1), (2) and (3). Let x,y € L,. There are four
cases:

If x =y =1, thenitis easy tosee that c(1® 1) = 0(1) = ¢(1) V(1) by Lemma 15 (1).

If x =1ory =1, and x # y. With out loss of generality, suppose that x # 1and y =1,
then x = of for some k € {1,2,--- ,n —1}. By (1), we have ¢(x © 1) = o(x) = o(v}) =
"1 © ¢(v). Also, we have

o(x)V(x0o(1) = (@ o)V (Uk@tf(l))
= (0" 1®‘7(U)) V(@ e (voe(1)
= 1o (c(v) V(ve (1)) (Lemma 7 (2))
Lo o(v). ((2) of Theorem 3)

Hence, c(x ©1) =0(x) = (c(x) ©1) V (x @ c(1)).
If x # 1 and y # 1, then assume that x = ok andy = o' for some k, ¢ € {1,2,--- ,n—1}
We have
c(x@y) = o(?* ©0') = o ()

and
(c(x) oY)V (x0o(y) = (" Tork)od") Vv @ke (@ o)) = oo

by Lemma 15 (1). Then, there are three cases:

For k+ ¢ < n — 1, by (1) we obtain ¢/(v*+¢) = oF+-1 @ o(0v).

Fork+ ¢ = n—1,by (3) we have ¢(v*4) = ¢(v""1) = ¢(0) < {0} and so ¢(0) = {0}.
And "1 0 0 (v) = v 2 © 0(v) = v* @ 0(v) = {0}. Thus, c(x O y) = (c(x) Oy) V (x ®
o(y).

Forn—1 < k+¢ < 2n—2, we have ¢(v*!) = ¢(0) = {0} =00 0(v) = 1o
o(v) by (3) and thus Equation (3) holds.

Therefore, we conclude that o € MD(L,,). O

Lemma 16. Let P,Q € A(Ly). Then, the following results hold:

1. PCPVQiffminQ <minP.
2. PVQCPif mnP,1]NnQ CP.

Proof. Denote pg = min P, g9 = min Q.

(1) Assume P C PV Q, then there exist p € P, g € Q such that pg = pV q > g. Thus,
g0 < q < po.

Conversely, suppose g9 < po, then p = pV qo for any p € P since py < p. Hence,
PCPVvQ.

(2) Assume PV Q C P; then, forall g € [po,1]NQ, wehaveq=poVgqge PVvQCP.
Thus, [po,1]NQ C P.
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Conversely, assume [pg,1]NQ C Pandp € P,ge Q. Ifg < p,thenpVg=p e P. If
g>p thenpVg=gqe€[py,1]NQC P.Ineithercase, pV g€ PandsoPVQ CP. O

Lemma17. Let Q,Q" € A(L,) and 1 ¢ Q. Denote v = Z%% Then, the following results hold:

1. If0¢Q thenQ=v060Q iff Q' = Q®o*

2. If0 € Q, denote Q1 = Q\{0}. Then, Q = v Q if Q' = {0} U (Q ®v*), {v*} U
(Q1@v*)or{0,v*} U (Qq ® v*).

Proof. (1) Let0 ¢ Qand Q = v® Q’. Then, 0 ¢ Q’, otherwise, 0 =v®0€ v Q' = Q,
a contradiction. Thus, 0 ¢ Q’, which implies {v*} < Q'. Hence, we have

Q=QVvo={dVvo|qdeQ}
={(dev)ev |4 ecQ}
=(Q ®v) @0
=Qav".

Conversely, assume Q" = Q @ v*. Since 1 ¢ Q, we have Q < {v}. Hence,

Q=QAv={gAv|neQ}
={vo(@®o")|[neQ}
=00 (Q&v")
=v0Q.

(2) Assume 0 € Qand Q = v ® Q’; then, 0 = v ® g’ for some g’ € Q'. Thus, 0 € Q' or
v* € Q. Denote Q) = {0,0*} N Q" and Q] = Q' \ Q). Byv® Q) = {0} and {v*} < v® Qf,
we have

Q1 =0\ {0} =(woQ)\{0}

(vo(QuUQ))\ {0}

(v© QYU (®Q}))\ {0} (Lemma7 (3))
= ({0} u(v@ Q) \ {0}

=00 Q).

Since 0 ¢ Q1, we obtain Q] = Q; @ v* by (1). Therefore,
Q' =QuUQI = QU (Qi®v"),

where Q) = {0}, {v*} or {0,v*}.
Conversely, assume 0 € Q and Q" = Q) LI (Q1 @ v*), where Qj, = {0}, {v*} or {0,v*}.
From 1 ¢ Qy, it follows that Q; < {v} and

vOQ =v6 (QU(Q1®vY))
= (0O Q) U[®®(Q®v)) (Lemma 7 (3))
={0}u(QAv)={0}UQ1=0Q.
Hence, we complete the proof. [

We are now in a position to prove Theorem 2:

Proof of Theorem 2. Assume that ¢ is a multifunction on L, and denote Z—:% by v. Accord-
ing to Theorem 3, ¢ is uniquely determined by o(v) and ¢(1) if ¢ € MD(L,). Hence, it is
enough to consider the values of ¢(v) and ¢(1). By Theorem 3, 0 € MD(L,,) iff

o(v) = {v}, ©)
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|IMD(L,)|

I ||
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= = s = I
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N O

N O

n

k

and
o(v)=c(v)V(voo(l)). (6)

For convenience, we denote P = ¢(v), Q' = ¢(1), Q = v® (1), po = min P and
go = min Q. Equation (5) implies 1 ¢ P. By Lemma 16, we know Equation (6) implies that
g0 < po and [po, 1] N Q C P. Assume that py = £ and |P| = £, where 0 < k < n — 2 and

1<{¢<n-—k—1.Then, P\ {po} C [’f%, ”%} Thus, P has C:~} _, choices with respect
to k and £. Now, we will determine all choices of Q and Q’.

Case 1. If g9 = po, then Q = [0,1] N Q = [po,1] N Q C P. Hence, Q \ {40} can take
any subset of P\ {pp} and so Q has 2/~ choices.

If go > 0, then 0 ¢ Q, and by Lemma 17 (1) and Q = v ® Q" we know Q' = Q @ v*.
Hence, Q' has 2/~ choices.

If go =0,then 0 € Q, by Lemma 17 (2) and Q = v ® Q' we have Q' = {0} U (Q; ® v*),
{v*} U (Q1 ®v*) or {0,0*} U (Q1 ® v*). Thus, Q' has 3 -2/~ choices.

Case 2. If 0 < go < po, denote Q1 = (0, pp) N Q and Qy = [po, 1] N Q. Since 0 ¢ Q, we
have Q = Q; LI Q,. Notice that Q; # @, so there are 25~1 — 1 choices of Q;. Furthermore,
since Q2 = [po,1]NQ C P, Q; can take any subset of P and so has 2¢ choices. Thus,
there are (28-1 — 1) - 2¢ choices of Q in this case. Since 0 ¢ Q, it follows that Q' has also
(2k=1 — 1) - 2¢ choices by Lemma 17 (1).

Case 3. If 0 = g9 < po, denote Q1 = (0, pp) N Q and Q2 = [po, 1] N Q, so we have
Q = {0} UQ; LIQ,. Since Q; C (0, po), there are 2K~ choices of Q;. Moreover, Q, has 2¢
choices as in Case 2. Thus, there are 2+~ choices of Q in this case. Since 0 € Q, it follows
that Q' has 3 - 2+/~1 choices by Lemma 17 (2).

According to Theorem 3, we can determine the unique (®, V)-multiderivation for each
choices of ¢(1) and o (v).

Therefore, it follows

(n—k 2)(zg1+(2k1_1)_2z+3.2k1,2é 2( >3 201
(ﬂ—k 2) (2k+H+ _pl-1)

nk 1y k-2
ok+2 _ b1
(( 'y (") )

(2k+2 _ 1)(2 + 1)n7k72

LL

—=2((3)7-0)7)

B 7.3n—172n+2+1

2

6. Conclusions and Questions

In this paper, the point-to-point (®, V)-derivations on MV-algebras have been ex-
tended to point-to-set (®, V)-multiderivations. We show that (MD(L,,)/~, <) is isomor-
phic to the complete lattice Der(L, ), the underlying set of (®, VV)-derivations on L. This
unveils a certain relevance between (©®, V)-multiderivations and (®, VV)-derivations. More-
over, by building a counting principle, we obtain the enumeration of MD(L,).

This general study of (®, VV)-multiderivations has the advantage of developing into a
system theory of sets and has potential wide applications: other logical algebras, control
theory, interval analysis, and artificial intelligence.

We list three questions to be considered in the future:
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(1) We have found two ways to construct (®, VV)-multiderivations from (®, V)-derivations
in Propositions 5 and 6. Are there other ways?

(2) We ask whether the equivalent characterization and enumeration of (®, V)- multi-
derivations on finite MV-chains can be extended to finite MV-algebras.

(3) We ask whether MV-algebras A and A’ are isomorphic if (MD(A), <) and (MD(A’), x)
are order isomorphic.
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Appendix A. Calculation Program by Python in Table 1

from itertools import product

#the set of MV-chain Ln
n =6 # Adjust n as needed
L = list(range(n))

# operators on Ln
def omul(a, b):
return max(a + b + 1 — n, 0)

def join(a, b):
return max(a, b)

# operators on Delta(Ln)
def Omul(A, B):

C=1]
for i in A:
for j in B:
k = omul(i, j)
if k not in C:
C.append (k)
return C

def Join(A, B):

C =11
for 1 in A:
for j in B:

k = join(i, j)
if k not in C:

Figure A1. Cont.
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C.append (k)
return C

# judge whether F is a multiderivation
def IsMulDer(F):
for i in range(n):
for j in range(n):
if set(F[omul(i, j)]) != set(Join(Omul(F[i], []
1), Omul([i], F[j1))):
return False
return True

# get the list of all multifunctions on Ln
def powerset(s):
for i in range(l << len(s)):
yield [s[j] for j in range(len(s)) if (i & (1 << j))
]

def generate_PLn(n):

elements = []

for i in range(l, n+1):
a = list(powerset(range(i)))
if [] in a:

a.remove ([])

elements . append(a)

return list(product(xelements))

def find_MulDer () :
MulDer = 0
for F in generate_PLn(n):
if IsMulDer(F):
MulDer += 1
print (F)
return MulDer

MulDer_count = find_MulDer ()
print (MulDer_count)

Figure A1. MD(L,).py.

References

PN U N

10.
11.
12.

13.

Posner, E. Derivations in prime rings. Proc. Amer. Math Soc. 1957, 8, 1093-1100. [CrossRef]

Széasz, G. Derivations of lattices. Acta Sci. Math. 1975, 37, 149-154.

Ferrari, L. On derivations of lattices. Pure Math Appl. 2001, 12, 365-382.

Xin, X.L.; Li, T.Y;; Lu, ].H. On derivations of lattices. Inf. Sci. 2008, 178, 307-316. [CrossRef]

Xin, X.L. The fixed set of a derivation in lattices. Fixed Point Theory Appl. 2012, 218, 218. [CrossRef]

Gan, A.P;; Guo, L. On differential lattices. Soft Comput. 2022, 26, 7043-7058. [CrossRef]

Jun, Y.B.; Xin, X.L. On derivations on BCI-algebras. Inf. Sci. 2004, 159, 167-176. [CrossRef]

He, PF; Xin, X.L.; Zhan, ].M. On derivations and their fixed point sets in residuated lattices. Fuzzy Sets Syst. 2016, 303, 97-113.
[CrossRef]

Kriavek, J.; Kiihr, ]. A note on derivations on basic algebras. Soft Comput. 2015, 19, 1765-1771. [CrossRef]

Hua, XJ. State L-algebras and derivations of L-algebras. Soft Comput. 2021, 25, 4201-4212. [CrossRef]

Alshehri, N.O. Derivations of MV-algebras. Int. . Math. Math. Sci. 2010, 2010, 312027. [CrossRef]

Hamal, A. Additive derivative and multiplicative coderivative operators on MV-algebras. Turk. ]. Math. 2019, 43, 879-893.
[CrossRef]

Wang, ].T.; He, P.E; She, Y.H. Some results on derivations of MV-algebras. Appl. Math. ]. Chin. Univ. Ser. B 2023, 38, 126-143.
[CrossRef]


http://doi.org/10.1090/S0002-9939-1957-0095863-0
http://dx.doi.org/10.1016/j.ins.2007.08.018
http://dx.doi.org/10.1186/1687-1812-2012-218
http://dx.doi.org/10.1007/s00500-022-07101-z
http://dx.doi.org/10.1016/j.ins.2003.03.001
http://dx.doi.org/10.1016/j.fss.2016.01.006
http://dx.doi.org/10.1007/s00500-014-1586-0
http://dx.doi.org/10.1007/s00500-021-05651-2
http://dx.doi.org/10.1155/2010/312027
http://dx.doi.org/10.3906/mat-1810-8
http://dx.doi.org/10.1007/s11766-023-4054-8

Axioms 2024, 13, 250 24 of 24

14.
15.

16.
17.
18.
19.

20.
21.

22.
23.
24.

25.
26.

27.
28.
29.

30.

Yazarli, H. A note on derivations in MV-algebras. Miskolc Math. Notes 2013, 14, 345-354. [CrossRef]

Rachtinek, J.; Salounova, D. Derivations on algebras of a non-commutative generalization of the Fukasiewicz logic. Fuzzy Sets
Syst. 2018, 333, 11-16. [CrossRef]

Zhao, X.T,; Gan, A.P; Yang, Y.C. (®, V)-derivations on MV-algebras. Soft Comput. 2024, 28, 1833-1849. [CrossRef]

Eilenberg, S.; Montgomery, D. Fixed Point Theorems for Multi-Valued Transformations. Amer. . Math. 1946, 68, 214. [CrossRef]
Aumann, R.J. Integrals of set-valued functions. |. Math. Anal. Appl. 1965, 12, 1-12. [CrossRef]

Filippov, A.F. Classical solutions of differential equations with multivalued right-hand side. SIAM ]. Control 1967, 5, 609-621.
[CrossRef]

Hermes, H. Calculus of set valued functions and control. J. Math. Mech. 1968, 18, 47-60. [CrossRef]

Aumann, R.J. Existence of a competitive equilibrium in markets with a continuum of traders. Econometrica 1966, 34, 1-17.
[CrossRef]

Neumann, J.V.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton: Princeton, NJ, USA, 1944.

Rezapour, S.; Sami, S. Some properties of isotone and joinitive multiderivations on lattices. Filomat 2016, 30, 2743-2748. [CrossRef]
Cignoli, R.; D’Ottaviano, I.M.L.; Mundici, D. Algebraic Foundations of Many-Valued Reasoning; Kluwer Academic Publishers:
Dordrecht, The Netherlands, 2000.

Chang, C.C. Algebraic analysis of many-valued logic. Trans. Am. Math. Soc. 1958, 88, 467-490. [CrossRef]

Ansari, Q.H.; Kébis, E.; Yao, J.C. Vector Variational Inequalities and Vector Optimization; Springer International Publishing: Cham,
Switzerland, 2018.

Awodey, S. Category Theory; Oxford University Press: New York, NY, USA, 2010.

Burris, S.; Sankappanavar, H.P. A Course in Universal Algebra; Springer: New York, NY, USA, 2012.

Almeida, J.; Cano, A.; Klima, O.; Pin, ].E. On fixed points of the lower set operator. Internat. J. Algebra Comput. 2015, 25, 259-292.
[CrossRef]

Gierz, G.; Hofmann, K.H.; Keimel, K.; Lawson, ].D.; Mislove, M.; Scott, D.S. Continuous Lattices and Domains; Cambridge University
Press: Cambridge, UK, 2003.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.18514/MMN.2013.420
http://dx.doi.org/10.1016/j.fss.2017.01.013
http://dx.doi.org/10.1007/s00500-023-09384-2
http://dx.doi.org/10.2307/2371832
http://dx.doi.org/10.1016/0022-247X(65)90049-1
http://dx.doi.org/10.1137/0305040
http://dx.doi.org/10.1512/iumj.1969.18.18006
http://dx.doi.org/10.2307/1909854
http://dx.doi.org/10.2298/FIL1610743R
http://dx.doi.org/10.1090/S0002-9947-1958-0094302-9
http://dx.doi.org/10.1142/S021819671540010X

	Introduction
	Preliminaries
	(,)-Multiderivations on an MV-Algebra 
	The Order Structure of (,)-Multiderivations on a Finite MV-Chain
	The Enumeration of (,)-Multiderivations on a Finite MV-Chain
	Conclusions and Questions
	Calculation Program by Python in Table 1
	References

