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Abstract: This paper concerns a fractional Kirchhoff equation with critical nonlinearities and a
negative nonlocal term. In the case of high perturbations (large values of α, i.e., the parameter of a
subcritical nonlinearity), existence results are obtained by the concentration compactness principle
together with the mountain pass theorem and cut-off technique. The multiplicity of solutions
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nonexistence and asymptotic behavior of positive solutions are also investigated.
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1. Introduction and Main Results

In this work, we study the existence of solutions for the following fractional Kirchhoff
equation:
(

a − b
∫
R2n

|u(x)− u(y)|2
|x − y|n+2s dxdy

)
(−∆)su = λu + α|u|q−2u + |u|2∗s −2u, x ∈Ω,

u = 0, x ∈Rn \ Ω,
(1)

where Ω ⊂ Rn is a smooth bounded set containing 0 with a Lipschitz boundary, dimension
n > 2s with s ∈ (0, 1), a, b, λ, α > 0, 1 < q < 2∗s , where 2∗s = 2n

n−2s is the fractional critical
Sobolev exponent. The fractional Laplacian operator (−∆)s is defined by

(−∆)su(x) = C(s)P.V.
∫
Rn

u(x)− u(y)
|x − y|n+2s dy, u ∈ S(Rn),

where P.V. stands for the Cauchy principal value, C(s) is a normalized constant, and S(Rn) is
the Schwartz space of the rapidly decaying function. According to [1,2],the following problem{

(−∆)su = λu, x ∈Ω,

u = 0, x ∈Rn \ Ω,
(2)

has a sequence of eigenvalues satisfying 0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞.
Due to its interesting theoretical structure and concrete applications in many fields,

such as phase transitions, Markov processes and fractional quantum mechanics, minimal
surfaces, and so on [3], more and more papers have focused on fractional and nonlocal
operators of the elliptic type. For example, based on the classical Brezis–Nirenberg problem [4],
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Servadei and Valdinoci [5] studied the following nonlocal fractional counterpart of the Brezis–
Nirenberg problem: {

(−∆)su = λu + |u|2∗s −2u, x ∈Ω,

u = 0, x ∈Rn \ Ω,
(3)

and obtained a nontrivial solution when 0 < λ < λ1 and N ≥ 4s. Refs. [6,7] considered
problem (3) in the lower dimension. Servadei [8] further investigated problem (3) in the
resonant case. Figueiredo, Bisci, and Servadei [9] studied the number of nontrivial solutions
of problem (3) under consideration with the topology of Ω when λu is replaced by λ|u|q−2u
with 2 ≤ q < 2∗s . Mukherjee and Sreenadh [10] considered the existence, nonexistence, and
regularity results for a weak solution of problem (3) with Hardy–Littlewood–Sobolev critical
nonlinearity. Fu and Xia [11] investigated the multiplicity results of problem (3) with a
nonhomogeneous term f (x). When λu is replaced by a Carathéodory function, satisfying a
different subcritical condition, Fiscella, Bisci, and Servadei [12] obtained different results of
multiple solutions for problem (3). Fiscella, Bisci, and Servadei [1], Servadei et al. [5,13,14],
and Li and Sun [15] considered the generalization of problem (3) when (−∆)s is replaced
by the integrodifferential operator defined as

LKu(x) =
∫
Rn
(u(x + y) + u(x − y)− 2u(x))K(y)dy, x ∈ Rn,

where K is a measurable function satisfying some suitable conditions.
In the local setting (s = 1), problem (1) can be viewed as a deformation of a stationary

analogue of the following Kirchhoff problem:

ρ
∂2u
∂2t

−
(P0

h
+

F
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2dx
)∂2u

∂2x
= f (x, u), (4)

proposed by Kirchhoff [16] in 1883. This equation is an extension of the classical d’Alembert’s
wave equation by considering the effects of the changes in the length of the string during
the vibrations. The parameters in (4) have the following meanings: L is the length of
the string. h is the area of the cross section. F is the Young’s modulus of the material.
ρ is the mass density, and P0 is the initial tension. Problem (4) was proposed and stud-
ied as the fundamental equation for understanding several physical systems, where u
describes a process which depends on its average. We should point out that a fractional
Kirchhoff equation was first introduced and studied by Fiscella and Valdinoci [17]. Af-
ter that, many researchers paid attention to fractional Kirchhoff equations with critical
nonlinearities under fractional Laplacian operator (−∆)s, fractional p-Laplacian operator
(−∆)s

p, integrodifferential operator LK, or fractional n/s-Laplacian operator (−∆)s
n/s, see,

e.g., [3,18–21] and the references therein.
In this paper, we considered a new Kirchhoff problem with a fractional Laplacian

operator and a negative nonlocal term, that is, this Kirchhoff problem involves a nonlocal

coefficient a − b
∫
R2n

|u(x)− u(y)|2
|x − y|n+2s dxdy. It stems from the Young’s modulus, which can

also be used in computing tension; when the atoms are pulled apart instead of squeezed
together, the strain is negative because the atoms are stretched instead of compressed,
and this leads to a negative Young’s modulus [22]. Yin and Liu [23] first proposed and
investigated this new nonlocal problem,−

(
a − b

∫
Ω
|∇u|2dx

)
∆u = |u|q−2u, x ∈Ω,

u = 0, x ∈Rn \ Ω,
(5)

when 2 < q < 2∗. From then on, these new Kirchhoff problems with a negative nonlocal
term have attracted a lot of attention. Refs. [24–27] obtained some important results with a
Laplacian operator and a p-Laplace operator. As for a p(x)-Laplacian operator, refs. [28–30]
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gained certain wonderful conclusions. Some useful results were also obtained in [31–33]
for the Kohn–Laplacian on the first Heisenberg group.

However, there are few papers considering critical Kirchhoff problems with negative
nonlocal terms like (1), since the fractional Laplacian operator (−∆)s is also a nonlocal
term and then problem (1) is the bi-nonlocality. This, together with the lack of compactness
caused by critical nonlinearities, produces several difficulties in its study. On the other
hand, as pointed out by Qian [25], the sign of the nonlocal term plays an important role
in nonlocal problems, so it is necessary to investigate problem (1). Firstly, we give the
following nonexistence of a positive solution for problem (1).

Theorem 1. Suppose λ ≥ aλ1 and 1 < q < 2∗s ; then problem (1) has no positive solution.

To show the existence results for problem (1), define T = min{T1, T2}, where

T1 =

[
a(q − 2)

64b

] 1
2
, T2 =

( s
8nb

) 1
4
(

aSs

2
)

n
8s

and Ss can be found in (7). We also define Λ = min
{

Λ0,
[

aT2n(q−2)
4qs|Ω|

] 2s
n
}

with Λ0 =

aSs

2

(
1

2|Ω|

) 2s
n

. By virtue of the concentration compactness principle together with the

mountain pass theorem and cut-off technique, we obtain the existence and asymptotic
behavior of solutions for problem (1) as follows.

Theorem 2. Suppose 2 < q ≤ min{4, 2∗s } and aλ1 − Λ < λ < aλ1; then there exists α∗ > 0
such that if α > α∗, then problem (1) has at least one positive solution uλ.

Theorem 3. For every sequence {λn} with λn ↗ aλ1, let uλn be the positive solution to problem (1)
provided by Theorem 2, then limn→∞ ∥uλn∥ = 0.

As for the multiplicity of solutions, we further obtain the following result by using the
symmetric mountain pass theorem.

Theorem 4. Suppose 2 < q ≤ min{4, 2∗s } and aλ1 − Λ < λ < aλ1; then for any k ∈ N, there
exists α∗k > 0 such that problem (1) admits k pairs of positive solutions for α > α∗k .

Remark 1. In comparing our results with those obtained by Jin, Liu, and Zhang [3], who considered
problem (1) with a = 1 and b < 0, and Yang, Liu, and Ouyang [34] in the local setting, we find
that the sign of the nonlocal term also plays an important role in the nonlocal fractional setting.
Furthermore, we also obtain asymptotic behavior of positive solutions for problem (1), which [3,34]
did not discuss.

Remark 2. In Ref. [25], Qian considered problem (1) in the local setting with α = 0 and n ≥ 5.
Hence, our results extend those obtained by [25] to the nonlocal fractional setting with n > 2s, and
we also obtain multiple results which were not considered in [25].

This article contains four more sections. In Section 2, we present some preliminaries
and introduce the variational framework and truncated functional of problem (1). In
Section 3, we show a compactness result for the truncated functional. In Section 4, we
prove the existence, nonexistence, multiplicity, and asymptotic behavior of solutions for
problem (1). Finally, we conclude in Section 5.

2. Preliminaries

In this section, we collect some basic definitions and results of fractional Sobolev spaces
and then introduce the variational framework and truncated functional of problem (1). For
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convenience, Lr(Ω) with r ≥ 1 denotes a Lebesgue space. C(A, B) and C1(A, B) denote,
respectively, the spaces of continuous and continuously Fréchet differentiable maps from
A into B. The Fréchet derivative of I at the point u will be denoted by I′(u). For 0 < s < 1,
the fractional Sobolev space Hs(Rn) is defined as

Hs(Rn) =

{
u ∈ L2(Rn) :

|u(x)− u(y)|
|x − y| n+2s

2
∈ L2(Rn ×Rn)

}
.

Following Fiscella [35,36], in view of the boundary condition, we consider its subspace

W0 = {u ∈ Hs(Rn) : u = 0 a.e. inRn \ Ω},

equipped with a scalar product and the norm defined as

(u, v) =
∫
R2n

(u(x)− u(y))(v(x)− v(y))
|x − y|n+2s dxdy,

∥u∥ =

(∫
R2n

|u(x)− u(y)|2
|x − y|n+2s dxdy

) 1
2

.

(6)

Then W0 is a Hilbert space. By the results of [5], the embedding of W0 ↪→ Lr(Ω) is
continuous for any r ∈ [1, 2∗s ] and compact whenever r ∈ [1, 2∗s ). Let Ss be the fractional
Sobolev constant as

Ss
.
= inf

u∈Hs(Rn),u ̸=0

∫
R2n

|u(x)− u(y)|2
|x − y|n+2s dxdy(∫

Rn
|u(x)|2∗s dx

) 2
2∗s

> 0. (7)

The energy functional corresponding to problem (1) given by

I(u) =
a
2
∥u∥2 − b

4
∥u∥4 − λ

2

∫
Ω
|u|2 dx − α

q

∫
Ω
|u|q dx − 1

2∗s

∫
Ω
|u|2∗s dx, (8)

and a function u ∈ W0 is called a solution of problem (1) if for any v ∈ W0,

(a − b∥u∥2)⟨u, v⟩ = λ
∫

Ω
uv dx + α

∫
Ω
|u|q−2uv dx +

∫
Ω
|u|2∗s −2uv dx. (9)

Obviously, I ∈ C1(W0,R) and the weak solutions of problem (1) are exactly the critical
points of I.

Define a smooth cut-off function ψ satisfying
ψ(t) = 1, t ∈[0, 1),

ψ(t) = 0, t ∈(2, ∞),

0 ≤ ψ(t) ≤ 1, t ∈[1, 2],

− 2 ≤ ψ′(t) ≤ 0, t ∈[0, ∞),

then further define the following truncated functional IT on W0 relevant to I as

IT(u) =
a
2
∥u∥2 − b

4
ΨT(u)∥u∥4 − λ

2

∫
Ω
|u|2 dx − α

q

∫
Ω
|u|q dx − 1

2∗s

∫
Ω
|u|2∗s dx, (10)

where ΨT(u) = ψ( ∥u∥2

T2 ) for any T > 0. Obviously, IT ∈ C1(W0,R) is well defined and
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⟨I′T(u), v⟩ =
[

a − b
2T2 ψ′(

∥u∥2

T2 )∥u∥4 − bΨT(u)∥u∥2
]
⟨u, v⟩,

− λ
∫

Ω
uv dx − α

∫
Ω
|u|q−2uv dx −

∫
Ω
|u|2∗s −2uv dx.

By the definition of T in Section 1, we also have
0 ≤ ΨT(u)∥u∥2 ≤ 2T2,

0 ≤ ΨT(u)∥u∥4 ≤ 4T4,

− 16T6 ≤ ψ′(
∥u∥2

T2 )∥u∥6 ≤ 0

(11)

with 

a − 2bT2 ≥ a
2

,

4bT4 ≤ s
2n

(
aSs

2
)

n
2s ,

a(q − 2)
4q

T2 >
8b
q

T4.

(12)

Moreover, if u is a critical point of IT with ∥u∥ ≤ T, then u is also a critical point of I.

3. A Compactness Result for IT

In this section, we show that the functional IT satisfies (PS)d conditions. We say
that {uk} is a (PS)d sequence in W0 for IT if IT(uk) → d and I′T(uk) → 0 in W ′

0 as k →
∞, and IT satisfies (PS)d conditions if any (PS)d sequence {uk} in W0 has a strongly
convergent subsequence.

Lemma 1. If {uk} ⊂ W0 is a (PS)d sequence for IT with 2 < q < 2∗s , then {uk} is bounded in
W0.

Proof. Since {uk} ⊂ W0 is a (PS)d sequence for IT , we have

IT(uk) → d and I′T(uk) → 0 in W ′
0 as k → ∞.

Since 2 < q < 2∗s , we can obtain from (7) and (11) that

d + o(∥uk∥) =IT(uk)−
1
2
⟨I′T(uk), uk⟩

=
b
4

ΨT(uk)∥uk∥4 +
b

4T2 ψ′(
∥uk∥2

T2 )∥uk∥6

+ α(
1
2
− 1

q
)
∫

Ω
|uk|q dx + (

1
2
− 1

2∗s
)
∫

Ω
|uk|2

∗
s dx

≥− 4bT4 + (
1
2
− 1

2∗s
)
∫

Ω
|uk|2

∗
s dx,

(13)

and
d + o(∥uk∥) =IT(uk)−

1
p
⟨I′T(uk), uk⟩

≥ − 4bT4 + α(
1
2
− 1

q
)
∫

Ω
|uk|q dx.

(14)

Thus, {uk} is bounded in L2∗s (Ω) and Lq(Ω). By Hölder’s inequality, we can further
obtain that {uk} is bounded in L2(Ω) due to 2 < q. Hence, there exists a constant M > 0
such that
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d + o(1) ≥IT(uk)

≥ a
2
∥uk∥2 − bT4 − λ

2

∫
Ω
|uk|2 dx − α

q

∫
Ω
|uk|q dx − 1

2∗s

∫
Ω
|uk|2

∗
s dx

≥ a
2
∥uk∥2 − M,

which implies that {uk} is bounded in W0.

Lemma 2. IT satisfies the (PS)d conditions for all d < d∗ =
s

2n
(

aSs

2
)

n
2s and 2 < q < 2∗s .

Proof. Let {uk} be a (PS)d sequence; by Lemma 1, {uk} is bounded in W0 and then
there exists a subsequence of {uk} (still denoted by {uk} ) and a function u ∈ W0 such that
uk ⇀ u in W0 and uk → u in Lβ(Ω) with β ∈ [1, 2∗s ). Thus, from the fractional concentration
compactness lemma [37], there exist a countable sequence of points {xj}j∈J ⊆ Ω and the
families of positive numbers {µj}j∈J , {νj}j∈J such that

∫
Rn

|uk(x)− uk(y)|2
|x − y|n+2s dy ⇀ µ ≥

∫
Rn

|u(x)− u(y)|2
|x − y|n+2s dy + ∑

j∈J
µjδxj , (15)

|uk|2
∗
s ⇀ ν = |u|2∗s + ∑

j∈J
νjδxj , (16)

µj ≥ Ssν
2/2∗s
j , ∀j ∈ J , (17)

in the sense of measure, where δxj is the Dirac measure concentrated at xj. We claim
that J = ∅. If not, there exists a j0 ∈ J . For this xj0 and any ϵ > 0 small, define

χϵ
j0
= χ(

x−xj0
ϵ ), where χ ∈ C∞

0 (Rn), satisfying 0 ≤ χ(x) ≤ 1, χ(x) = 1 in B1(0), χ(x) = 0

in Rn \ B2(0), and |∇χ(x)| ≤ 2
ϵ . Therefore, {χϵ

j0
uk} is bounded in W0. One can obtain from

⟨I′T(uk), χϵ
j0

uk⟩ → 0 that[
a − b

2T2 ψ′(
∥uk∥2

T2 )∥uk∥4 − bΨT(uk)∥uk|2
]
⟨uk, χϵ

j0 uk⟩,

= λ
∫

Ω
ukχϵ

j0 dx + α
∫

Ω
|uk|qχϵ

j0 dx +
∫

Ω
|uk|2

∗
s χϵ

j0 dx.
(18)

On the one hand,

⟨uk, χϵ
j0 uk⟩

=
∫
R2n

(uk(x)− uk(y))(χϵ
j0
(x)uk(x)− χϵ

j0
(y)uk(y))

|x − y|n+2s dxdy

=
∫
R2n

uk(x)(uk(x)− uk(y))(χϵ
j0
(x)− χϵ

j0
(y))

|x − y|n+2s dxdy

+
∫
R2n

χϵ
j0
(y)|uk(x)− uk(y)|2

|x − y|n+2s dxdy.

(19)

We can obtain from the fact that {uk} is bounded in W0 and Hölder’s inequality that
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∫
R2n

uk(x)(uk(x)− uk(y))(χϵ
j0
(x)− χϵ

j0
(y))

|x − y|n+2s dxdy

≤
(∫

R2n

|uk(x)(χϵ
j0
(x)− χϵ

j0
(y))|2

|x − y|n+2s dxdy

) 1
2(∫

R2n

|uk(x)− uk(y)|2
|x − y|n+2s dxdy

) 1
2

≤C

(∫
R2n

|uk(x)(χϵ
j0
(x)− χϵ

j0
(y))|2

|x − y|n+2s dxdy

) 1
2

→ 0, as ϵ → 0, k → ∞,

where the last result is from Lemma 3.4 in [38]. This, together with (15) and (19), bi-
nonlocality leads to

lim
ϵ→0

lim
k→∞

⟨uk, χϵ
j0 uk⟩ = lim

ϵ→0
lim
k→∞

∫
R2n

χϵ
j0
(y)|uk(x)− uk(y)|2

|x − y|n+2s dxdy

≥ lim
ϵ→0

∫
Rn

χϵ
j0
(y)|u(x)− u(y)|2

|x − y|n+2s dxdy + µj0 = µj0 .

(20)

Moreover, one can obtain from (17) that

lim
ϵ→0

lim
k→∞

∫
Ω
|uk|2

∗
s χϵ

j0 dx = lim
ϵ→0

∫
Ω
|u|2∗s χϵ

j0 dx + νj0 = νj0 , (21)

and
lim
ϵ→0

lim
k→∞

∫
Ω

ukχϵ
j0 dx = lim

ϵ→0
lim
k→∞

∫
Ω
|uk|qχϵ

j0 dx = 0. (22)

On the other hand, it follows from (11) and (12) that

a − b
2T2 ψ′(

∥uk∥2

T2 )∥uk∥4 − bΨT(uk)∥uk∥2 ≥ a − 2bT2 ≥ a
2

. (23)

Combining (18) with (20)–(23) leads to

νj0 ≥ a
2

µj0 .

Using (17), we further obtain that

νj0 ≥ (
aSs

2
)

n
2s .

This, together with (12) and (13), leads to

d + o(∥uk∥) =IT(uk)−
1
2
⟨I′T(uk), uk⟩

≥ − 4bT4 + (
1
2
− 1

2∗s
)
∫

Ω
|uk|2

∗
s dx

≥− 4bT4 +
s
n

νj0

≥− 4bT4 +
s
n
(

aSs

2
)

n
2s

≥ s
2n

(
aSs

2
)

n
2s ,

which contradicts d < d∗. So J = ∅ and then lim
k→∞

∫
Ω
|uk|2

∗
s dx =

∫
Ω
|u|2∗s dx. By the Brézis–

Lieb lemma [39], we have

lim
k→∞

∫
Ω
|uk − u|2∗s dx = 0.
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By Hölder’s inequality, we can further obtain

∣∣∣∣∫Ω
|uk|2

∗
s −1(uk − u)dx

∣∣∣∣ ≤ (∫Ω
|uk|2

∗
s dx

) 2∗s −1
2∗s
(∫

Ω
|uk − u|2∗s dx

) 1
2∗s → 0, (24)

∣∣∣∣∫Ω
|uk|q−1(uk − u)dx

∣∣∣∣ ≤ (∫Ω
|uk|q dx

) q−1
q
(∫

Ω
|uk − u|q dx

) 1
q
→ 0, (25)∣∣∣∣∫Ω

uk(uk − u)dx
∣∣∣∣ ≤ (∫Ω

|uk|2 dx
) 1

2
(∫

Ω
|uk − u|2 dx

) 1
2
→ 0, (26)

as k → ∞. Since ⟨I′T(uk), uk − u⟩ → 0, one can deduce from (23) and (24)–(26)

lim
k→∞

[
a − b

2T2 ψ′(
∥uk∥2

T2 )∥uk∥4 − bΨT(uk)∥uk∥2
]
⟨uk, uk − u⟩ = 0,

which results in ∥uk∥ → ∥u∥. This, together with the weak convergence of {uk} in W0,
leads to uk → u in W0. This ends the proof.

4. Existence and Nonexistence Results

In this part, we firstly prove the nonexistence result for problem (1).

Proof of Theorem 1. Suppose u ∈ W0 is a positive solution of problem (1) and e1 is a
positive eigenfunction associated with λ1, then we have

λ
∫

Ω
ue1 dx =(a − b∥u∥2)⟨u, e1⟩ − α

∫
Ω

uq−1e1 dx −
∫

Ω
u2∗s −1e1 dx

<(a − b∥u∥2)⟨u, e1⟩

=λ1(a − b∥u∥2)
∫

Ω
ue1 dx

<aλ1

∫
Ω

ue1 dx.

So problem (1) has no positive solution when λ ≥ aλ1. This ends the proof.

For the existence result of problem (1), we need the following general mountain pass
theorem [40], which can help to find a (PS)d sequence for IT .

Theorem 5. Let H be a Banach space and I ∈ C1(H,R) with I(0) = 0. Suppose the following:

(1) There exist τ, δ > 0 such that I(u) ≥ δ for all u ∈ H with ∥u∥ = τ.
(2) There exists v0 ∈ H such that ∥v0∥ > τ and I(v0) < 0.

Define
Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, γ(1) = v0}

and
d = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)),

then there exists a (PS)d sequence {un} ⊂ H and d ≥ δ.

Now, we begin to prove that IT satisfies the assumptions of the mountain pass geometry.

Lemma 3. Assume 0 < λ < aλ1 and 2 < q < 2∗s , then there exist positive constants τ, δ such
that the following are obtained:

1. IT(u) ≥ δ for all ∥u∥ = τ.
2. There exists u∗ ∈ W0 such that ∥u∗∥ > τ and IT(u∗) < 0.
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Proof. For any u ∈ W0, we can obtain from (7) and (10) that

IT(u) ≥
aλ1 − λ

2λ1
∥u∥2 − b

4
∥u∥4 − αC

q
∥u∥q − 1

2∗s
S− 2∗s

2
s ∥u∥2∗s .

Since 2 < q < 2∗s , let u ∈ W0 with ∥u∥ = τ where τ is sufficiently small, satisfying

0 <
aλ1 − λ

2λ1
τ2 − b

4
τ4 − αC

q
τq − 1

2∗s
S− 2∗s

2
s τ2∗s .

= δ,

then we obtain
inf

u∈W0,∥u∥=τ
IT(u) ≥ δ > 0.

On the other hand, suppose e1 is a positive eigenfunction associated with λ1, then for
t > 0, we obtain

IT(te1) ≤
at2

2
∥e1∥2 − λt2

2

∫
Ω
|e1|2 dx − αtq

q

∫
Ω
|e1|q dx − t2∗s

2∗s

∫
Ω
|e1|2

∗
s dx → −∞,

as t → +∞. Hence, set u∗ = t0e1 with t0 > 0 sufficiently large such that ∥u∗∥ > τ and
IT(u∗) < 0. The proof is completed.

Lemma 4. For 0 < λ < aλ1, one has such that

sup
t≥0

IT(te1) ≤
s
n
(aλ1 − λ)

n
2s |Ω| .

= ρ,

where e1 is a positive eigenfunction associated with λ1.

Proof. For any u ∈ W0 and 0 < λ < aλ1, by Hölder’s inequality and Young’s inequality,
we have

aλ1 − λ

2

∫
Ω
|u|2 dx ≤ aλ1 − λ

2

(∫
Ω
|u|2∗s dx

) 2
2∗s |Ω|

2∗s −2
2∗s

=

(
1
2

∫
Ω
|u|2∗s dx

) 2
2∗s
[
(aλ1 − λ)2

2−2∗s
2∗s |Ω|

2∗s −2
2∗s

]
≤ 1

2∗s

∫
Ω
|u|2∗s dx +

s
n
(aλ1 − λ)

n
2s |Ω|

=
1
2∗s

∫
Ω
|u|2∗s dx + ρ.

(27)

For every t ≥ 0, choosing u = te1 in (27) and using the fact ∥e1∥2 = λ1

∫
Ω
|e1|2, we

have
IT(te1) ≤

a
2
∥te1∥2 − λ

2

∫
Ω
|te1|2 dx − 1

2∗s

∫
Ω
|te1|2

∗
s dx

=
aλ1 − λ

2

∫
Ω
|te1|2 dx − 1

2∗s

∫
Ω
|te1|2

∗
s dx ≤ ρ.

This ends the proof.

Next, we want to prove Theorem 2 by showing the existence of positive critical points
for IT and further prove that these critical points are also positive solutions of problem (1).
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Proof of Theorem 2. Define

Γ .
= {ϕ ∈ C([0, 1], W0) : ϕ(0) = 0, ϕ(1) = u∗}

dλ
.
= inf

ϕ∈Γ
max
t∈[0,1]

IT(ϕ(t)),

where u∗ is defined in Lemma 3. By Lemma 3 and Theorem 5, there exists a sequence
{uk} ∈ W0 such that

IT(uk) → dλ ≥ δ > 0 and I′T(uk) → 0.

For aλ1 − Λ0 < λ < aλ1 with Λ0 =
aSs

2

(
1

2|Ω|

) 2s
n

, it further follows from Lemma 4

that
dλ ≤ ρ < d∗.

Therefore, one can obtain from Lemma 2 that there exists a subsequence of {uk} (still
denoted by {uk}) and a function uλ ∈ W0 such that uk → uλ in W0. Subsequently, for
aλ1 − Λ0 < λ < aλ1, we have

ρ ≥ IT(uλ) = lim
k→∞

IT(uk) = dλ ≥ δ > 0 and I′T(uλ) = 0, (28)

which means that uλ is a nonzero and non-negative critical point of IT . Now, we come to
show that ∥uλ∥ ≤ T.

It follows from (11) and (28) and 2 < q < 2∗s that

ρ >IT(uλ)−
1
2
⟨I′T(uλ), uλ⟩

=
b
4

ΨT(uλ)∥uλ∥4 +
b

4T2 ψ′(
∥uλ∥2

T2 )∥uλ∥6

+ α(
1
2
− 1

q
)
∫

Ω
|uλ|q dx + (

1
2
− 1

2∗s
)
∫

Ω
|uλ|2

∗
s dx

≥− 4bT4 + α(
1
2
− 1

q
)
∫

Ω
|uλ|q dx,

(29)

which results in
∫

Ω |uλ|q dx → 0 as α → ∞. For α > 0 big enough, we can further obtain
from Hölder’s inequality and (12) that

aλ1(q − 2)
2q

∫
Ω
|uλ|2 dx ≤ a(q − 2)

4q
T2 − 8b

q
T4. (30)

For aλ1 − Λ < λ < aλ1, Set Λ = min
{

Λ0,
[

aT2n(q−2)
4qs|Ω|

] 2s
n
}

, then (28) shows that

IT(uλ) ≤ ρ ≤ a(q−2)
4q T2. Moreover, one can obtain from from (11) and (30) and 2 < q ≤

min{4, 2∗s } that

a(q − 2)
4q

T2 ≥IT(uλ)−
1
q
⟨I′T(uλ), uλ⟩

=a(
1
2
− 1

q
)∥uλ∥2 +

b
2qT2 ψ′(

∥uλ∥2

T2 )∥uλ∥6 + b(
1
q
− 1

4
)ΨT(uλ)∥uλ∥4

− λ(
1
2
− 1

q
)
∫

Ω
|uλ|2 dx + (

1
q
− 1

2∗s
)
∫

Ω
|uλ|2

∗
s dx

≥ a(q − 2)
2q

∥uλ∥2 − 8b
q

T4 − aλ1(q − 2)
2q

∫
Ω
|uλ|2 dx

≥ a(q − 2)
2q

∥uλ∥2 − a(q − 2)
4q

T2,

(31)
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which also results in ∥uλ∥ < T. Then uλ is also a nontrivial and non-negative solution
of problem (1). Similar to the proof of Theorem 1.1 in [41], one can further obtain that uλ

is positive.

Proof of Theorem 3. For every sequence {λn} with λn ↗ aλ1, let uλn be the positive
solution to problem (1) provided by Theorem 2. Since 2 < q ≤ min{4, 2∗s }, we have

dλn =I(uλn)−
1
2
⟨I′(uλn), uλn⟩

=
b
4
∥uλn∥

4 + α(
1
2
− 1

q
)
∫

Ω
|uλn |

q dx + (
1
2
− 1

2∗s
)
∫

Ω
|uλn |

2∗s dx

≥ b
4
∥uλn∥

4.

This, together with 0 < dλn ≤ s
n
(aλ1 − λn)

n
2s |Ω|, leads to limn→∞ ∥uλn∥ = 0.

In order to obtain multiple solutions for problem (1), we use the following version of
the symmetric mountain pass theorem of [40,42].

Theorem 6. Let H = V ⊕ E be a real infinite dimensional Banach space with dimV < ∞, and
suppose that I ∈ C1(H,R) is a functional satisfying the following conditions:

(1) I(u) = I(−u), I(0) = 0;
(2) There exist positive constants τ, δ such that I(u) ≥ δ for all u ∈ E with ∥u∥ = τ;
(3) There exist a subspace V̂ ⊂ H with dimV < dimV̂ < ∞ such that maxu∈V̂ I(u) ≤ ρ for

some ρ > 0;
(4) I satisfies (PS)d for any d ∈ (0, ρ).

Then I possesses at least dimV̂ − dimV pairs of nontrivial critical points.

For any m ∈ N, set W0 = Vm ⊕ V⊥
m , where Vm = span{e1, e2, · · · , em} denotes the

linear subspace generated by the first m eigenfunctions of (−∆)s. For any j ∈ N with j > m,
we further define the j-dimensional subspace V̂j = span{e1, e2, · · · , ej}. Since V̂j is a finite

dimensional space, there exists a constant β > 0 such that
∫

Ω
|u|q dx ≥ β∥u∥q for any

u ∈ V̂j. Hence, we have

IT(u) ≤
a
2
∥u∥2 − α

q

∫
Ω
|u|q dx

≤ a
2
∥u∥2 − αβ

q
∥u∥q

≤a(
1
2
− 1

q
)

(
a

αβ

) 2
q−2 .

= dj, u ∈ V̂j.

(32)

Right now, we are in a position to prove Theorem 4 by applying Theorem 6 to IT .

Proof of Theorem 4. It is obvious that IT(u) = IT(−u), IT(0) = 0. Set V = Vm and
E = V⊥

m , then one can obtain from Lemma 3 that (2) in Theorem 6 holds. For any k ∈ N, let
j = k + m, that is, V̂k+m = span{e1, e2, · · · , ek+m}, then dimV̂ = k + m and maxu∈V̂ IT(u) ≤
d∗ follows from (32). For big enough α such that dk+m < d∗, then IT satisfies (4) in Theorem 6
from Lemma 2. Therefore, Theorem 4 assures that IT has at least k pairs of nontrivial critical
points for α > 0 sufficiently big. Arguing exactly as in the proof of Theorem 2, we can
also obtain that these critical points of IT are also positive solutions of problem (1). So,
Theorem 4 is proved.
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5. Conclusions

In this article, we explored the existence, multiplicity, and asymptotic behavior of
solutions for a fractional Kirchhoff equation. This problem includes a fractional Laplacian
operator, a fractional critical Sobolev exponent, and a negative nonlocal term. Based on the
cut-off technique, we utilized the concentration compactness principle to overcome the lack
of compactness due to the critical nonlinearities. The mountain pass theorem and symmetric
mountain pass theorem were used to prove the existence and multiplicity of solutions
by showing that the positive critical points of the truncated functional are really positive
solutions of problem (1). Moreover, the nonexistence and asymptotic behavior of positive
solutions were also investigated. Our results supplement and extend the results obtained
in [3,25,34]. In further studies, we shall investigate a system and variable exponents cases
of this kind of problem even with logarithmic perturbation. These will make this problem
more difficult and interesting.
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