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Abstract: In practical situations, we often have to handle programming problems involving
indeterminate information. Building on the concepts of indeterminacy I and neutrosophic number
(NN) (z = p + qI for p, q ∈ R), this paper introduces some basic operations of NNs and concepts of
NN nonlinear functions and inequalities. These functions and/or inequalities contain indeterminacy
I and naturally lead to a formulation of NN nonlinear programming (NN-NP). These techniques
include NN nonlinear optimization models for unconstrained and constrained problems and their
general solution methods. Additionally, numerical examples are provided to show the effectiveness
of the proposed NN-NP methods. It is obvious that the NN-NP problems usually yield NN
optimal solutions, but not always. The possible optimal ranges of the decision variables and NN
objective function are indicated when the indeterminacy I is considered for possible interval ranges
in real situations.

Keywords: neutrosophic number; neutrosophic number function; neutrosophic number nonlinear
programming; neutrosophic number optimal solution

1. Introduction

Traditional mathematical programming usually handles optimization problems involving
deterministic objective functions and/or constrained functions. However, uncertainty also exists
in real problems. Hence, many researchers have proposed uncertain optimization methods, such as
approaches using fuzzy and stochastic logics, interval numbers, or uncertain variables [1–6].
Uncertain programming has been widely applied in engineering, management, and design problems.
In existing uncertain programming methods, however, the objective functions or constrained functions
are usually transformed into a deterministic or crisp programming problem to yield the optimal feasible
crisp solution of the decision variables and the optimal crisp value of the objective function. Hence,
existing uncertain linear or nonlinear programming methods are not really meaningful indeterminate
methods because they only obtain optimal crisp solutions rather than indeterminate solutions necessary
for real situations. However, indeterminate programming problems may also yield an indeterminate
optimal solution for the decision variables and the indeterminate optimal value of the objective function
suitable for real problems with indeterminate environments. Hence, it is necessary to understand how
to handle indeterminate programming problems with indeterminate solutions.

Since there exists indeterminacy in the real world, Smarandache [7–9] first introduced a concept
of indeterminacy—which is denoted by I, the imaginary value—and then he presented a neutrosophic
number (NN) z = p + qI for p, q ∈ R (R is all real numbers) by combining the determinate part p with the
indeterminate part qI. It is obvious that this is a useful mathematical concept for describing incomplete
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and indeterminate information. After their introduction, NNs were applied to decision-making [10,11]
and fault diagnosis [12,13] under indeterminate environments.

In 2015, Smarandache [14] introduced a neutrosophic function (i.e., interval function or thick
function), neutrosophic precalculus, and neutrosophic calculus to handle more indeterminate problems.
He defined a neutrosophic thick function g: R→ G(R) (G(R) is the set of all interval functions) as the
form of an interval function g(x) = [g1(x), g2(x)]. After that, Ye et al. [15] introduced the neutrosophic
functions in expressions for the joint roughness coefficient and the shear strength in the mechanics of
rocks. Further, Ye [16] and Chen et al. [17,18] presented expressions and analyses of the joint roughness
coefficient using NNs. Ye [19] proposed the use of neutrosophic linear equations and their solution
methods in traffic flow problems with NN information.

Recently, NNs have been extended to linguistic expressions. For instance, Ye [20] proposed
neutrosophic linguistic numbers and their aggregation operators for multiple attribute group
decision-making. Further, Ye [21] presented hesitant neutrosophic linguistic numbers—based on
both the neutrosophic linguistic numbers and the concept of hesitant fuzzy logic—calculated their
expected value and similarity measure, and applied them to multiple attribute decision-making.
Additionally, Fang and Ye [22] introduced linguistic NNs based on both the neutrosophic linguistic
number and the neutrosophic set concept, and some aggregation operators of linguistic NNs for
multiple attribute group decision-making.

In practical problems, the information obtained by decision makers or experts may be
imprecise, uncertain, and indeterminate because of a lack of data, time pressures, measurement
errors, or the decision makers’ limited attention and knowledge. In these cases, we often have
to solve programming problems involving indeterminate information (indeterminacy I). However,
the neutrosophic functions introduced in [14,15] do not contain information about the indeterminacy
I and also cannot express functions involving indeterminacy I. Thus, it is important to define NN
functions containing indeterminacy I based on the concept of NNs, in order to handle programming
problems under indeterminate environments. Jiang and Ye [23] and Ye [24] proposed NN linear
and nonlinear programming models and their preliminary solution methods, but they only handled
some simple/specified NN optimization problems and did not propose effective solution methods for
complex NN optimization problems. To overcome this insufficiency, this paper first introduces some
operations of NNs and concepts of NN linear and nonlinear functions and inequalities, which contain
indeterminacy I. Then, various NN nonlinear programming (NN-NP) models and their general solution
methods are proposed in order to obtain NN/indeterminate optimal solutions.

The rest of this paper is structured as follows. On the basis of some basic concept of NNs,
Section 2 introduces some basic operations of NNs and concepts of NN linear and nonlinear functions
and inequalities with indeterminacy I. Section 3 presents NN-NP problems, including NN nonlinear
optimization models with unconstrained and constrained problems. In Section 4, general solution
methods are introduced for various NN-NP problems, and then numerical examples are provided to
illustrate the effectiveness of the proposed NN-NP methods. Section 5 contains some conclusions and
future research.

2. Neutrosophic Numbers and Neutrosophic Number Functions

Smarandache [7–9] first introduced an NN, denoted by z = p + qI for p, q ∈ R, consisting of a
determinate part p and an indeterminate part qI, where I is the indeterminacy. Clearly, it can express
determinate information and indeterminate information as in real world situations. For example,
consider the NN z = 5 + 3I for I ∈ [0, 0.3], which is equivalent to z ∈ [5, 5.9]. This indicates that
the determinate part of z is 5, the indeterminate part is 3I, and the interval of possible values for the
number z is [5, 5.9]. If I ∈ [0.1, 0.2] is considered as a possible interval range of indeterminacy I, then the
possible value of z is within the interval [5.3, 5.6]. For another example, the fraction 7/15 is within
the interval [0.46, 0.47], which is represented as the neutrosophic number z = 0.46 + 0.01I for I ∈ [0, 1].
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The NN z indicates that the determinate value is 0.46, the indeterminate value is 0.01I, and the possible
value is within the interval [0.46, 0.47].

It is obvious that an NN z = p + qI may be considered as the possible interval range (changeable
interval number) z = [p + q·inf{I}, p + q·sup{I}] for p, q ∈ R and I ∈ [inf{I}, sup{I}]. For convenience, z is
denoted by z = [p + qIL, p + qIU] for z ∈ Z (Z is the set of all NNs) and I ∈ [IL, IU] for short. In special
cases, z can be expressed as the determinate part z = p if qI = 0 for the best case, and, also, z can be
expressed as the indeterminate part z = qI if p = 0 for the worst case.

Let two NNs be z1 = p1 + q1I and z2 = p2 + q2I for z1, z2 ∈ Z, then their basic operational laws for
I ∈ [IL, IU] are defined as follows [23,24]:

(1) z1 + z2 = p1 + p2 + (q1 + q2)I = [p1 + p2 + q1 IL + q2 IL, p1 + p2 + q1 IU + q2 IU ];
(2) z1 − z2 = p1 − p2 + (q1 − q2)I = [p1 − p2 + q1 IL − q2 IL, p1 − p2 + q1 IU − q2 IU ];

(3)

z1 × z2 = p1 p2 + (p1q2 + p2q1)I + q1q2 I2

=


min

(
(p1 + q1 IL)(p2 + q2 IL), (p1 + q1 IL)(p2 + q2 IU),
(p1 + q1 IU)(p2 + q2 IL), (p1 + q1 IU)(p2 + q2 IU)

)
,

max

(
(p1 + q1 IL)(p2 + q2 IL), (p1 + q1 IL)(p2 + q2 IU),
(p1 + q1 IU)(p2 + q2 IL), (p1 + q1 IU)(p2 + q2 IU)

)
 ;

(4)

z1
z2

= p1+q1 I
p2+q2 I = [p1+q1 IL ,p1+q1 IU ]

[p2+q2 IL ,p2+q2 IU ]

=

 min
(

p1+q1 IL

p2+q2 IU , p1+q1 IL

p2+q2 IL , p1+q1 IU

p2+q2 IU , p1+q1 IU

p2+q2 IL

)
,

max
(

p1+q1 IL

p2+q2 IU , p1+q1 IL

p2+q2 IL , p1+q1 IU

p2+q2 IU , p1+q1 IU

p2+q2 IL

)  .

For a function containing indeterminacy I, we can define an NN function (indeterminate function)
in n variables (unknowns) as F(x, I): Zn → Z for x = [x1, x2, . . . , xn]T ∈ Zn and I ∈ [IL, IU], which is
either an NN linear or an NN nonlinear function. For example, F1(x, I) = x1 − Ix2 + 1 + 2I for
x = [x1, x2]T ∈ Z2 and I ∈ [IL, IU] is an NN linear function, and F2(x) = x2

1 + x2
2 − 2Ix1 − Ix2 + 3I for

x = [x1, x2]T ∈ Z2 and I ∈ [IL, IU] is an NN nonlinear function.
For an NN function in n variables (unknowns) g(x, I): Zn → Z, we can define an NN inequality

g(x, I) ≤ (≥) 0 for x = [x1, x2, . . . , xn]T ∈ Zn and I ∈ [IL, IU], where g(x, I) is either an NN linear
function or an NN nonlinear function. For example, g1(x, I) = 2x1 − Ix2 + 4 + 3I ≤ 0 and g2(x, I) =
2x2

1 − x2
2 + 2+ 5I ≤ 0 for x = [x1, x2]T ∈ Z2 and I ∈ [IL, IU] are NN linear and NN nonlinear inequalities

in two variables, respectively.
Generally, the values of x, F(x, I), and g(x, I) are NNs (usually but not always). In this study,

we mainly research on NN-NP problems and their general solution methods.

3. Neutrosophic Number Nonlinear Programming Problems

An NN-NP problem is similar to a traditional nonlinear programming problem, which is
composed of an objective function, general constraints, and decision variables. The difference is
that an NN-NP problem includes at least one NN nonlinear function, which could be the objective
function, or some or all of the constraints. In the real world, many real problems are inherently
nonlinear and indeterminate. Hence, various NN optimization models need to be established to
handle different NN-NP problems.

In general, NN-NP problems in n decision variables can be expressed by the following NN
mathematical models:

(1) Unconstrained NN optimization model:

min F(x, I), x ∈ Zn, (1)

where x = [x1, x2, . . . , xn]T ∈ Zn, F(x, I): Zn → Z, and I ∈ [IL, IU].
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(2) Constrained NN optimization model:

min F(x, I)
s.t. gi(x, I) ≤ 0, I = 1, 2, . . . , m

hj(x, I) = 0, j = 1, 2, . . . , l
x ∈ Zn,

(2)

where g1(x, I), g2(x, I), . . . , gm(x, I), h1(x, I), h2(x, I), . . . , hl(x, I): Zn → Z, and I ∈ [IL, IU].

In special cases, if the NN-NP problem only contains the restrictions hj(x, I) = 0 without inequality
constraints, gi(x, I) ≤ 0, then the NN-NP problem is called the NN-NP problem with equality
constraints. If the NN-NP problem only contains the restrictions gi(x, I) ≤ 0, without constraints
hj(x, I) = 0, then the NN-NP problem is called the NN-NP problem with inequality constraints. Finally,
if the NN-NP problem does not contain either restrictions, hj(x, I) = 0 or gi(x, I)≤ 0, then the constrained
NN-NP problem is reduced to the unconstrained NN-NP problem.

The NN optimal solution for the decision variables is feasible in an NN-NP problem if it satisfies
all of the constraints. Usually, the optimal solution for the decision variables and the value of the NN
objective function are NNs, but not always). When the indeterminacy I is considered as a possible
interval range (possible interval number), the optimal solution of all feasible intervals forms the feasible
region or feasible set for x and I ∈ [IL, IU]. In this case, the value of the NN objective function is an
optimal possible interval (NN) for F(x, I).

In the following section, we shall introduce general solution methods for NN-NP problems,
including unconstrained NN and constrained NN nonlinear optimizations, based on methods of
traditional nonlinear programming problems.

4. General Solution Methods for NN-NP Problems

4.1. One-Dimension Unconstrained NN Nonlinear Optimization

The simplest NN nonlinear optimization only has a nonlinear NN objective function with one
variable and no constraints. Let us consider a single variable NN nonlinear objective function F(x, I)
for x ∈ Z and I ∈ [IL, IU]. Then, for a differentiable NN nonlinear objective function F(x, I), a local
optimal solution x* satisfies the following two conditions:

(1) Necessary condition: The derivative is dF(x*, I)/dx = 0 for I ∈ [IL, IU];
(2) Sufficient condition: If the second derivative is d2F(x*, I)/dx2 < 0 for I ∈ [IL, IU], then x* is an

optimal solution for the maximum F(x*, I); if the second derivative is d2F(x*, I)/dx2 > 0, then x* is
an optimal solution for the minimum F(x*, I).

Example 1. An NN nonlinear objective function with one variable is F(x, I) = 2Ix2 + 5I for x ∈ Z and
I ∈ [IL, IU]. Based on the optimal conditions, we can obtain:

dF(x, I)
dx

= 4Ix = 0⇒ x∗ = 0,

d2F(x, I)
dx2 |x∗=0 = 4I.

Assume that we consider a specific possible range of I ∈ [IL, IU] according to real situations or actual
requirements, then we can discuss its optimal possible value. If I ∈ [1, 2] is considered as a possible interval
range, then d2F(x*, I)/dx2 > 0, and x* = 0 is the optimal solution for the minimum F(x*, I). Thus, the minimum
value of the NN objective function is F(x*, I) = [5, 10], which, in this case, is a possible interval range, but not
always. Specifically if I = 1 (crisp value), then F(x*, I) = 5.
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4.2. Multi-Dimension Unconstrained NN Nonlinear Optimization

Assume that a multiple variable NN function F(x, I) for x = [x1, x2, . . . , xn]T ∈ Zn and I ∈ [IL, IU]
is considered as an unconstrained differentiable NN nonlinear objective function in n variables. Then,
we can obtain the partial derivatives:

∇F(x, I) =
[

∂F(x, I)
∂x1

,
∂F(x, I)

∂x2
, . . . ,

∂F(x, I)
∂xn

]T
= 0⇒ x = x∗.

Further, the partial second derivatives, structured as the Hessian matrix H(x, I), are:

H(x, I) =



∂2F(x,I)
∂x2

1
, ∂2F(x,I)

∂x1∂x2
, . . . , ∂2F(x,I)

∂x1∂xn

∂2F(x,I)
∂x2∂x1

, ∂2F(x,I)
∂x2

2
, . . . , ∂2F(x,I)

∂x2∂xn

...
...

...
...

∂2F(x,I)
∂xn∂x1

, ∂2F(x,I)
∂xn∂x2

, . . . , ∂2F(x,I)
∂x2

n


x=x∗

.

Then, the Hessian matrix H(x, I) is structured as its subsets Hi(x, I) (i = 1, 2, . . . , n), where Hi(x, I)
indicate the subset created by taking the first i rows and columns of H(x, I). You calculate the
determinant of each of the n subsets at x*:

H1(x∗, I) =

∣∣∣∣∣∂2F(x∗, I)
∂x2

1

∣∣∣∣∣, H2(x∗, I) =

∣∣∣∣∣∣
∂2F(x∗ ,I)

∂x2
1

∂2F(x∗ ,I)
∂x1∂x2

∂2F(x∗ ,I)
∂x2∂x1

∂2F(x∗ ,I)
∂x2

2

∣∣∣∣∣∣, · · ·
from the sign patterns of the determinates of Hi(x*, I) (i = 1, 2, . . . , n) for I ∈ [IL, IU], as follows:

(1) If Hi(x*, I) > 0, then H(x*, I) is positive definite at x*;
(2) If Hi(x*, I) < 0 and the remaining Hi(x*, I) alternate in sign, then H(x*, I) is negative definite at x*;
(3) If some of the values which are supposed to be nonzero turn out to be zero, then H(x*, I) can be

positive semi-definite or negative semi-definite.

A local optimal value of x* in neutrosophic nonlinear objective function F(x*, I) for I ∈ [IL, IU] can
be determined by the following categories:

(1) x* is a local maximum if ∇F(x*, I) = 0 and H(x*, I) is negative definite;
(2) x* is a local minimum if ∇F(x*, I) = 0 and H(x*, I) is positive definite;
(3) x* is a saddle point if ∇F(x*, I) = 0 and H(x*, I) is neither positive semi-definite nor

negative semi-definite.

Example 2. Consider an unconstrained NN nonlinear objective function with two variables x1 and x2 is
F(x, I) = x2

1 + x2
2 − 4Ix1 − 2Ix2 + 5 for x ∈ Z2 and I ∈ [IL, IU]. According to optimal conditions, we first

obtain the following derivative and the optimal solution:

∇F(x, I) =

[
∂F(x,I)

∂x1
∂F(x,I)

∂x2

]
=

[
2x1 − 4I
2x2 − 2I

]
= 0⇒ x∗ =

[
x∗1
x∗2

]
=

[
2I
I

]
.

Then, the NN Hessian matrix is given as follows:

H(x∗, I) =

 ∂2F(x∗ ,I)
∂x2

1

∂2F(x∗ ,I)
∂x1∂x2

∂2F(x∗ ,I)
∂x2∂x1

∂2F(x∗ ,I)
∂x2

2

 =

[
2 0
0 2

]
.



Axioms 2018, 7, 13 6 of 9

Thus, |H1(x∗, I)| = 2 > 0 and |H(x∗, I)| =

∣∣∣∣∣ 2 0
0 2

∣∣∣∣∣ = 4 > 0. Hence, the NN optimal

solution is x* = [2I, I]T and the minimum value of the NN objective function is F(x*, I) = 5(1 − I2) in this
optimization problem.

If the indeterminacy I ∈ [0, 1] is considered as a possible interval range, then the optimal solution of
x is x1

* = [0, 2] and x2
* = [0, 1] and the minimum value of the NN objective function is F(x*, I) = [0, 5].

Specifically, when I = 1 is a determinate value, then x1
* = 2, x2

* = 1, and F(x*, I) = 0. In this case, the NN
nonlinear optimization is reduced to the traditional nonlinear optimization, which is a special case of the NN
nonlinear optimization.

4.3. NN-NP Problem Having Equality Constraints

Consider an NN-NP problem having NN equality constraints:

min F(x, I)
s.t. hj(x, I) = 0, j = 1, 2, . . . , l

x ∈ Zn
(3)

where h1(x, I), h2(x, I), . . . , hl(x, I): Zn → Z and I ∈ [IL, IU].
Here we consider Lagrange multipliers for the NN-NP problem. The Lagrangian function that

we minimize is then given by:

L(x, I, λ) = F(x, I) +
l

∑
j=1

λjhj(x, I), λ ∈ Zl , x ∈ Zn, (4)

where λj (j = 1, 2, . . . , l) is a Lagrange multiplier and I ∈ [IL, IU]. It is obvious that this method
transforms the constrained optimization into unconstrained optimization. Then, the necessary
condition for this case to have a minimum is that:

∂L(x, I, λ)

∂xi
= 0, i = 1, 2, . . . , n,

∂L(x, I, λ)

∂λj
= 0, j = 1, 2, . . . , l.

By solving n + l equations above, we can obtain the optimum solution x* = [x1
*, x2

*, . . . , xn
*]T and

the optimum multiplier values λj
* (j = 1, 2, . . . , l).

Example 3. Let us consider an NN-NP problem having an NN equality constraint:

minF(x, I) = 4Ix1 + 5x2

s.t. h(x, I) = 2x1 + 3x2 − 6I = 0, x ∈ Z2.

Then, we can construct the Lagrangian function:

L(x, I, λ) = 4Ix1 + 5x2 + λ(2x1 + 3x2 − 6I), λ ∈ Z, x ∈ Z2.

The necessary condition for the optimal solution yields the following:

∂L(x, I, λ)

∂x1
= 8Ix1 + 2λ = 0,

∂L(x, I, λ)

∂x2
= 10x2 + 3λ = 0, and

∂L(x, I, λ)

∂λ
= 2x1 + 3x2 − 6I = 0.
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By solving these equations, we obtain the results x1 = −λ/(4I), x2 = −3λ/10, and λ = −12I2/(1 + 1.8I).
Hence, the NN optimal solution is obtained by the results of x1

* = 3I/(1 + 1.8I) and x2
* = 18I2/(5 + 9I). If the

indeterminacy I ∈ [1, 2] is considered as a possible interval range, then the optimal solution is x1
* = [0.6522,

4.2857] and x2
* = [0.7826, 5.1429]. Specifically, if I = 1 (crisp value), then the optimal solution is x1

* = 1.0714
and x2

* = 1.2857, which are reduced to the crisp optimal solution in classical optimization problems.

4.4. General Constrained NN-NP Problems

Now, we consider a general constrained NN-NP problem:

min F(x, I)
s.t. gk(x, I) ≤ 0, k = 1, 2, . . . , m

hj(x, I) = 0, j = 1, 2, . . . , l
x ∈ Zn

(5)

where g1(x, I), g2(x, I), . . . , gm(x, I), h1(x, I), h2(x, I), . . . , hl(x, I): Zn → Z for I ∈ [IL, IU]. Then, we can
consider the NN Lagrangian function for the NN-NP problem:

L(x, I, µ, λ) = F(x, I) +
m

∑
k=1

µkgk(x, I) +
l

∑
j=1

λjhj(x, I), µ ∈ Zm, λ ∈ Zl , x ∈ Zn. (6)

The usual NN Karush–Kuhn–Tucker (KKT) necessary conditions yield:

∇F(x, I) +
m

∑
k=1
{µk∇gk(x, I)}+

l

∑
j=1
{λj∇hj(x, I)} = 0 (7)

combined with the original constraints, complementary slackness for the inequality constraints,
and µk ≥ 0 for k = 1, 2, . . . , m.

Example 4. Let us consider an NN-NP problem with one NN inequality constraint:

minF(x, I) = Ix2
1 + 2x2

2

s.t. g(x, I) = I − x1 − x2 ≤ 0, x ∈ Z2.

Then, the NN Lagrangian function is constructed as:

L(x, I, µ) = Ix2
1 + 2x2

2 + µ(I − x1 − x2), µ ∈ Z, x ∈ Z2.

The usual NN KKT necessary conditions yield:

∂L(x, I, µ)

∂x1
= 2Ix1 − µ = 0,

∂L(x, I, µ)

∂x2
= 4x2 − µ = 0, and µ(I − x1 − x2) = 0.

By solving these equations, we can obtain the results of x1 = µ/(2I), x2 = µ/4, and µ = 4I2/(2 + I) (µ = 0
yields an infeasible solution for I > 0). Hence, the NN optimal solution is obtained by the results of x1

* = 2I/(2 + I)
and x2

* = I2/(2 + I).
If the indeterminacy I ∈ [1, 2] is considered as a possible interval range corresponding to some specific

actual requirement, then the optimal solution is x1
* = [0.5, 1.3333] and x2

* = [0.25, 1.3333]. As another case,
if the indeterminacy I ∈ [2, 3] is considered as a possible interval range corresponding to some specific actual
requirement, then the optimal solution is x1

* = [0.8, 1.5] and x2
* = [0.8, 2.25]. Specifically, if I = 2 (a crisp

value), then the optimal solution is x1
* = 1 and x2

* = 1, which is reduced to the crisp optimal solution of the
crisp/classical optimization problem.
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Compared with existing uncertain optimization methods [1–6], the proposed NN-NP methods
can obtain ranges of optimal solutions (usually NN solutions but not always) rather than the crisp
optimal solutions of previous uncertain optimization methods [1–6], which are not really meaningful
in indeterminate programming of indeterminate solutions in real situations [23,24]. The existing
uncertain optimization solutions are the special cases of the proposed NN-NP optimization solutions.
Furthermore, the existing uncertain optimization methods in [1–6] cannot express and solve the NN-NP
problems from this study. Obviously, the optimal solutions in the NN-NP problems are intervals
corresponding to different specific ranges of the indeterminacy I ∈ [IL, IU] and show the flexibility
and rationality under indeterminate/NN environments, which is the main advantage of the proposed
NN-NP methods.

5. Conclusions

On the basis of the concepts of indeterminacy I and NNs, this paper introduced some basic
operations of NNs and concepts of both NN linear and nonlinear functions and inequalities,
which involve indeterminacy I. Then, we proposed NN-NP problems with unconstrained and
constrained NN nonlinear optimizations and their general solution methods for various optimization
models. Numerical examples were provided to illustrate the effectiveness of the proposed NN-NP
methods. The main advantages are that: (1) some existing optimization methods like the Lagrange
multiplier method and the KKT condition can be employed for NN-NP problems, (2) the indeterminate
(NN) programming problems can show indeterminate (NN) optimal solutions which can indicate
possible optimal ranges of the decision variables and NN objective function when indeterminacy
I ∈ [IL, IU] is considered as a possible interval range for real situations and actual requirements,
and (3) NN-NP is the generalization of traditional nonlinear programming problems and is more
flexible and more suitable than the existing unconcerned nonlinear programming methods under
indeterminate environments. The proposed NN-NP methods provide a new effective way for avoiding
crisp solutions of existing unconcerned programming methods under indeterminate environments.

It is obvious that the NN-NP methods proposed in this paper not only are the generalization
of existing certain or uncertain nonlinear programming methods but also can deal with determinate
and/or indeterminate mathematical programming problems. In the future, we shall apply these
NN-NP methods to engineering fields, such as engineering design and engineering management.
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