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Abstract: Two types of singularly-perturbed nonlinear time delay controlled systems are
considered. For these systems, sufficient conditions of the functional null controllability are
derived. These conditions, being independent of the parameter of singular perturbation, provide the
controllability of the systems for all sufficiently small values of the parameter. Illustrative examples
are presented.

Keywords: singularly-perturbed nonlinear system; time delay system; functional controllability

MSC: 34K26; 93B05; 93C23

1. Introduction

Vector-valued differential equations with small positive parameters, multiplying some of the
highest order derivatives, are called singularly-perturbed differential equations. Such equations
serve as mathematical models in various applications where multi-time-scale dynamics appears.
These parameters are called parameters of singular perturbations. In applications, they can be
small masses, small time constants, small capacitances, small geotropic reactions, as well as many
other small positive parameters in electrical engineering, control engineering, aerospace engineering,
mechanical engineering, physics, chemistry, biology, medicine, etc. (see, e.g., [1–3] and the references
therein). An important class of singularly-perturbed differential systems is the class of the systems
with small time delays (of order of the parameter of singular perturbation). Such systems appear in
various real-life applications, for instance in nuclear engineering [4], in botany [5], in physiology and
medicine [6,7], in control engineering [8], and in communication engineering [9,10].

Various theoretical and applied issues in the area of singularly-perturbed controlled systems
without delays, as well as with state and/or control delays were extensively studied in the literature
(see, e.g., [1,11–13] and the references therein).

One of the basic properties of a controlled system is its controllability. The controllability means
the existence of a control function transferring the system from any admissible initial position to any
admissible terminal position in a finite time. This property was extensively studied in the literature
(see, e.g., [14–18] and the references therein). To find out whether a singularly-perturbed system
is controllable with respect to a proper definition, corresponding controllability conditions can be
directly used for any pre-chosen value of the small parameter ε > 0 of singular perturbation. However,
the stiffness and a possible high Euclidean space dimension of this system can considerably complicate
this use. Moreover, such a use depends on the value of ε, and it should be repeated more and more
while this parameter changes. Furthermore, it should be noted that in many applications, the current
value of ε is unknown. These circumstances show how it is important to derive ε-free conditions,

Axioms 2019, 8, 80; doi:10.3390/axioms8030080 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
http://www.mdpi.com/2075-1680/8/3/80?type=check_update&version=1
http://dx.doi.org/10.3390/axioms8030080
http://www.mdpi.com/journal/axioms


Axioms 2019, 8, 80 2 of 19

which provide the validity of the controllability for a singularly-perturbed system robustly with respect
to ε, i.e., for all sufficiently small values of this parameter.

Controllability of singularly-perturbed systems, robust with respect to ε, was studied in the
literature in a number of works. Thus, in [19–22], the complete controllability of some linear and
nonlinear systems without delays was analyzed. The robust complete/output Euclidean space
controllability for various linear time-dependent/time-invariant systems either with delays only
in state variables or with state and control delays was analyzed in [23–32]. However, the functional
controllability (approximate and exact) of singularly-perturbed time delay systems was studied only
in a few papers (see [33] and the references therein). Moreover, to the best of our knowledge, the exact
functional controllability of a singularly-perturbed system was studied only in [33]. Namely, in this
work the functional null controllability was investigated for a singularly-perturbed linear constant
coefficients system with non-small point-wise commensurate delays (of order of one) only in the slow
state variable. Parameter-independent sufficient conditions for the functional null controllability of
this system were derived.

In the present paper, two types of singularly-perturbed nonlinear time-dependent systems with
point-wise non-commensurate delays and distributed delays are considered. The delays are small
of the order of ε. For each type of these systems, ε-free functional null controllability conditions
are derived. These conditions are robust with respect to ε, i.e., they guarantee the functional null
controllability of a corresponding system for all sufficiently small positive values of this parameter.

The following main notations are applied in the paper:

1. En is the n-dimensional real Euclidean space.
2. The Euclidean norm of either a vector or a matrix is denoted by ‖ · ‖.
3. The upper index T denotes the transposition either of a vector x (xT) or of a matrix A (AT).
4. In denotes the identity matrix of dimension n.
5. C[t1, t2; En] denotes the linear space of all vector-valued functions x(·) : [t1, t2]→ En, continuous

in the interval [t1, t2].
6. col(x, y), where x ∈ En, y ∈ Em, denotes the column block-vector of the dimension n + m with

the upper block x and the lower block y, i.e., col(x, y) = (xT , yT)T .
7. Reλ denotes the real part of a complex number λ.

2. Problem Formulation

Consider the controlled system:

dx(t)
dt

=
N

∑
j=0

[
A1j(t)x(t− εhj) + A2j(t)y(t− εhj)

]
+
∫ 0

−h

[
G1(t, τ)x(t + ετ) + G2(t, τ)y(t + ετ)

]
dτ + f1

(
z(t), t

)
+ f2

(
z(t− εh1), ..., z(t− εhN), t

)
+ B1(t)u(t), t ≥ 0, (1)

ε
dy(t)

dt
=

N

∑
j=0

[
A3j(t)x(t− εhj) + A4j(t)y(t− εhj)

]
+
∫ 0

−h

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ + f3

(
z(t), t

)
+ f4

(
z(t− εh1), ..., z(t− εhN), t

)
+ B2(t)u(t), t ≥ 0, (2)

where x(t) ∈ En, y(t) ∈ Em, z(·) = col
(

x(·), y(·)
)
, u(t) ∈ Er (u(t) is a control); ε > 0 is a small

parameter; N ≥ 1; 0 = h0 < h1 < ... < hN = h are some given ε-independent constants; Aij(t)
and Bk(t), (i = 1, ..., 4; j = 0, 1, ..., N; k = 1, 2) are matrix-valued functions of corresponding
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dimensions, continuously differentiable for t ∈ [0,+∞); Gi(t, τ), (i = 1, ..., 4) are matrix-valued
functions of corresponding dimensions, piecewise continuous in τ ∈ [−h, 0] for any t ∈ [0,+∞) and
continuously differentiable with respect to t ∈ [0,+∞) uniformly in τ ∈ [−h, 0]; fl(z, t), (l = 1, 3) are
given vector-valued functions of corresponding dimensions, continuous for (z, t) ∈ En+m × [0,+∞);
fp(q1, ..., qN , t), (p = 2, 4) are given vector-valued functions of corresponding dimensions, continuous
for (q1, ..., qN , t) ∈ En+m × ...× En+m × [0,+∞). Moreover, the functions fl(z, t) and fp(q1, ..., qN , t),
(l = 1, 3; p = 2, 4) satisfy the following limit conditions uniformly in t ∈ [0, t̂]:

lim
α1→+∞

∥∥ fl(z, t)
∥∥

α1
= 0, l = 1, 3, (3)

lim
α2→+∞

∥∥ fp(q1, ..., qN , t)
∥∥

α2
= 0, p = 2, 4, (4)

where t̂ > 0 is any given time instant, and:

α1
4
= ‖z‖, α2

4
=
∥∥col(q1, ..., qN)

∥∥, z ∈ En+m, qj ∈ En+m, j = 1, ..., N. (5)

For any given ε > 0 and piecewise continuous control function u(t), t ∈ [0,+∞), the system
(1) and (2) is a nonlinear time-dependent functional-differential system. It is infinite-dimensional
with the state variables x(t + ετ), y(t + ετ), τ ∈ [−h, 0]. Moreover, for 0 < ε << 1, this system is
singularly-perturbed. Equation (1) is called a slow mode, while the Equation (2) is called a fast mode
of (1) and (2). The important feature of (1) and (2) is that this system has the state delays proportional
to the small multiplier ε for a part of the derivatives, namely for dy(t)/dt.

Let tc > 0 be a given time instant independent of ε.

Definition 1. For a given ε ∈ (0, tc/h), the system (1) and (2) is said to be functional null controllable at the
time instant tc if for any ϕx(·) ∈ C[−εh, 0; En] and ϕy(·) ∈ C[−εh, 0; Em], there exists a piecewise continuous
control function u(t), t ∈ [0, tc], for which the solution col

(
x(t, ε), y(t, ε)

)
, t ∈ [0, tc] of the system (1) and (2)

with the initial conditions:

x(τ) = ϕx(τ), y(τ) = ϕy(τ), τ ∈ [−εh, 0] (6)

satisfies the terminal conditions:

x(t, ε) = 0, y(t, ε) = 0 ∀ t ∈ [tc − εh, tc]. (7)

In what follows, we study two particular types of the system (1) and (2). In the system of the
first type, the slow mode is uncontrolled, and this mode does not contain the delayed state variables.
In the system of the second type, the fast mode is uncontrolled, and it does not contain the delayed
state variables. The objective of the paper is the following: or each of the above-mentioned types of the
system (1) and (2), to derive ε-free conditions of the functional null controllability, which are valid for
all sufficiently small values of ε.

3. Preliminary Results

3.1. Euclidean Space Null Controllability of a Singularly-Perturbed Linear Time Delay System

In this subsection, we consider the linear system associated with the original system (1)
and (2). Namely,
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dx(t)
dt

=
N

∑
j=0

[
A1j(t)x(t− εhj) + A2j(t)y(t− εhj)

]
+
∫ 0

−h

[
G1(t, τ)x(t + ετ) + G2(t, τ)y(t + ετ)

]
dτ + B1(t)u(t), t ≥ 0, (8)

ε
dy(t)

dt
=

N

∑
j=0

[
A3j(t)x(t− εhj) + A4j(t)y(t− εhj)

]
+
∫ 0

−h

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ + B2(t)u(t), t ≥ 0. (9)

Let ε0 > 0 be a given number. Let t̃(ε), ε ∈ [0, ε0] be a given continuously-differentiable
non-increasing function of ε, and t̃(ε) > 0, ε ∈ [0, ε0]. Thus,

0 < t̃(ε) ≤ t̃(0) ∀ ε ∈ [0, ε0]. (10)

Definition 2. For a given ε ∈ (0, ε0], the system (8) and (9) is said to be Euclidean space null controllable
at the time instant t̃(ε) if for any ϕx(·) ∈ C[−εh, 0; En] and ϕy(·) ∈ C[−εh, 0; Em], there exists a piecewise
continuous control function u(t), t ∈ [0, t̃(ε)], for which the initial-value problem (8), (9), and (6) has the
solution satisfying the terminal conditions:

x
(
t̃(ε)

)
= 0, y

(
t̃(ε)

)
= 0. (11)

3.2. Euclidean Space Null Controllability of the Original System (1) and (2)

Definition 3. For a given ε ∈ (0, ε0], the system (1) and (2) is said to be Euclidean space null controllable
at the time instant t̃(ε) if for any ϕx(·) ∈ C[−εh, 0; En] and ϕy(·) ∈ C[−εh, 0; Em], there exists a piecewise
continuous control function u(t), t ∈ [0, t̃(ε)], for which the boundary-value problem (1), (2), (6), and (11) has
a solution.

Based on the limit conditions (3) and (4) and the results of [34], we directly obtain the
following assertion.

Proposition 1. Let for a given ε ∈ (0, ε0], the system (8) and (9) be Euclidean space null controllable at the
time instant t̃(ε). Then, for this ε, the singularly-perturbed nonlinear system (1) and (2) is Euclidean space null
controllable at the time instant t̃(ε).

4. System of the First Type

In this section, we consider the following particular case of the system (1) and (2):

dx(t)
dt

= A10(t)x(t) + A20(t)y(t) + f1
(
z(t), t

)
, t ≥ 0, (12)

ε
dy(t)

dt
=

N

∑
j=0

[
A3j(t)x(t− εhj) + A4j(t)y(t− εhj)

]
+
∫ 0

−h

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ + f3

(
z(t), t

)
+ f4

(
z(t− εh1), ..., z(t− εhN), t

)
+ B2(t)u(t), t ≥ 0. (13)
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The linear system, corresponding to (12) and (13), is a particular case of the system (8) and (9),
and it has the form:

dx(t)
dt

= A10(t)x(t) + A20(t)y(t), t ≥ 0, (14)

ε
dy(t)

dt
=

N

∑
j=0

[
A3j(t)x(t− εhj) + A4j(t)y(t− εhj)

]
+
∫ 0

−h

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ + B2(t)u(t), t ≥ 0. (15)

4.1. Auxiliary Results

4.1.1. Asymptotic Decomposition of (14) and (15)

Let us decompose asymptotically the system (14) and (15) into two much simpler ε-free
subsystems, the slow and fast ones.

The slow subsystem is obtained from (14) and (15) by setting there formally ε = 0. Thus, the slow
subsystem has the form:

dxs(t)
dt

= A10(t)xs(t) + A20(t)ys(t), t ≥ 0, (16)

0 = A3s(t)xs(t) + A4s(t)ys(t) + B2(t)us(t), t ≥ 0, (17)

where xs(t) ∈ En, ys(t) ∈ Em, us(t) ∈ Em, (us is a control);

Ais(t) =
N

∑
j=0

Aij(t) +
∫ 0

−h
Gi(t, τ)dτ, i = 3, 4. (18)

The slow subsystem (16) and (17) is a differential-algebraic system.
In what follows, we assume that:

det A4s(t) 6= 0, t ≥ 0. (19)

Subject to this assumption, the slow subsystem (16) and (17) can be reduced to the differential equation
with respect to xs(t):

dxs(t)
dt

= As(t)xs(t) + Bs(t)us(t), t ≥ 0, (20)

where:
As(t) = A10(t)− A20(t)A−1

4s (t)A3s(t),
Bs(t) = −A20(t)A−1

4s (t)B2(t).
(21)

The differential Equation (20) also is called the slow subsystem, associated with the system (14)
and (15).

The fast subsystem is derived from the fast mode (15) of the system (14) and (15) in the following
way: (a) the terms containing the state variable x(t + ετ), τ ∈ [−h, 0] are removed from (15);

(b) the transformations of the variables t = t1 + εξ, y(t1 + εξ)
4
= y f (ξ), u(t1 + εξ)

4
= u f (ξ) are
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made in the resulting system, where t1 ≥ 0 is any fixed time instant, and ξ ≥ 0 is a new independent
variable. Thus, we obtain the system:

dy f (ξ)

dξ
=

N

∑
j=0

A4j(t1 + εξ)y f (ξ − hj)

+
∫ 0

−h
G4(t1 + εξ, τ)y f (ξ + τ)dτ + B2(t1 + εξ)u f (ξ).

Now, setting formally ε = 0 in this system and replacing t1 with t yield the fast subsystem:

dy f (ξ)

dξ
=

N

∑
j=0

A4j(t)y f (ξ − hj)

+
∫ 0

−h
G4(t, τ)y f (ξ + τ)dτ + B2(t)u f (ξ), ξ ≥ 0, (22)

where t ≥ 0 is a parameter; y f (ξ) ∈ Em; y f (ξ + τ), τ ∈ [−h, 0] is the state variable; u f (ξ) ∈ Er (u f (ξ)

is the control).
The new independent variable ξ is called the stretched time, and it is expressed by the original

time t in the form ξ = (t− t1)/ε. Thus, for any t > t1, ξ → +∞ as ε→ +0.
The fast subsystem (22) is a differential equation with state delays. It is of a lower Euclidean

dimension than the system (14) and (15).

Definition 4. The slow subsystem (20) is said to be null controllable at the time instant t̃(0) if for any x0 ∈ En,
there exists a piecewise continuous control function us(t), t ∈ [0, t̃(0)], for which (20) has a solution xs(t),
t ∈ [0, t̃(0)], satisfying the initial and terminal conditions:

xs(0) = x0, xs
(
t̃(0)

)
= 0. (23)

Definition 5. For a given t ≥ 0, the fast subsystem (22) is said to be Euclidean space null controllable if for
any ϕy f (·) ∈ C[−h, 0; Em], there exist a number ξc ≥ h, independent of ϕy f (·), and a piecewise continuous
control function u f (ξ), ξ ∈ [0, ξc], for which the system (22) with the initial and terminal conditions:

y f (τ) = ϕy f (τ), τ ∈ [−h, 0], (24)

y f (ξc) = 0, (25)

has a solution.

4.1.2. Null Controllability Conditions for the Slow and Fast Subsystems

Let the n × n-matrix-valued function Ψs(σ), σ ∈ [0, t̃(0)] be the unique solution of the
terminal-value problem:

dΨs(σ)

dσ
= −AT

s (σ)Ψs(σ), σ ∈ [0, t̃(0)), Ψs
(
t̃(0)

)
= In. (26)

Let, for any given t ≥ 0, the m×m-matrix-valued function Ψ f (ξ, t) be the unique solution of the
initial-value problem:

dΨ f (ξ)

dξ
=

N

∑
j=0

AT
4j(t)Ψ f (ξ − hj) +

∫ 0

−h
GT

4 (t, τ)Ψ f (ξ + τ)dτ, ξ > 0,

Ψ f (ξ) = 0, ξ < 0, Ψ f (0) = Im. (27)
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Consider the matrices:

Ws
(
t̃(0)

)
=
∫ t̃(0)

0
ΨT

s (σ)Bs(σ)BT
s (σ)Ψs(σ)dσ, (28)

W f (ξ, t) =
∫ ξ

0
ΨT

f (ρ, t)B2(t)BT
2 (t)Ψ f (ρ, t)dρ, ξ ≥ 0, t ≥ 0. (29)

By virtue of the results of [30] (Section 3.1), we have the following two assertions.

Proposition 2. The slow subsystem (20) is null controllable at the time instant t̃(0), if and only if
det Ws

(
t̃(0)

)
6= 0.

Proposition 3. For a given t ≥ 0, the fast subsystem (22) is Euclidean space null controllable if and only if
there exists an instant ξ = ξc ≥ h such that det W f (ξc, t) 6= 0.

4.1.3. ε-Free Conditions for Euclidean Space Null Controllability of the Linear System (14) and (15)

Here, we assume:
(I1) All roots λ(t) of the equation:

det

[
λIm −

N

∑
j=0

A4j(t) exp(−λhj)−
∫ 0

−h
G4(t, τ) exp(λτ)dτ

]
= 0 (30)

satisfy the inequality Reλ(t) < −β for all t ∈ [0, t̃(0)], where β > 0 is some constant.
Quite similarly to the results of [25], we obtain the following assertion.

Proposition 4. Let the assumption (I1) be valid. Let the slow subsystem (20) be null controllable at the time
instant t̃(0). Let, for t = t̃(0), the fast subsystem (22) be Euclidean space null controllable. Then, there exists a
positive number ε1 ≤ ε0 such that, for all ε ∈ (0, ε1], the singularly-perturbed linear system (14) and (15) is
Euclidean space null controllable at the time instant t̃(ε).

Based on Propositions 2 and 3, Proposition 4 can be reformulated as follows.

Proposition 5. Let the assumption (I1) be valid. Let det Ws
(
t̃(0)

)
6= 0. Let there exist a number ξc ≥ h

such that det W f
(
ξc, t̃(0)

)
6= 0. Then, there exists a positive number ε1 ≤ ε0 such that, for all ε ∈ (0, ε1],

the singularly-perturbed linear system (14) and (15) is Euclidean space null controllable at the time instant t̃(ε).

4.1.4. Euclidean Space Null Controllability of the Nonlinear System (12) and (13): ε-Free Conditions

Based on Equations (3) and (4) and the results of [34], and using Proposition 5, we directly obtain
the following assertion.

Proposition 6. Let the assumption (I1) be valid. Let det Ws
(
t̃(0)

)
6= 0. Let there exist a number ξc ≥ h

such that det W f
(
ξc, t̃(0)

)
6= 0. Then, there exists a positive number ε1 ≤ ε0 such that, for all ε ∈ (0, ε1],

the singularly-perturbed nonlinear system (12) and (13) is Euclidean space null controllable at the time
instant t̃(ε).

4.2. Main Result

In this subsection, we assume that u(t) ∈ Em and B2(t) is an m× m-matrix. Furthermore, we
assume:

(II1) The matrix B2(tc) is invertible.
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(III1) f1(0, t) = 0 for all t ∈ [0, tc].

(IV1) The vector-valued functions f1(z, t) and f3(z, t) satisfy the local Lipschitz condition with respect
to z ∈ En+m uniformly in t ∈ [0, tc].

Lemma 1. Let the assumption (I I1) be valid. Then, det W f (ξc, tc) 6= 0 for any ξc ≥ h.

Proof. The statement of the lemma directly follows from the definition of the matrix W f (ξ, t) (see
Equation (29)).

Theorem 1. Let the assumptions (I1)–(IV1) be valid. Let det Ws(tc) 6= 0. Then, there exists a positive number
ε∗ < tc/(2h) such that, for any ε ∈ (0, ε∗], the system (12) and (13) is functional null controllable at the time
instant tc.

Proof. Let us choose t̃(ε) in the form:

t̃(ε) = tc − εh, ε ∈ [0, tc/(2h)]. (31)

Then, by virtue of Proposition 6, there exists a positive number ε1 < tc/(2h) such that, for all
ε ∈ (0, ε1], the system (12) and (13) is Euclidean space null controllable at the time instant
tc − εh. Hence, for any ε ∈ (0, ε1] and any ϕx(·) ∈ C[−εh, 0; En], ϕy(·) ∈ C[−εh, 0; Em], there exists
the piecewise continuous control function u(t) = ũ(t, ε), t ∈ [0, tc − εh], for which the solution
col
(

x(t), y(t)
)
= col

(
x̃(t, ε), ỹ(t, ε)

)
of the initial-value problem (12), (13), and (6) satisfies the zero

terminal conditions, i.e.,
x̃(tc − εh, ε) = 0, ỹ(tc − εh, ε) = 0. (32)

Note that any piecewise continuous control u(t), t ∈ [0, tc − εh], which differs from ũ(t, ε) only at the
single point t = tc − εh, generates the same solution col

(
x̃(t, ε), ỹ(t, ε)

)
of the initial-value problem

(12), (13), and (6) in the entire interval t ∈ [0, tc − εh], i.e., (32) holds for any such control.
Now, for any ε ∈ (0, ε1], we consider the initial-value problem (12), (13), and (6) in the interval

[0, tc]. In the system (12) and (13), we choose the control u(t) = ũ(t, ε) in the interval [0, tc − εh),
while in the interval [tc − εh, tc], the piecewise continuous control u(t) will be chosen later. Namely, in
the interval [tc − εh, tc], the piecewise continuous control u(t) will be chosen in such a way that the
solution of (12) and (13) with the initial conditions:

x(ρ) = x̃(ρ, ε), y(ρ) = ỹ(ρ, ε), ρ ∈ [tc − 2εh, tc − εh] (33)

will be zero for all t ∈ (tc − εh, tc]. For this purpose, we introduce in the consideration the
following functions:

Xj(t, ε) =

{
x̃(t− εhj, ε), t ∈

[
tc − εh, tc − ε(h− hj)

)
,

0, t ∈ [tc − ε(h− hj), tc],
j = 1, ..., N, (34)

Yj(t, ε) =

{
ỹ(t− εhj, ε), t ∈

[
tc − εh, tc − ε(h− hj)

)
,

0, t ∈ [tc − ε(h− hj), tc],
j = 1, ..., N, (35)

Zj(t, ε) = col
(
Xj(t, ε), Yj(t, ε)

)
, t ∈ [tc − εh, tc], j = 1, ..., N, (36)

ω(t, ε) =
tc − t

ε
− h, t ∈ [tc − εh, tc]. (37)
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Furthermore, we represent the integral in the right-hand side of (13) as:

∫ 0

−h

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ =∫ ω(t,ε)

−h

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ

+
∫ 0

ω(t,ε)

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ, t ∈ [tc − εh, tc]. (38)

The first integral in the right-hand side of (38) can be rewritten as:

∫ ω(t,ε)

−h

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ =∫ ω(t,ε)

−h

[
G3(t, τ)x̃(t + ετ, ε) + G4(t, τ)ỹ(t + ετ, ε)

]
dτ, t ∈ [tc − εh, tc]. (39)

The second integral in the right-hand side of (38) can be rewritten as:

∫ 0

ω(t,ε)

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ =∫ t

tc−εh

[
G3

(
t,

χ− t
ε

)
x(χ) + G4

(
t,

χ− t
ε

)
y(χ)

]
dχ, t ∈ [tc − εh, tc]. (40)

Thus, due to (38)–(40), ∫ 0

−h

[
G3(t, τ)x(t + ετ) + G4(t, τ)y(t + ετ)

]
dτ =∫ ω(t,ε)

−h

[
G3(t, τ)x̃(t + ετ)dτ + G4(t, τ)ỹ(t + ετ)

]
dτ +∫ t

tc−εh

[
G3

(
t,

χ− t
ε

)
x(χ) + G4

(
t,

χ− t
ε

)
y(χ)

]
dχ, t ∈ [tc − εh, tc]. (41)

Furthermore, we note that, due to the smoothness of the matrix-valued function B2(t) and
the assumption (II1), B2(t) is invertible in the entire interval t ∈ [tc − εh, tc] for all ε ∈ [0, ε2],
where 0 < ε2 ≤ ε1 is some sufficiently small number.

For any ε ∈ (0, ε2], we choose the above-mentioned control u(t), t ∈ [tc − εh, tc] as:

u(t) = ū(t, ε)
4
= −B−1

2 (t)
{ ∫ ω(t,ε)

−h

[
G3(t, τ)x̃(t + ετ) + G4(t, τ)ỹ(t + ετ)

]
dτ

+
N

∑
j=1

[
A3j(t)Xj(t, ε) + A4j(t)Yj(t, ε)

]
+ f3(0, t) + f4

(
Z1(t, ε), ..., ZN(t, ε), t

)}
. (42)

Substitution of this control into (13) and use of Equation (41) yield the following equation in the
interval [tc − εh, tc]:

ε
dy(t)

dt
= A30(t)x(t) + A40(t)y(t)

+
∫ t

tc−εh

[
G3

(
t,

χ− t
ε

)
x(χ) + G4

(
t,

χ− t
ε

)
y(χ)

]
dχ

+ f3
(
z(t), t

)
− f3(0, t) + Γ

(
z(t− εh1), ..., z(t− εhN), t

)
, t ∈ [tc − εh, tc], (43)
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where:

Γ
(
z(t− εh1), ..., z(t− εhN), t

)
=

N

∑
j=1

(
A3j(t) , A4j(t)

)(
z(t− εhj)− Zj(t, ε)

)
+ f4

(
z(t− εh1), ..., z(t− εhN), t

)
− f4

(
Z1(t, ε), ..., ZN(t, ε), t

)
. (44)

Remember that z(·) = col
(

x(·), y(·)
)
.

Let us solve the system (12) and (43) in the interval [tc − εh, tc] subject to the initial conditions (33).
To do this, we use the method of steps. Namely, let us consider this initial-value problem in the interval[
tc − εh, tc − ε(h− h1)

]
. By virtue of (34)–(36), we have:

Γ
(
z(t− εh1), ..., z(t− εhN), t

)
= 0, t ∈

[
tc − εh, tc − ε(h− h1)

]
.

Due to the latter, Equation (43) becomes:

ε
dy(t)

dt
= A30(t)x(t) + A40(t)y(t)

+
∫ t

tc−εh

[
G3

(
t,

χ− t
ε

)
x(χ) + G4

(
t,

χ− t
ε

)
y(χ)

]
dχ

+ f3
(
z(t), t

)
− f3(0, t), t ∈

[
tc − εh, tc − ε(h− h1)

]
. (45)

Moreover, due to (32) and (33), the point-wise initial conditions for the system (12) and (45) become:

x(tc − εh) = 0, y(tc − εh) = 0. (46)

Solving the initial-value problem (12), (45), and (46) in the interval
[
tc − εh, tc − ε(h− h1)

]
and taking

into account the assumptions (III1)–(IV1), we directly obtain that its unique solution is:

x(t) = x(t, ε) = 0, y(t) = y(t, ε) = 0, t ∈ [tc − εh, tc − ε(h− h1)
]
. (47)

Now, based on the solution (47) of the the initial-value problem (12), (45), and (46), let us consider
Equation (43) in the interval

[
tc − ε(h− h1), tc − ε(h− h̄2)

]
, where h̄2 = min{2h1, h2}. Similarly to (45),

we obtain this equation in the following form:

ε
dy(t)

dt
= A30(t)x(t) + A40(t)y(t)

+
∫ t

tc−ε(h−h1)

[
G3

(
t,

χ− t
ε

)
x(χ) + G4

(
t,

χ− t
ε

)
y(χ)

]
dχ

+ f3
(
z(t), t

)
− f3(0, t), t ∈

[
tc − ε(h− h1), tc − ε(h− h̄2)

]
. (48)

The system (12) and (48), along with the initial conditions:

x
(
tc − ε(h− h1)

)
= 0, y

(
tc − ε(h− h1)

)
= 0,

yields the unique solution:

x(t) = x(t, ε) = 0, y(t) = y(t, ε) = 0, t ∈
[
tc − ε(h− h1), tc − ε(h− h̄2)

]
. (49)

Continuing to solve the system (12) and (43) in the interval [tc − εh, tc] subject to the initial
conditions (33) by the method of steps, we obtain (similarly to (47) and (49)) the unique solution of this
initial-value problem in the entire interval [tc − εh, tc]:

x(t) = x(t, ε) = 0, y(t) = y(t, ε) = 0, t ∈ [tc − εh, tc]. (50)
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Thus, for any ε ∈ (0, ε2], the control u(t) = ū(t, ε), t ∈ [tc − εh, tc], given by (42), generates the unique
zeroth solution of the system (12) and (13) subject to the initial conditions (33) in the entire interval
[tc − εh, tc]. Therefore, the control:

u(t) =

{
ũ(t, ε), t ∈ [0, tc − εh),
ū(t, ε), t ∈ [tc − εh, tc]

(51)

generates the solution x(t) = x(t, ε), y(t) = y(t, ε), t ∈ [0, tc] of the initial-value problem (12), (13),
and (6) satisfying the terminal conditions (7). The latter, along with Definition 1 and the notation

ε∗
4
= ε2, completes the proof of the theorem.

Remark 1. The idea to establish the functional null controllability of a time delay system, based on its Euclidean
space null controllability and using a control variable at the final interval as a proper function of the state
variable at the preceding interval, was applied in the literature in a number of works (see [15,35,36]). In these
works, the simplest unperturbed linear differential-difference systems with constant coefficients were considered.
The results of the present paper are an essential extension of the application of this idea to the functional null
controllability analysis of singularly-perturbed nonlinear time-dependent systems with multiple point-wise and
distributed delays.

4.3. Example

Consider the following system, a particular case of (12) and (13):

dx1(t)
dt

= −tx1(t) + (t + 2)x2(t)− y(t)

+ sin
(

x1(t)− x2(t)
)
+ cos

(
ty(t)

)
− 1, t ≥ 0, (52)

dx2(t)
dt

= (t− 1)x1(t)− (t + 1)x2(t) + y(t)

− ln
(
1 + x2

1(t) + x2
2(t)

)
+ arctan

(
y(t)/(t + 1)

)
, t ≥ 0, (53)

ε
dy(t)

dt
= x1(t)− x2(t)− 2y(t) + x1(t− ε) + tx2(t− ε) + y(t− ε)

+2
∫ 0

−1

[
tτx1(t + ετ)− τx2(t + ετ)

]
dτ + t

(
1 + x2

1(t) + x2
2(t) + y2(t)

)1/4

+(t + 2) cos2 (x1(t− ε) + x2(t− ε) + y(t− ε)
)
+ u(t), t ≥ 0, (54)

where x1(t), x2(t), y(t), and u(t) are scalars, i.e., n = 2, m = 1, r = 1.
In this example, we study the functional null controllability of the system (52)–(54) at the time

instant tc = 1 for all sufficiently small ε > 0.
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Comparing the systems (52)–(54) with the system (12) and (13), we obtain that in this example:
N = 1, h1 = h = 1, and:

A10(t) =

(
−t t + 2
t− 1 − (t + 1)

)
, A20(t) =

(
−1
1

)
, A30(t) = (1 , −1),

A40(t) = −2, A31(t) = (1 , t), A41(t) = 1,

G3(t, τ) = (2tτ , −2τ), G4(t, τ) = 0, B2(t) = 1,

f1
(
z(t), t

)
=

(
sin
(
x1(t)− x2(t)

)
+ cos

(
ty(t)

)
− 1

− ln
(
1 + x2

1(t) + x2
2(t)

)
+ arctan

(
y(t)/(t + 1)

) ) ,

f3
(
z(t), t

)
= t
(
1 + x2

1(t) + x2
2(t) + y2(t)

)1/4,

f4
(
z(t− ε), t

)
= (t + 2) cos2 (x1(t− ε) + x2(t− ε) + y(t− ε)

)
, (55)

where z(·) = col
(

x1(·), x2(·), y(·)
)
.

Thus, in this example, the limit conditions (3) and (4) are valid for l = 1, 3, p = 4. The coefficients
of x1(·), x2(·), y(·), and u(t) in the linear terms are smooth functions for t ≥ 0, τ ∈ [−1, 0].
Moreover, the assumptions (II1)–(IV1) also are valid. Let us show the validity of the assumption
(I1). In this example, Equation (30) becomes:

λ + 2− exp(−λ) = 0. (56)

For all complex numbers λ with Reλ ≥ −0.4, we have the inequality:

Re
(
λ + 2− exp(−λ)

)
> 0.108,

meaning that such λ are not roots of Equation (30). Therefore, all roots of (56) satisfy the inequality:

Reλ < −0.4,

i.e., the assumption (I1) is valid for β = 0.4.
Using (18) and (21), we obtain:

A3s(t)
(
2− t , t

)
, A4s(t) = −1, t ∈ [0, tc], (57)

As(t) =

(
−2 2
1 − 1

)
, Bs(t) =

(
−1
1

)
, t ∈ [0, tc]. (58)

Remember that tc = 1 and, therefore, t̃(0) = tc = 1.
Now, let us show that in this example, the matrix Ws(tc), given by (28), is invertible. Since the

matrices As(t) and Bs(t) are constant (see Equation (58)), then, due to the results of [14], the invertibility
of Ws(tc) is equivalent to the following condition:

rank
(

Bs , AsBs
)
= 2. (59)

Calculating the matrix in the left-hand side of (59), we obtain:

(
Bs , AsBs

)
=

(
−1 4
1 − 2

)
,

meaning the validity of the condition (59) and, therefore, the invertibility of the matrix Ws(tc).
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Thus, in this example, all the conditions of Theorem 1 are fulfilled. This yields the existence of a
positive number ε∗ such that, for all ε ∈ (0, ε∗], the system (52)–(54) is functional null controllable at
the time instant tc = 1.

5. System of the Second Type

In this section, we consider the following particular case of the system (1) and (2):

dx(t)
dt

=
N

∑
j=0

[
A1j(t)x(t− εhj) + A2j(t)y(t− εhj)

]
+
∫ 0

−h

[
G1(t, τ)x(t + ετ) + G2(t, τ)y(t + ετ)

]
dτ + f1

(
z(t), t

)
+ f2

(
z(t− εh1), ..., z(t− εhN), t

)
+ B1(t)u(t), t ≥ 0, (60)

ε
dy(t)

dt
= A30(t)x(t) + A40(t)y(t) + f3

(
z(t), t

)
, t ≥ 0. (61)

The linear system, corresponding to (60) and (61), is a particular case of the system (8) and (9),
and it has the form:

dx(t)
dt

=
N

∑
j=0

[
A1j(t)x(t− εhj) + A2j(t)y(t− εhj)

]
+
∫ 0

−h

[
G1(t, τ)x(t + ετ) + G2(t, τ)y(t + ετ)

]
dτ + B1(t)u(t), t ≥ 0, (62)

ε
dy(t)

dt
= A30(t)x(t) + A40(t)y(t), t ≥ 0. (63)

5.1. Auxiliary Results

5.1.1. Asymptotic Decomposition of (62) and (63)

Decomposing asymptotically the system (62) and (63), we obtain its slow subsystem:

dxs(t)
dt

= A1s(t)xs(t) + A2s(t)ys(t) + B1(t)us(t), t ≥ 0, (64)

0 = A30(t)xs(t) + A40(t)ys(t), t ≥ 0, (65)

where xs(t) ∈ En, ys(t) ∈ Em, us(t) ∈ En (us is a control);

Ais(t) =
N

∑
j=0

Aij(t) +
∫ 0

−h
Gi(t, τ)dτ, i = 1, 2. (66)

Like in Section 4.1.1, the slow subsystem (64) and (65) is a differential-algebraic system.
In what follows, we assume that:

det A40(t) 6= 0, t ≥ 0. (67)
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Subject to this assumption, the slow subsystem (64) and (65) can be reduced to the differential equation
with respect to xs(t):

dxs(t)
dt

= As(t)xs(t) + B1(t)us(t), t ≥ 0, (68)

where:
As(t) = A1s(t)− A2s(t)A−1

40 (t)A30(t). (69)

Like in Section 4.1.1, the differential Equation (68) also is called the slow subsystem,
associated with the system (62) and (63).

The fast subsystem, associated with the system (62) and (63), is obtained in a way similar to that
of obtaining the system (22). Thus, we have:

dy f (ξ)

dξ
= A40(t)y f (ξ), ξ ≥ 0, (70)

where t ≥ 0 is a parameter; ξ ≥ 0 is an independent variable; y f (ξ) ∈ Em is a state variable.
The meaning of the new independent variable ξ and its connection with the original independent

variable t are the same as in Section 4.1.1. However, in contrast with the results of Section 4.1.1
(see the Equation (22)), the fast subsystem (70) does not contain a control variable, i.e., it is completely
uncontrollable. Therefore, the method, proposed in Sections 4.1.2–4.1.4, for the ε-free analysis of the
Euclidean space null controllability of the first type system (12) and (13), is not applicable for such
an analysis of the Euclidean space null controllability of the second type system (60) and (61). In this
section, we apply another method for this analysis, which is based on the results of [28].

5.1.2. ε-Free Conditions for Euclidean Space Null Controllability of the Linear System (62) and (63)

Here, we assume:
(I2) All roots λ(t) of the equation:

det [λIm − A40(t)] = 0 (71)

satisfy the inequality Reλ(t) < −β for all t ∈ [0, t̃(0)], where β > 0 is some constant.
Remember that t̃(ε), ε ∈ [0, ε0] is a given continuously-differentiable non-increasing function of ε,

satisfying the inequality (10).
Let the n × n-matrix-valued function Φs(σ) be the solution of the following

terminal-value problems:

dΦs(σ)

dσ
= −AT

s (σ)Φs(σ), σ ∈
[
0, t̃(0)

)
, Φs

(
t̃(0)

)
= In. (72)

Let:

Φ f (ξ)
4
= exp

[
AT

40
(
t̃(0)

)
ξ
]
, ξ ≥ 0. (73)

From the assumption (I2), we directly obtain:

‖Φ f (ξ)‖ ≤ a exp(−βξ), ξ ≥ 0, (74)

where a > 0 is some constant.
Let:

Θ f (ξ)
4
= AT

30
(
t̃(0)

) ∫ +∞

ξ
Φ f (κ)dκ, ξ ≥ 0. (75)
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Due to the inequality (74), the integral in the right-hand side of (75) converges and:

Θ f (ξ) = −AT
30
(
t̃(0)

)(
AT

40
(
t̃(0)

))−1
exp

[
AT

40
(
t̃(0)

)
ξ
]
, ξ ≥ 0.

Consider the matrices:

Ms
(
t̃(0)

)
=
∫ t̃(0)

0
ΦT

s (σ)B1(σ)BT
1 (σ)Φs(σ)dσ, (76)

M f
(
t̃(0)

)
=
∫ +∞

0
ΘT

f (ξ)B1
(
t̃(0)

)
BT

1
(
t̃(0)

)
Θ f (ξ)dξ. (77)

Quite similarly to the results of [28], we obtain the following assertion.

Proposition 7. Let the assumption (I2) be valid. Let det Ms
(
t̃(0)

)
6= 0, det M f

(
t̃(0)

)
6= 0. Then, there exists

a positive number ε1 ≤ ε0 such that, for all ε ∈ (0, ε1], the singularly-perturbed linear system (62) and (63) is
Euclidean space null controllable at the time instant t̃(ε).

Remark 2. Due to the results of [28], the matrix M f
(
t̃(0)

)
is nonsingular if and only if the following system

is null controllable at some ξ = ξc:

dỹ(ξ)
dξ

= A40
(
t̃(0)

)
ỹ(ξ) + A−1

40
(
t̃(0)

)
A30
(
t̃(0)

)
B1
(
t̃(0)

)
ũ(ξ), ξ ≥ 0, (78)

where ỹ(ξ) ∈ Em is a state variable; ũ(ξ) ∈ Er is a control variable.

5.1.3. Euclidean Space Null Controllability of the Nonlinear System (60) and (61): ε-Free Conditions

Based on Equations (3) and (4), the results of [34], and using Proposition 7, we directly obtain the
following assertion.

Proposition 8. Let the assumption (I2) be valid. Let det Ms
(
t̃(0)

)
6= 0, det M f

(
t̃(0)

)
6= 0. Then, there exists

a positive number ε1 ≤ ε0 such that, for all ε ∈ (0, ε1], the singularly-perturbed nonlinear system (60) and (61)
is Euclidean space null controllable at the time instant t̃(ε).

5.2. Main Result

In this subsection, we assume that u(t) ∈ En and B1(t) is an n × n-matrix. Along with this,
we assume:

(II2) The matrix B1(tc) is invertible.
(III2) f3(0, t) = 0 for all t ∈ [0, tc].
(IV2) The vector-valued functions f1(z, t) and f3(z, t) satisfy the local Lipschitz condition with respect
to z ∈ En+m uniformly in t ∈ [0, tc].

Note that the assumption (IV2) is the same as the assumption (IV1) in Section 4.2. However, for the
sake of the paper’s readability, we repeat here this assumption.

Lemma 2. Let the assumption (I I2) be valid. Then, det Ms(tc) 6= 0.
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Proof. Due to the smoothness of the matrix-valued function B1(t) and the assumption (II2), there
exists a number t1 ∈ (0, tc) such that, for all t ∈ [t1, tc], the matrix B1(t) is invertible. Using Equation
(76), we can represent the matrix Ms(tc) as:

Ms
(
tc
)
=
∫ t1

0
ΦT

s (σ)B1(σ)BT
1 (σ)Φs(σ)dσ +

∫ tc

t1

ΦT
s (σ)B1(σ)BT

1 (σ)Φs(σ)dσ. (79)

The first integral in the right-hand side of (79) is at least a positive semi-definite matrix, while the
second integral is a positive definite matrix. Therefore, the sum of these integrals is a positive definite
matrix, which completes the proof of the lemma.

Theorem 2. Let the assumptions (I2)–(IV2) be valid. Let det M f (tc) 6= 0. Then, there exists a positive number
ε∗ < tc/(2h) such that, for any ε ∈ (0, ε∗], the system (60) and (61) is functional null controllable at the time
instant tc.

Proof. Using Proposition 8 and Lemma 2, the theorem is proven quite similarly to Theorem 1.

5.3. Example

Consider the following system, a particular case of (60) and (61):

dx(t)
dt

= x(t) + 2y1(t) + 5t2y2(t) + tx(t− ε)− y1(t− ε) + y2(t− ε)

−2t
∫ 0

−1
τx(t + ετ)dτ − 10t2

∫ 0

−1
τy1(t + ετ)dτ + cos

(
t2x(t) + y1(t)− ty2(t)

)
− sin2 (x(t− ε) + t2y1(t− ε) + y2(t− ε)

)
+ tu(t), t ≥ 0, (80)

ε
dy1(t)

dt
= 2x(t)− y1(t)− 5ty2(t)− ln

(
1 + tx2(t) + y2

1(t) + y2
2(t)

)
, t ≥ 0, (81)

ε
dy2(t)

dt
= −x(t) + ty1(t)− y2(t) + arctan

(
x(t)− ty1(t) + y2(t)

)
, t ≥ 0, (82)

where x(t), y1(t), y2(t), and u(t) are scalars, i.e., n = 1, m = 2, r = 1.
In this example, like in the example of Section 4.3, we study the functional null controllability of

the system (80)–(82) at the time instant tc = 1 for all sufficiently small ε > 0.
Comparing the system (80)–(82) with the system (60) and (61), we obtain that in the present

example: N = 1, h1 = h = 1, and:

A10(t) = 1, A20(t) = (2 , 5t2), A30(t) =

(
2
−1

)
,

A40(t) =

(
−1 − 5t

t − 1

)
, A11(t) = t, A21(t) = (−1 , 1),

G1(t, τ) = −2tτ, G2(t, τ) = (−10t2τ , 0), B1(t) = t,

f1
(
z(t), t

)
= cos

(
t2x(t) + y1(t)− ty2(t)

)
,

f2
(
z(t− ε), t

)
= − sin2 (x(t− ε) + t2y1(t− ε) + y2(t− ε)

)
,

f3
(
z(t), t

)
=

(
− ln

(
1 + tx2(t) + y2

1(t) + y2
2(t)

)
arctan

(
x(t)− ty1(t) + y2(t)

) )
, (83)

where z(·) = col
(

x(·), y1(·), y2(·)
)
.
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Thus, in this example, the limit conditions (3) and (4) are valid for l = 1, 3, p = 2. The coefficients
of x(·), y1(·), y2(·), and u(t) in the linear terms are smooth functions for t ≥ 0, τ ∈ [−1, 0].
Moreover, the assumptions (II2)–(IV2) also are valid. Let us show the validity of the assumption (I2).
In this example, Equation (71) becomes:

(1 + λ)2 + 5t2 = 0, (84)

yielding the roots:
λ1(t) = −1 +

√
5ti, λ2(t) = −1−

√
5ti, t ≥ 0,

where i is the imaginary unit.
Thus, the real parts of the roots of Equation (84) equal −1, meaning the fulfillment of the

assumption (I2) with any β larger than one.
Now, let us show that det M f (tc) 6= 0. Due to Remark 2, this inequality is equivalent to the

null controllability of the system (78), where t̃(0) = tc = 1. Since the coefficients of this system are
constant, then, due to the results of [14], the null controllability of this system is equivalent to the
following condition:

rank
(

A−1
40 (1)A30(1)B1(1) , A30(1)B1(1)

)
= 2. (85)

Calculating the matrix in the left-hand side of (85), we obtain:

(
A−1

40 (1)A30(1)B1(1) , A30(1)B1(1)
)
=

(
−7/6 2
−1/6 − 1

)
,

meaning the validity of the condition (85) and, therefore, the null controllability of the system (78).
Thus, in this example, the matrix M f (tc) is nonsingular. Hence, in this example, all the conditions of
Theorem 2 are fulfilled. This yields the existence of a positive number ε∗ such that, for all ε ∈ (0, ε∗],
the system (80)–(82) is functional null controllable at time instant tc = 1.

6. Conclusions

In this paper, two types of singularly-perturbed nonlinear time-dependent-controlled differential
systems with time delays (multiple point-wise and distributed) in the state variables were analyzed.
The case, where the delays are small, of the order of a small positive multiplier ε for a part of the
derivatives in the differential equations, was treated. In the system of the first type, the slow mode
equation was uncontrolled, and this equation did not contain the delayed state variables. In the system
of the second type, the fast mode equation was uncontrolled, and it did not contain the delayed state
variables. The functional null controllability of the considered systems, robust with respect to the small
parameter ε, was studied. For each type of system, ε-free conditions, guaranteeing the functional null
controllability for all sufficiently small values of ε, were derived. These results were based on the ε-free
analysis of the Euclidean space null controllability of the considered systems.
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