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1. Introduction

Numerous problems in science and engineering defined by nonlinear functional equations can be
solved by reducing them to an equivalent fixed-point problem. In fact, an operator equation

Gx=0 (1)

may be expressed as a fixed-point equation 7 x = x. Accordingly, the Equation (1) has a solution if the
self-mapping 7 has a fixed point. However, for a non-self mapping 7 : P — Q, the equation 7x = x
does not necessarily admit a solution. Here, it is quite natural to find an approximate solution x* such
that the distance d(x*, 7x*) is minimum, in which case x* and 7x* are in close proximity to each
other. Herein, the optimal approximate solution x*, for which d(x*, Tx*) = d(P, Q), is called a best
proximity point of 7. The main aim of the best proximity point theory is to give sufficient conditions
for finding the existence of a solution to the nonlinear programming problem,

rgn€111;1 d(g, To). ()

Moreover, a best proximity point generates to a fixed point if the mapping under consideration is
a self-mapping. For more details on this research subject, see [1-15].

In 2015, Khojasteh et al. [16] presented the notion of Z-contraction involving a new class of
mappings—namely, simulation functions, and proved new fixed-point theorems via different methods
to others in the literature. For more details, see [17-20].
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Definition 1 ([16]). A simulation function is a mapping  : [0,00) X [0,00) — R so that:

(¢1)  ¢(0,0)=0;
(G2)  &(u ) <m—p forall p,i>0;
(¢3)  If (pn), (11n) are sequences in (0, 00) so that nl1_r)1010 Un = nh_r)r(}o Ny > 0, then

lim sup ¢ (pn, 1) < 0. (3)

n—o0

Theorem 1 ([16]). Let (M, d) be a complete metric space and T : M — M be a Z-contraction with respect to
{ € Z—that is,
Cd(TE Tw),d(¢,w)) >0, forall¢,w e M.

Then, T admits a unique fixed point (say T € X) and, for each &y € M, the Picard sequence {T"&o} is
convergent to T.

In this study, we will consider simulation functions satisfying only the condition ({,). For the
sake of convenience, we identify the set of all simulation functions satisfying only the condition ({,)
by Z.

The main concern of the paper is to establish theorems on the existence and uniqueness of best
proximity points for Geraghty type Z-proximal contractions in complete metric spaces. The obtained
results complement and extend some known results from the literature. An example, as well as an
application to a variational inequality problem, is also given in order to illustrate the effectiveness of
our generalizations.

2. Preliminaries
Let P and Q be two non-empty subsets of a metric space, (M, d). Consider:
d(P,Q) :=inf{d(p,v) :p € P,v € Q};
Py:={peP:d(p,v) =d(P,Q) forsomev € Q};
Qo:={veQ:d(p,v) =d(P,Q) for some p € P}.
Denote by
Best(T) ={ueP:d(u,Tu)=d(P,Q)},
the set of all best proximity points of a non-self-mapping 7 : P — Q. In the study [5], Caballero et al.

familiarized the notion of Geraghty contraction for non-self-mappings as follows:

Definition 2 ([5]). Let P, Q be two non-empty subsets of a metric space, (M,d). A mapping T : P — Q is
called a Geraghty contraction if there is B € ¥, so that for all {,w € P

d(T¢, Tw) < pld(G,w)) -d(G,w), @
where the class X is the set of functions B : [0,00) — [0,1), satisfying
B(ty) =1 = t, — 0.

In the paper [10], Jleli and Samet initiated the concepts of a-y-proximal contractive
and a-proximal admissible mappings. They provided related best-proximity-point results.
Subsequently, Hussain et al. [7] modified the aforesaid notions and substantiated certain
best-proximity-point theorems.
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Definition 3 ([10]). Let 7 : P — Qand a : P x P — [0, 00) be given mappings. Then, T is called a-proximal
admissible if

a(ug,up) > 1

d(p1, Tur) =d(P,Q) o = a(p1,p2) 21,

d(p2, Tuz) = d(P,Q)

forall uy,up, p1,p2 € P.

Definition 4 ([7]). Let T : P — Qand a,5 : P x P — [0, 00) be given mappings. Such T is said to be
(«, 17)-proximal admissible if

a(ug, up) > n(uy, up)
d(p1, Tur) =d(P,Q) ¢ = a(p1,p2) = 1(p1,p2),
d(p2, Tuz) = d(P,Q)

forall uy, up, p1,pa2 € P.

Note that if #(u,v) = 1 for all u,v € P, then Definition 4 corresponds to Definition 3.
Very recently, Tchier et al. in [14] initiated the concept of Z-proximal contractions.

Definition 5 ([14]). Let P and Q be two non-empty subsets of a metric space, (M, d). A non-self-mapping
T : P — Qs called a Z-proximal contraction if there is a simulation function { so that

d(p, Tu) = d(P,Q)

o Q) } — C(d(p,v),d(w,0)) > 0, ©

forallp,v,u,v € P.
Now, we introduce a new concept which will be efficiently used in our results.

Definition 6. Let 7 : P — Qand a, 5 : P X P — [0, 00) be given mappings. Then, T is said to be triangular
(&, n)-proximal admissible, if

(1) T is (a,1)-proximal admissible;
(2)  a(u,v) > n(u,v)and a(v,z) > n(v,z) implies that a(u,z) > 1(u,z), forall u,v,z € P.

Now, we describe a new class of contractions for non-self-mappings which generalize the concept
of Geraghty-contractions.

Definition 7. Let P and Q be two non-empty subsets of a metric space (M,d), { € Z and a, 17 : P x P —
[0,00) and B € X. A non-self-mapping T : P — Q is said to be a Geraghty type Z-proximal contraction, if for
allu,v,p,v € P, the following implication holds:

a(u,v) = 1(u,0)
d(p, Tu) =d(P,Q) o == {(d(p,v), p(d(u,v))d(u,v)) > 0. (6)
d(v,Tv) = d(P,Q)

Remark 1. If T : P — Q is a Geraghty type Z-proximal contraction, then by ({») and Definition 7,
the following implication holds for all u,v,p,v € P with u # v:

a(u, ) > 1(u,0)
d(p, Tu) =d(P,Q) o = d(p,v) < p(d(u,0))d(u,0). @)
d(v, Tv) =d(P,Q)
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3. Main Results
Our first result is as follows.

Theorem 2. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that Py is non-empty,
T:P— Qanda,n:P xP — |[0,00) be given mappings. Suppose that:

(i) Pisclosed and T (Py) C Qo;

(it) T is triangular («, n)-proximal admissible;
(iii) There are ug, uy € Py so that d(uy, Tug) = d(P, Q) and a (ug, u1) > 1 (19, u1);
(iv) T is a continuous Geraghty type Z-proximal contraction.

Then, T has a best proximity point in P. If a(u,v) > 1(u,v) for all u,v € Best(T ), then T has a unique best
proximity point u* € P. Moreover, for every u € P, limy_yoo T"u = u*.

Proof. From the condition (iii), there are ugp, u; € Py so that
d(uq, Tug) =d(P,Q) and a (ug,uy) > 1 (g, uy) .
Since T (Py) C Qq, there is uy € Py so that
d(up, Tup) = d(P,Q).

Thus, we get
a(ug, uq) > n(ug, uy)
d(u1, TuO) = d(P/ Q)r
d(uz, Tur) = d(P,Q)

Since 7 is (w, 7)-proximal admissible, we get « (11, 1) > 1 (uy, uy) . Now, we have
d(up, Tuy) =d(P,Q) and a (uq,uz) > 1 (uq,uz).
Again, since 7 (Py) € Qo, there exists uz € Py such that
d(uz, Tup) =d(P,Q),
and thus,
a(uy, u) > 1(ug, u2),

d(uz, Tuy) = d(P,Q),
d(uz, Tuy) = d(P,Q).

Since T is (&, 7)-proximal admissible, this implies that a (1, u3) > 1 (12, u3) . Thus, we have
d(uz, Tup) =d(P,Q) and a (up,uz) > 1 (up,uz).
By repeating this process, we build a sequence {u, } in Py C P so that
d(upi1, Tun) =d(P,Q) and a (un, Uyny1) > 1 (Un, Uny1), 8)
forall n € NU {0} . If there is ng so that u,,, = 1,1, then
d(tny, Ttiny) = d(tipg41, Tthny) = d(P,Q).

That is, uy, is a best proximity point of 7. We should suppose that u, # u,1, for all n.
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From (8), for all n € N, we get

o (unfll ui’l) 2 U) (un*l/un) ’
d(un, Tup—) = d(P,Q),
d(upir, Tup) = d(P,Q).

On the grounds that 7 is a Geraghty type Z-proximal contraction, by utilizing Remark 1,
we deduce that

d(un, ups1) < B(d(tp—1, un))d(uy—1,un), )

which requires that d(uy, ;1) < d(u,—1,u,), for all n. Therefore, the sequence {d(uy, u,11)} is
decreasing, and so there is A > 0 so that lim, 0 d (14, 4y +1) = A. Now, we shall show that A = 0.
On the contrary, assume that A > 0. Then, taking into account (9), for any n € N,

d(tn, 1) < Bd(up—1,un))d(up_1,un) < d(ty—1,un).
This yields, for any n € N,

A, tpy1)

0<
d(unfll un)

< B(d(upy—1,uy)) < 1.
Taking n — oo, we find that

lim B(d(uy_1,un)) =1,

n—o00

and since € X, limy 0 d(uy—1,u,) = 0. This contradicts our assumption limy, e d (1,1, Un) =
A > 0. Therefore, we get
lim d(u, q1,u,) =0, foralln e N. (10)

n—o0

We shall prove that {u,} is Cauchy in P. By contradiction, suppose that {u,} is not a Cauchy
sequence, so there is an ¢ > 0 for which we can find {u, } and {u,, } of {u,} such that ny is the
smallest index for which n; > my; > k and

d (tmy, tn,) > € and d (upy, Uy 1) <& (11)
We have

€ S d (umk/ unk) S d (umk/ Mnk—l) + d (unk—ll unk)
<e+d (uy—1,1n) -
Taking k — oo, by (10), we get
limd (up,, tn,) = € (12)

k—o0
By triangular inequality,
|d (umk+l/ unk+l) —d (umkrunk) | S d (umk+1/ umk) + d (unk/ unk+l) ’

which yields that
klgl;d (xmk+1/xnk+1) =¢& (13)

Since 7 is triangular («, #)-proximal admissible, by using (8), we infer

a(tp, n) = (U, uty), foralln,m € Nwithm < n. (14)
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Combining (8) and (14), for all k € N, we have

(U, Uy ) = 1 (Ui i),
d(um+1, Tum,) = d(P,Q),
d(ui’lk-‘rlr Tunk) == d(P, Q)

Regarding the fact that 7 is a Geraghty type Z-proximal contraction, from Remark 1,
we deduce that

A1, 1) < By, ) ) (Uinye, Uy ) < AUy, Uy )

Taking the limit as k tends to co on both sides of the last inequality, and using the Equations (12)
and (13), we get

e < lim B(d(um,,un,))e < e,
k—o0
which implies that limy_, oo B(d (14, Un,)) = 1, and so limy_, e d (U, Uy, ) = 0 which contradicts e > 0.
Hence, {u, } is a Cauchy sequence in P. Since P is a closed subset of the complete metric space (M, d),
there is p € P so that

Tim d(u,p) = 0. (15)
Since 7T is continuous, we have
nlg%o d(Tuu, Tp)=0. (16)

Combining (8), (15), and (16), we get
d(P,Q) = lim d(uyr1, Tun) = d(p, Tp).

Therefore, u € P is a best proximity point of 7. Finally, we shall show that the set Best(7) is a
singleton. Suppose that r is another best proximity point of 7, thatis, d(r, Tr) = d(P, Q). Then, by the
hypothesis, we have a(p,r) > n(p, r)—that s,

Then, from Remark 1, we deduce

d(p,r) < Bd(p,r))d(p,r) <d(p,7),

which is a contradiction. Hence, we have a unique best proximity point of 7. [

Let us consider the following assertion in order to remove the continuity on the operator 7 in the
next theorem.

(C) If a sequence {u,} in P is convergent to u € P so that a(uyu,11) >
1 (thn, Uy41), then a (uy, u) > 1 (uy,u) for alln € N.

Theorem 3. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that Py is non-empty,
T:P— Qanda,n:P xP —|[0,00) be given mappings. Suppose that:

(i) Pisclosed and T (Py) C Qo;
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(ii) T is triangular («, n)-proximal admissible;
(iii) there are ug, uy € Py so that d(uq, Tug) = d(P, Q) and « (ug, uq) > 1 (1o, u1);
(iv) the condition (C) holds and T is a Geraghty type Z-proximal contraction.

Then, T has a best proximity point in P. If a(u,v) > 1(u,v) for all u,v € Best(T ), then T has a unique best
proximity point u* € P. Moreover, for each u € P, we have limy, o T"u = u*.

Proof. Following the proof of Theorem 2, there exists a Cauchy sequence {u, } C P satisfying (8) and
Uy — p. On account of (i), Dy is closed, and so p € Py. Also, since T (Py) C Qo, there is z € Py so that

d(z, Tp) = d(P,Q). (17)
Taking (C) and (8) into account, we infer
« (Un, p) > 1 (un,p), foralln € N.

Since 7 is («, 7)-proximal admissible and

a(un, p) > 1(tn, p),
d(uysq, Tuy) =d(P,Q), (18)
d(z, Tp) =d(P,Q),

so, we conclude that
a(upi1,2) > n(uyy1,2), foralln € N. (19)

Considering (18), (19) and Remark 1, we have

d(unt1,2) < B(d(un, p))d(un, p) < d(un, p),

which implies that limy, ;e d(11,41,2) = 0. By the uniqueness of the limit, we obtain z = p. Thus,
by (17), we deduce that d(p, Tp) = d(P, Q). Uniqueness of the best proximity point follows from the
proof of Theorem 2. [

Example 1. Let M = R? be endowed with the Euclidian metric,
P={(0,u):u>0}and Q= {(1,u):u > 0}. Note that d(P,Q) =1, Py = P and Qo = Q. Let

{ﬁ(t) =1 ift>0

T
B(t) =13,  otherwise .

(1,5), if0o<u<l,
(1,u?), ifu>1,

and
27((0,u),(0,v)), if u,v€[0,1],oru=vo

0, otherwise.

a((0,u), (0,0)) = {
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Choose {(t,s) = %s —tforallt,s € [0,00). Let u,v,p,q > 0 be such that

a((0,u),(0,0)) = 5((0,u), (0,0))

thatis, p = § and g = §. So, «((0, p), (0,9)) > d((0,p), (0,q)). Moreover,

¢(d((0,p), (0,9)), B(d((0,u), (0,0)))d((0,u), (0,0)))

u (%

= Zp(a((0,1), 0,0)))d((0,w), 0,0)) — (0, 4),(0, )
= 2l —ol)u o] - 7

Ifu =, then B(|u —v|) = } and the right-hand side of the above inequality is equal to 0.
If u # v, we have

¢(d((0,p), (0,9)), B(d((0,u), (0,0)))d((0,u), (0,0)))
|u — | |u — |
1+ju—o 9

2
== > 0.

3 >
u=0v> 1. Here, T(0,u) = (1,u?) and T (0,v) = (1,0?). Similarly, we get that p = q = u*> = v2. So,

«((0,p),(0,q9)) =0=1((0,p),(0,9))-
Also, (d((0,p), (0,9)), B(d((0,u),(0,v)))d((0,u),(0,0))) > 0.

In each case, we get that T is an («, n)-proximal admissible. It is also easy to see that T is triangular
(«, 17)-proximal admissible. Also, T is a Geraghty type Z-proximal contraction. Also, if {u, = (0,pn)} isa
sequence in P such that « (un, uy41) > 1 (Up, tysq) for all nand u, = (0,p,) — u = (0,p) asn — oo,
then p, — p. We have py, py+1 € [0,1] or pp = ppy1. We get that p € [0,1] or p, = p. This implies that
o (uy,u) > 1 (up,u) forall n.

Moreover, there is (1o, u1) = ((0,1), (0, 1)) € Py x Py so that

d(uy, Tug) =1=d(P,Q) and « (up,u1) > d (ug,u7) .

Consequently, all conditions of Theorem 3 are satisfied. Therefore, T has a unique best proximity point in P,
which is (0,0). On the other side, we indicate that (4) is not satisfied. In fact, for u = (0,2),v = (0, 3), we have

d(Tu,Tv) =d(7(0,2),7(0,3)) =d((0,4),(0,9))

=5 2 = Bd((0,2),(0,3))d((0,2), (0,3))

= p(d(u,v))d(u,v).
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Corollary 1. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d), such that Py is
non-empty. Suppose that T : P — Q is a Geraghty-proximal contraction—that is, the following implication
holds for all u,v,p,v € P:

d(p, Tu) = d(P,Q)

d(v, Tv) = d(P,Q) } = {(d(p,v), p(d(u,v))d(u,v)) > 0.

Also, assume that P is closed and T (Py) C Qo. Then, T has a unique best proximity point u* € P. Moreover,
for each u € P, we have limy oo T"u = u*.

Proof. We take a(c,¢) = 17(0,¢) = 1in the proof of Theorem 2 (resp. Theorem 3). [

4. Some Consequences

In this section we give new fixed-point results on a metric space endowed with a partial
ordering/graph by using the results provided in the previous section. Define

4 7 'f j 7
a,n: Mx M —[0,00), a(u,v)= 1(u0), ifuzo
0, otherwise.

Definition 8. Let (M, <,d) be a partially ordered metric space, (P, Q) be a pair of non-empty subsets of M,
and T : P — Q be a given mapping. Such T is said to be =-proximal increasing if

up
d(p1, Tuy) =d(P,Q) ;= p1 2 p2,
d(p2, Tuz) = d(P,Q)

forall uy,up, p1,p2 € P.
Then, the following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 4. Let (P, Q) be a pair of non-empty subsets of a complete ordered metric space (M, <,d) so that P,
is non-empty and T : P — Q be a given non-self-mapping. Suppose that:

(i

(ii) T is 2-proximal increasing;

(iii) There are ug, uy € Py so that d(uy, Tug) = d(P, Q) and ug = uy;
(iv)

P is closed and T (Py) C Qo;

T is continuous or, for every sequence {uy} in P is convergent to u € P so that u, < u,1, we have
uy, 2uforallneN,;
(v) Thereexist { € Z and B € X, such that for all u,v,p,v € P,

u=<v
d(p, Tu) =d(P,Q) o = &(d(p,v), p(d(u,v))d(u,v)) > 0. (20)
d(v, Tv) = d(P,Q)
Then, T has a best proximity point in P. If u < v for all u,v € Best(T ), then T has a unique best proximity
point u* € P. Moreover, for every u € P, limy_yoo T"1t = u*.

Now, we present the existence of the best proximity point for non-self mappings from a metric
space M, endowed with a graph, into the space of non-empty closed and bounded subsets of the
metric space. Consider a graph G, such that the set V (G) of its vertices coincides with M and the set
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E (G) of its edges contains all loops; thatis, E (G) 2 A, where A = {(u,u) : u € M}. We assume G has
no parallel edges, so we can identify G with the pair (V (G), E (G)).

Define
n(u,v), if (u,v) € E(G),

a,n: MxM—1[0,+), a(uv)=
0, otherwise.

Definition 9. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty
subsets of M and T : P — Q be a given mapping. Such T is said to be triangular G-proximal, if

(1) forall uy,uz, p1,p2 € P,

(1/[1, Mz) S E(G)
d(p1, Tur) =d(P,Q) ¢ = (p1,p2) € E(G);
d(p2, Tuz) =d(P,Q)

(2) (u,v) € E(G) and (v,z) € E(G) implies that (u,z) € E(G), forall u,v,z € P.
forall uy,up, p1,p2 € P.
The following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 5. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty
subsets of M so that Py is non-empty and T : P — Q be a given non-self mapping. Suppose that:

P is closed and T (Py) C Qo;

T is triangular G-proximal;

There are ug, uy € Py so that d(uy, Tug) = d(P, Q) and (ug, u1) € E(G);

T is continuous or, for every sequence {uy, } in P is convergent to u € P so that (1, u,41) € E(G),
we have (uy,u) € E(G) foralln € N;

(v) Thereexist { € Z and p € X such that for all u,v,p,v € P,

(u,v) € E(G)
d(p, Tu) =d(P,Q) » = {(d(p,v),p(d(u,0))d(u,0)) > 0. (21)
d(v, Tv) =d(P,Q)

Then, T has a best proximity point in P. If (u,v) € E(G) for all u,v € Best(T ), then T has a unique best
proximity point u* € P. Moreover, for every u € P, lim, o T"u = u*.

5. A Variational Inequality Problem

Let C be a non-empty, closed, and convex subset of a real Hilbert space H, with inner product
(,-) and a norm || - ||. A variational inequality problem is given in the following:

Find u € C so that (Su,v —u) > 0forallv € C, (22)

where 5 : H — H is a given operator. The above problem can be seen in operations research, economics,
and mathematical physics, especially in calculus of variations associated with the minimization of
infinite-dimensional functionals. See [21] and the references therein. It appears in variant problems of
nonlinear analysis, such as complementarity and equilibrium problems, optimization, and finding
fixed points; see [21-23]. To solve problem (22), we define the metric projection operator Pc : H — C.
Note that for every u € H, there is a unique nearest point Pcu € C so that

|u— Peu| < |ju—v|, forallveC.
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The two lemmas below correlate the solvability of a variational inequality problem to the
solvability of a special fixed-point problem.

Lemma 1 ([24]). Let z € H. Then, u € C is such that (u —z,y —u) >0, forally € Ciffu = Pcz.

Lemma 2 ([24]). Let S : H — H. Then, u € C is a solution of (Su,v —u) > 0, forall v € C, if
u = Pc(u — ASu), with A > 0.

The main theorem of this section is:

Theorem 6. Let C be a non-empty, closed, and convex subset of a real Hilbert space H. Assume that S : H - H
is such that Pc(I — AS) : C — C is a Geraghty-proximal contraction. Then, there is a unique element
u* € C, such that (Su*,v —u*) > 0 forall v € C. Also, for any uy € C, the sequence {uy} given as
Up1 = Pc(un — ASuy) where A > 0 and n € NU {0}, is convergent to u*.

Proof. We consider the operator 7 : C — C defined by 7x = Pc(x — ASx) for all x € C. By Lemma 2,
u € Cis asolution of (Su,v —u) > 0forallv € C,if u = Tu. Now, T verifies all the hypotheses of
Corollary 1 with P = Q = C. Now, from Corollary 1, the fixed-point problem 1 = 7 u possesses a
unique solution u* € C. [
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