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Abstract: In [Fixed Point Theory Appl., 2015 (2015):185], the authors introduced a new concept of
modified contractive mappings, generalizing Ćirić, Chatterjea, Kannan, and Reich type contractions.
They applied the condition (θ4) (see page 3, Section 2 of the above paper). Later, in [Fixed Point
Theory Appl., 2016 (2016):62], Jiang et al. claimed that the results in [Fixed Point Theory Appl., 2015
(2015):185] are not real generalizations. In this paper, by restricting the conditions of the control
functions, we obtain a real generalization of the Banach contraction principle (BCP). At the end,
we introduce a weakly JS-contractive condition generalizing the JS-contractive condition.

Keywords: metric space; fixed point; weakly JS-contraction

1. Introduction

The Banach contraction principle (BCP) [1] is one of the famous results in fixed point theory which
has attracted many authors. Many extensions and generalizations have been appeared in literature by
weakening the topology itself of the space or by considering different contractive conditions (for single
and valued mappings). For more details, see ([2–23]).

Definition 1. Given a mapping Υ : X → X on a metric space (X, d).

(a) Such Υ is a C-contraction if there is µ ∈
(

0, 1
2

)
such that for all Ω, ω ∈ X, [24]

d(ΥΩ, Υω) ≤ µ (d(Ω, Υω) + d(ω, ΥΩ)) .

(b) Such Υ is a K-contraction if there is µ ∈
(

0, 1
2

)
such that for all ΥΩ ∈ X, [25]

d(ΥΩ, Υω) ≤ µ (d(Ω, ΥΩ) + d(ω, Υω)) .

(c) Such Υ is a Reich contraction if there are q, r and s ≥ 0 with q + r + s < 1 such that for all Ω, ω ∈ X,

d(ΥΩ, Υω) < q · d(Ω, ω) + r · d(Ω, ΥΩ) + s · d(ω, Υω).

Denote by Θ the set of functions θ : (0, ∞)→ (1, ∞) satisfying the following assertions:

(θ1) θ is non-decreasing;
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(θ2) for each {hk} ⊆ (0, ∞), lim
k→∞

θ(hk) = 1 if and only if lim
k→∞

hk = 0;

(θ3) there are m ∈ (0, 1) and τ ∈ (0, ∞] so that

lim
u→0+

θ(u)− 1
um = τ;

(θ4) θ(i + j) ≤ θ(i)θ(j) for all i, j > 0.

By ∆ we denote the class of functions θ ∈ Θ without condition (θ4).

Theorem 1. ([26, Corollary 2.1]) Let Υ : X → X be a self-mapping on a complete metric space (X, d). Suppose
there are θ ∈ ∆ and µ ∈ (0, 1) so that

Ω, ω ∈ X, d(ΥΩ, Υω) 6= 0 implies θ (d(ΥΩ, Υω)) ≤ (θ (d(Ω, ω)))µ .

Then T has a unique fixed point.

Note that the BCP comes immediately from Theorem 1. Motivated by [26], Hussain et al. [27] gave
sufficient conditions for the existence of a fixed point of a class of generalized contractive mappings
via a control function θ ∈ Θ in the setting of complete metric spaces and b-complete b-metric spaces.
Denote by Λ the set of functions θ : (0, ∞)→ (1, ∞) verifying (θ1), (θ2) and (θ4). On the other hand,
when considering (X, d) as a metric space and θ ∈ Λ (that is, the condition (θ3) is omitted from Θ),
Jiang et al. [28] proved that D(x, y) = ln(θ(d(x, y))) defines itself a metric on X (see Lemma 1 in [28])
and proved that the results in [27] are not generalizations of Ćirić, Chatterjea, Kannan, and Reich results.

In this paper, we more restrict the conditions on the control function θ. For this, denote by Θ′ the
set of functions θ : (0, ∞)→ (1, ∞) so that

(θ1) θ is continuous and strictly increasing;
(θ2) for each {hk} ⊆ (0, ∞), lim

k→∞
θ(hk) = 1 if and only if lim

k→∞
hk = 0.

Let (X, d) be a metric space. For θ ∈ Θ′ (that is, without the condition (θ4)), note that D(x, y) =
ln(θ(d(x, y))) does not define a metric on X (we can not ensure the triangular inequality for a metric).
Consequently, we are not in same direction as Jiang et al. [28]. Even for such restricted control function
θ, we also obtain a real generalization of the Banach contraction principle. In fact, we will complete the
work of Hussain et al. [27]. We refer the readers to Theorem 3 of [16].

2. Main Results

Definition 2. Let Υ : X → X be a self-mapping on a metric space (X, d). Such Υ is said to be a P-contraction,
whenever there are θ ∈ Θ′ and τ1, τ2, τ3, τ4 ≥ 0 with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

θ (d(ΥΩ, Υω)) ≤ (θ (d(Ω, ω)))τ1 (θ (d(Ω, ΥΩ)))τ2 (θ (d(ω, Υω)))τ3
(

θ
(

d(Ω,Υω)+d(ω,ΥΩ)
2

))τ4
, (1)

for all Ω, ω ∈ X.

As a new generalization of the BCP, we have

Theorem 2. Each P-contraction mapping on a complete metric space has a unique fixed point.

Proof. Let Ω0 ∈ X be arbitrary. Define {Ωn} by Ωn = ΥΩn−1, n ≥ 1. If there is ΩN = ΩN+1 for
some N, nothing is to prove. We assume that Ωn 6= Ωn+1 for each n ≥ 0.

We claim that
lim

n→∞
d(Ωn, Ωn+1) = 0.
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In view of (1), we have

θ (d(Ωn+1, Ωn)) = θ (d(ΥΩn, ΥΩn−1)) (2)

≤ (θ (d(Ωn, Ωn−1)))
τ1 (θ (d(Ωn, ΥΩn)))

τ2

(θ (d(Ωn−1, ΥΩn−1)))
τ3

(
θ

(
d(Ωn, ΥΩn−1) + d(Ωn−1, ΥΩn)

2

))τ4

≤ (θ (d(Ωn, Ωn−1)))
τ1 (θ (d(Ωn, Ωn+1)))

τ2

(θ (d(Ωn−1, Ωn)))
τ3

(
θ

(
d(Ωn−1, Ωn+1)

2

))τ4

≤ (θ (d(Ωn, Ωn−1)))
τ1+τ3 (θ (d(Ωn, Ωn+1)))

τ2 (θ (max{d(Ωn−1, Ωn), d(Ωn, Ωn+1)}))τ4 .

If for some N, we have
d(ΩN−1, ΩN) < d(ΩN , ΩN+1),

then in view of (θ1), we get that

θ(d(ΩN−1, ΩN)) < θ(d(ΩN , ΩN+1)). (3)

Using (2), we have

θ (d(ΩN+1, ΩN)) ≤ (θ (d(ΩN , ΩN−1)))
τ1+τ3 (θ (d(ΩN , ΩN+1)))

τ2+τ4 . (4)

Therefore,

θ (d(ΩN+1, ΩN)) ≤ (θ (d(ΩN , ΩN−1)))
τ1+τ3

1−τ2−τ4 ≤ θ (d(ΩN , ΩN−1)) ,

which is a contradiction with respect to (3).
Consequently, for all n ≥ 1,

max
{

d(Ωn−1, Ωn), d(Ωn, Ωn+1)

}
= d(Ωn−1, Ωn),

which yields that

1 < θ(d(Ωn+1, Ωn)) ≤ (θ(d(Ω1, Ω0)))
[

τ1+τ3+τ4
1−τ2

]n .

At the limit, we have
lim

n→∞
θ(d(Ωn, Ωn+1)) = 1.

According to (θ2), we get
lim

n→∞
d(Ωn, Ωn+1) = 0. (5)

In order to show that {Ωn} is a Cauchy sequence, suppose the contrary, i.e., there is ε > 0 for
which we can find mi and ni so that

ni > mi > i, d(Ωmi , Ωni ) ≥ ε. (6)

That is,
d(Ωmi , Ωni−1) < ε. (7)

From (6), one writes

d(Ωmi−1, Ωni−1) ≤ d(Ωmi−1, Ωmi ) + d(Ωmi , Ωni−1).
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In view of (5) and (7), we get

lim sup
i→∞

d(Ωmi−1, Ωni−1) ≤ ε. (8)

Analogously,
lim sup

i→∞
d(Ωmi−1, Ωni ) ≤ ε. (9)

On the other hand, we have

θ (d(Ωmi , Ωni )) = θ
(
d(ΥΩmi−1, ΥΩni−1)

)
≤
(
θ
(
d(Ωmi−1, Ωni−1)

))τ1
(
θ
(
d(Ωmi−1, ΥΩmi−1)

))τ2

(
θ
(
d(Ωni−1, ΥΩni−1)

))τ3

(
θ

(
d(Ωmi−1, ΥΩni−1) + d(Ωni−1, ΥΩmi−1)

2

))τ4

≤
(
θ
(
d(Ωmi−1, Ωni−1)

))τ1
(
θ
(
d(Ωmi−1, Ωmi )

))τ2

(
θ
(
d(Ωni−1, Ωni )

))τ3

(
θ

(
d(Ωmi−1, Ωni ) + d(Ωni−1, Ωmi )

2

))τ4

.

Using now (θ1) and (5)–(8), we have

θ (ε) ≤ θ

(
lim sup

i→∞
d(Ωmi , Ωni )

)

≤
(

θ

(
lim sup

i→∞
d(Ωmi−1, Ωni−1)

))τ1
(

θ

(
lim sup

i→∞
d(Ωmi−1, Ωmi )

))τ2

(
θ

(
lim sup

i→∞
d(Ωni−1, Ωni )

))τ3
(

θ

(
lim sup

i→∞

d(Ωmi−1, Ωni ) + d(Ωni−1, Ωmi )

2

))τ4

≤ (θ (ε))τ1 (θ (ε))τ4 .

This implies that
1 < θ (ε) ≤ (θ (ε))τ1+τ4 ,

which is a contradiction. Thus, {Ωn} is a Cauchy sequence. The completeness of X implies that there
is Ω ∈ X so that Ωn → Ω as n→ ∞. On the other hand,

θ (d(Ωn, ΥΩ)) = θ (d(ΥΩn−1, ΥΩ))

≤ (θ (d(Ωn−1, Ω)))τ1 (θ (d(Ωn−1, ΥΩn−1)))
τ2

(θ (d(Ω, ΥΩ)))τ3

(
θ

(
d(ΥΩ, Ωn−1) + d(Ω, ΥΩn−1)

2

))τ4

≤ (θ (d(Ωn−1, Ω)))τ1 (θ (d(Ωn−1, Ωn)))
τ2

(θ (d(Ω, ΥΩ)))τ3

(
θ

(
d(ΥΩ, Ωn−1) + d(Ω, Ωn)

2

))τ4

.

Taking n→ ∞ and using (θ1) and (5), we have

θ (d(Ω, ΥΩ)) ≤ (θ (d(Ω, Ω)))τ1 (θ (d(Ω, Ω)))τ2

(θ (d(Ω, ΥΩ)))τ3 (θ (d(Ω, ΥΩ)))τ4

= (θ (d(Ω, ΥΩ)))τ3+τ4 .

We deduce that Ω = ΥΩ, so Ω is a fixed point.
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Let there are two points Ω, ω which are two different fixed points of Υ. So,

θ (d(ΥΩ, Υω)) ≤ (θ (d(Ω, ω)))τ1 (θ (d(Ω, ΥΩ)))τ2

(θ (d(ω, Υω)))τ3 (θ (d(Ω, ΥΩ)))τ4

= (θ (d(Ω, ΥΩ)))τ3+τ4 .

We deduce that Ω = ΥΩ, so Ω is a fixed point.
Let Ω, ω be two distinct fixed points of Υ. We have

θ (d(Ω, ω)) = θ (d(ΥΩ, Υω)) ≤ (θ (d(Ω, ω)))τ1 (θ (d(Ω, Ω)))τ2

(θ (d(ω, ω)))τ3 (θ (d(Ω, ω)))τ4

= (θ (d(Ω, ω)))τ1+τ4 < θ (d(Ω, ω)) ,

which is a contradiction. So, Ω has a unique fixed point.

Remark 1. In Theorem 2, we can substitute the continuity of θ by the continuity of Υ.

By setting θ(t) = e
√

t, we have

Corollary 1. Let Υ : X → X be a mapping on a complete metric space (X, d) such that the following holds:

√
d (ΥΩ, Υω) ≤ τ1

√
d (Ω, ω) + τ2

√
d (Ω, ΥΩ) + τ3

√
d (ω, Υω) + τ4

√
d (Ω, Υω) + d (ω, ΥΩ)

2
,

for all Ω, y ∈ X, where θ ∈ P and τ1, τ2, τ3, τ4 ≥ 0 so that τ1 + τ2 + τ3 + τ4 < 1. Then Υ has a unique
fixed point.

Remark 2. Taking τ1 = τ4 = 0 in the Corollary 1, we get Theorem 2.6 of [27].
Taking τ4 = 0 in Theorem 1, we get Theorem 2.8 of [27].

Setting θ (t) = e
n√t in Theorem 2, we have

Corollary 2. Let (Ω, d) be a complete metric space and let Υ : X → X be such that the following holds:

n
√

d (ΥΩ, Υω) ≤ τ1
n
√

d (Ω, ω) + τ2
n
√

d (Ω, ΥΩ) + τ3
n
√

d (ω, Υω) + τ4
n

√
d (Ω, Υω) + d (ω, ΥΩ)

2
,

for all Ω, ω ∈ X, where θ ∈ P and τ1, τ2, τ3, τ4 ≥ 0 such that τ1 + τ2 + τ3 + τ3 < 1. Then Υ has a unique
fixed point.

Remark 3 ([12]). Other examples of functions in the set P are

f (t) = cosh t,

f (t) = 2 cosh t
1+cosh t ,

f (t) = 1 + ln (1 + t) ,

f (t) = 2+2 ln(1+t)
2+ln(1+t) ,

f (t) = etet
,

f (t) = 2etet

1+etet ,

f (t) = e
√

tet ,

f (t) = 2e
√

tet

1+e
√

tet ,

f (t) = e
√

te
√

t
,

f (t) = 2e
√

te
√

t

1+e
√

te
√

t ,
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for all t > 0.

By setting θ(t) = etet
, we have

Corollary 3. Let Υ : X → X be a continuous mapping on a complete metric space (X, d). Suppose that there
are τ1, τ2, τ3, τ4 ≥ 0 with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

d (ΥΩ, Υω) ed(ΥΩ,Υω) ≤ τ1d (Ω, ω) ed(Ω,ω) + τ2d (Ω, ΥΩ) ed(Ω,ΥΩ)

+ τ3d (ω, Υω) ed(ω,Υω) + τ4d (ω, ΥΩ) e
d(Ω,Υω)+d(ω,ΥΩ)

2 ,

for all Ω, ω ∈ X. Then there is a unique fixed point of Υ.

Corollary 4. Let Υ : X → X be a continuous mapping on a complete metric space (X, d). Suppose that there
are τ1, τ2, τ3, τ4 ≥ 0 with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

2ed(ΥΩ,Υω)ed(ΥΩ,Υω)

1 + ed(ΥΩ,Υω)ed(ΥΩ,Υω)
≤
[

2ed(Ω,ω)ed(Ω,ω)

1 + ed(Ω,ω)ed(Ω,ω)

]τ1
[

2ed(Ω,ΥΩ)ed(Ω,ΥΩ)

1 + ed(Ω,ΥΩ)ed(Ω,ΥΩ)

]τ2

[
2ed(ω,Υω)ed(ω,Υω)

1 + ed(ω,Υω)ed(ω,Υω)

]τ3
 2e

d(Ω,Υω)+d(ω,ΥΩ)
2 e

d(Ω,Υω)+d(ω,ΥΩ)
2

1 + e
d(Ω,Υω)+d(ω,ΥΩ)

2 e
d(Ω,Υω)+d(ω,ΥΩ)

2

τ4

,

for all Ω, ω ∈ X. Then there is a unique fixed point of Υ.

Corollary 5. Let Υ : X → X be a continuous mapping on a complete metric space (X, d). Suppose that there
are τ1, τ2, τ3, τ4 ≥ 0 with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

1 + ln (1 + d (ΥΩ, Υω)) ≤ [1 + ln (1 + d (Ω, ω))]τ1 [1 + ln (1 + d (Ω, ΥΩ))]τ2

[1 + ln (1 + d (ω, Υω))]τ3

[
1 + ln

(
1 +

d (Ω, Υω) + d (ω, ΥΩ)

2

)]τ4

,

for all Ω, ω ∈ X. Then Υ has a unique fixed point.

Example 1. Let X = [0, 5] be endowed with the metric d(Ω, ω) = |Ω−ω| for all Ω, ω ∈ X. Define
Υ : X → X and θ : (0, ∞)→ (1, ∞) by

ΥΩ =


2

3π Ω arctan Ω, if Ω ∈ [0, α] ,

1
3 sinh−1 Ω if Ω ∈ [α,+5] ,

where α (' 2.06) is the positive solution of the equation

2
3π

Ω arctan Ω =
1
3

sinh−1 Ω.

Take θ(t) = etet
. Choose τ1 = 37

100 and τi =
1
5 for i = 2, 3, 4.

Let Ω, ω ∈ X = [0, 5]. We have the following cases:
Case 1: Ω, ω ∈ [0, α]. According to the mean value Theorem for t 7−→ g(t) := 2

3π t arctan t on the
interval J = (min(ω, Ω), max(ω, Ω)) ⊂ [0, α], there is some c ∈ J such that

d(ΥΩ, Υω) =
∣∣ 2

3π Ω arctan Ω− 2
3π ω arctan ω

∣∣ ≤ g′(c)d(Ω, ω),
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where
g′(c) =

2
3π

arctan c +
2

3π

c
1 + c2 ≤

2
3π

6
5
+

2
3π

1
2
≤ 17

15π
≤ 37

100
,

because that arctan c ≤ 6
5 , for each c ∈ [0, α], and c

1+c2 ≤ 1
2 , for each c ≥ 0.

Therefore,

θ (d(ΥΩ, Υω)) = ed(ΥΩ,Υω)ed(ΥΩ,Υω)

= ed( 2
3π Ω arctan Ω, 2

3π ω arctan ω)ed( 2
3π Ω arctan Ω, 2

3π ω arctan ω)

≤
[
ed(Ω,ω)ed(Ω,ω)

] 37
100

≤
[
ed(Ω,ω)ed(Ω,ω)

] 37
100 ·

[
ed(Ω,ΥΩ)ed(Ω,ΥΩ)

] 20
100 ·

[
ed(ω,Υω)ed(ω,Υω)

] 20
100 ·

[
e

d(Ω,Υω)+d(ω,ΥΩ)
2 e

d(Ω,Υω)+d(ω,ΥΩ)
2

] 20
100

.

Case 2: Ω ∈ [0, α] and ω ∈ [α, 5]. Here,

2
3π

ω arctan ω ≥ 1
3

sinh−1 ω

for all ω ∈ [α, 5]. Using the mean value Theorem on the function t → 2
3π t arctan t on the interval [Ω, ω],

we have

d (ΥΩ, Υω) =

∣∣∣∣ 2
3π

Ω arctan Ω− 1
3

sinh−1 ω

∣∣∣∣ = 1
3

sinh−1 ω− 2
3π

Ω arctan Ω

≤ 2
3π

ω arctan ω− 2
3π

Ω arctan Ω

≤ 37
100

d(Ω, ω),

Therefore, as in case 1,

θ (d(ΥΩ, Υω)) = ed(ΥΩ,Υω)ed(ΥΩ,Υω)

≤
[
ed(Ω,ω)ed(Ω,ω)

] 37
100 ·

[
ed(Ω,ΥΩ)ed(Ω,ΥΩ)

] 20
100 ·

[
ed(ω,Υω)ed(ω,Υω)

] 20
100 ·

[
e

d(Ω,Υω)+d(ω,ΥΩ)
2 e

d(Ω,Υω)+d(ω,ΥΩ)
2

] 20
100

.

Case 3: ω ∈ [0, α] and Ω ∈ [α, 5]. It is similar to case 2.

Case 4: Ω, ω ∈ [α, 5]. Here, one writes

d(ΥΩ, Υω) =
∣∣∣ 1

3 sinh−1 Ω− 1
3 sinh−1 ω

∣∣∣ ≤ 37
100 d(Ω, ω).

Similarly,

θ (d(ΥΩ, Υω)) ≤
[
ed(Ω,ω)ed(Ω,ω)

] 37
100 ·

[
ed(Ω,ΥΩ)ed(Ω,ΥΩ)

] 20
100 ·

[
ed(ω,Υω)ed(ω,Υω)

] 20
100 ·

[
e

d(Ω,Υω)+d(ω,ΥΩ)
2 e

d(Ω,Υω)+d(ω,ΥΩ)
2

] 20
100

.
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Hence, Υ is a P-contraction. Thus all the conditions of Theorem 2 hold and Υ has a fixed point (Ω = 0).

3. Weak-JS Contractive Conditions

Let Φ be the class of functions φ : [1, ∞)→ [0, ∞) satisfying the following properties:

(φ1) φ is continuous;
(φ2) φ(1) = 0;
(φ3) or each {bn} ⊆ (1, ∞), lim

n→∞
φ(bn) = 0 iff lim

n→∞
bn = 1.

Remark 4. It is clear that Υ(t) = t− n
√

t (n ≥ 1) belongs to Φ. Other examples are Υ(t) = et−1 − 1 and
Υ(t) = ln t.

Definition 3. Let (X, d) be a metric space and let Υ be a self-mapping on X.
We say that Υ is a weakly JS-contraction if for all Ω, ω ∈ X with d(ΥΩ, Υω) > 0, we have

θ
(
d(ΥΩ, Υω)

)
≤ θ

(
d(Ω, ω)

)
− φ

(
θ(d(Ω, ω))

)
(10)

where φ ∈ Φ and θ ∈ Θ′.

Theorem 3. Let (X, d) be a complete metric space. Let Υ be a self-mapping on X so that

(i) Υ is a weakly JS-contraction;
(ii) Υ is continuous.

Then Υ has a unique fixed point.

Proof. Let Ω0 ∈ X be arbitrary. Define {Ωn} by Ωn = ΥnΩ0 = ΥΩn−1. Without loss of generality,
assume that Ωn 6= Ωn+1 for each n ≥ 0. Since Υ is a weakly JS-contraction, we derive

θ
(
d(Ωn, Ωn+1)

)
= θ

(
d(ΥΩn−1, ΥΩn)

)
≤ θ

(
d(Ωn−1, Ωn)

)
− φ

(
θ(d(Ωn−1, Ωn))

)
. (11)

So, we deduce that {θ
(
d(Ωn, Ωn+1)

)
} is decreasing, and so there is r ≥ 1 so such

lim
n→∞

θ
(
d(Ωn, Ωn+1)

)
= r. We will prove that r = 1.

Taking n→ ∞, we have

r− φ(r) = r. (12)

So,

lim
n→∞

φ
(
θ(d(Ωn−1, Ωn))

)
= 0. (13)

That is,

lim
n→∞

θ(d(Ωn−1, Ωn)) = 1, (14)

i.e.,

lim
n→∞

d(Ωn−1, Ωn) = 0. (15)

We claim that {Ωn} is a Cauchy sequence.
We argue by contradiction, i.e., there is ε > 0 for which there are {Ωmi} and {Ωni} of {Ωn} so that

ni > mi > i and d(Ωmi , Ωni ) ≥ ε. (16)
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From (16) and using the triangular inequality, we get

ε ≤ d(Ωmi , Ωni )

≤ d(Ωmi , Ωmi+1) + d(Ωmi+1, Ωni )

≤ d(Ωmi , Ωmi+1) + d(Ωmi+1, Ωni+1) + d(Ωni+1, Ωni ).

Taking i→ ∞, and using (15), we get

ε ≤ lim sup
i→∞

d(Ωmi+1, Ωni+1). (17)

Also,

d(Ωni , Ωmi ) ≤ d(Ωni , Ωni−1) + d(Ωni−1, Ωmi ).

Then, from (15),
lim sup

i→∞
d(Ωni , Ωmi ) ≤ ε. (18)

As d(ΥΩmi , ΥΩni ) > 0, we may apply (10) to get that

θ(d(Ωmi+1, Ωni+1)) = θ(d(ΥΩmi , ΥΩni ))

≤ θ(d(Ωmi , Ωni ))− φ(θ(d(Ωmi , Ωni ))).

Now, taking i→ ∞ and using (θ1), (17) and (18), we have

θ(ε) ≤ θ(lim sup
i→∞

d(Ωmi+1, Ωni+1))

≤ θ(lim sup
i→∞

d(Ωmi , Ωni ))− lim inf
i→∞

φ(θ(d(Ωmi , Ωni )))

≤ θ(ε)− lim inf
i→∞

φ(θ(d(Ωmi , Ωni ))).

This implies that
lim inf

i→∞
d(Ωmi , Ωni ) = 0,

which is a contradiction with respect to (16).
Thus, {Ωn} is a Cauchy sequence in the complete metric space (Ω, d), so there is some Ω ∈ X

such that lim
n→∞

d(Ωn, Ω) = 0.

Now, since Υ is continuous, we get that Ωn+1 = ΥΩn → ΥΩ as n→ ∞. That is, Ω = ΥΩ. Thus,
Υ has a fixed point.

Let Ω, ω ∈ Fix(T) so that Ω 6= ω. Consider

θ(d(Ω, ω)) = θ(d(ΥΩ, Υω)) ≤ θ(d(Ω, y))− φ(θ(d(Ω, ω))).

Thus,
φ(θ(d(Ω, ω))) = 0.

which is a contradiction. Hence, Ω = ω.

One can obtain many other contractive conditions by substituting suitable values of θ and φ

in (10).
Taking φ(t) = t− tα for all t ≥ 1 and α ∈ [0, 1), we obtain the JS-contractive condition.
Without the continuity assumption of Υ, we have
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Theorem 4. Let (X, d) be a complete metric space. Let Υ : X → X be a mapping. Suppose that

θ(d(ΥΩ, Υω)) ≤ θ(d(Ω, ω))− φ(θ(d(Ω, ω))), (19)

for all Ω, ω ∈ X, where θ ∈ Θ′ and φ ∈ Φ. Then Υ has a unique fixed point.

Proof. For Ω0 ∈ X, let {Ωn} be defined by Ωn+1 = ΥΩn for n ≥ 0. Note that there is Ω ∈ X such that

lim
n→∞

d(Ωn, Ω) = 0.

We also have
d(Ω, ΥΩ) ≤ d(Ω, ΥΩn) + d(ΥΩn, ΥΩ). (20)

From (19),
1 ≤ θ(d(ΥΩn, ΥΩ)) ≤ θ(d(Ωn, Ω))− φ(θ(d(Ωn, Ω))), (21)

Hence, we get that lim
n→∞

θ(d(ΥΩn, ΥΩ)) = 1. Thus, we have lim
n→∞

d(ΥΩn, ΥΩ) = 0 which by (20),

implies that ΥΩ = Ω.

Example 2. Let Ω = [2, ∞). Take the metric

d(ρ, $) = |ρ− $|

for all ρ, $ ∈ Ω. Define Υ : Ω→ Ω, ϕ : [1, ∞)→ [0, ∞) and θ : [0, ∞)→ [1, ∞) by

Υρ = ln(100 + ρ),

ϕ(ρ) = ln(ρ),

and θ(t) = et. Note that for all x ≥ 0, one has e
x

100 ≤ ex − x. Now, for all ρ, $ ∈ Ω, we have

θ(d(Υρ, Υ$)) = ed(Υρ,Υ$)

= e(| ln(100+ρ)−ln(100+$))|

≤ e
|ρ−$|
100

≤ e|ρ−$| − |ρ− $|

= ed(ρ,$) − d(ρ, $)

= θ(d(ρ, $))− ϕ(θ(d(ρ, $))).

Thus, Υ is a weakly JS-contraction. All hypotheses of Theorem 3 are verified, so Υ has a unique fixed point,
which is, u ' 4651

1000 .

4. Application to Nonlinear Integral Equations

Consider the following nonlinear integral equation

Ω(t) = φ(t) +
∫ b

a
χ(t, s, Ω(s))ds, (22)

where a, b ∈ R, Ω ∈ C[a, b] (the set of continuous functions from [a, b] to R), φ : [a, b] → R and
χ : [a, b]× [a, b]×R→ R are given functions.
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Theorem 5. Assume that

(i) χ : [a, b]× [a, b]×R → R is continuous and there is θ ∈ θ so that θ( sup
t∈[a,b]

f (t)) ≤ sup
t∈[a,b]

θ( f (t)) for

arbitrary function f with

θ(
∫ b

a
|(χ(t, s, Ω(s))ds− χ(t, s, ω(s))|ds) ≤

∫ b

a
θ(|χ(t, s, Ω(s))− χ(t, s, ω(s))|)ds;

(ii) there is τi ∈ (0, 1) so that

θ(|χ(t, s, Ω(s))− χ(t, s, ω(s))|)

≤
[θ(|Ω(t)− y(t)|)]τ1 [θ(|Ω(t)−

∫ b
a χ(t, s, Ω(s)ds)|)]τ2 [θ(|ω(t)−

∫ b
a χ(t, s, ω(s))ds|)]τ3

b− a

[θ(|ω(t)−
∫ b

a
χ(t, s, Ω(s))ds|)]τ4

for all Ω, ω ∈ C[a, b] and t, s ∈ [a, b].

Then (22) has a unique solution.

Proof. Let X = C[a, b]. Define the metric d on X by d(Ω, ω) = sup
t∈[a,b]

|Ω(t)− ω(t)|. Then (X, d) is a

complete metric space. Consider Υ : X → X by ΥΩ(t) = φ(t) +
∫ t

a χ(t, s, Ω(s))ds. Let Ω, ω ∈ X and
t ∈ [a, b]. We have

θ(|ΥΩ(t)− Υω(t)|)

= θ(|
∫ t

a
χ(t, s, Ω(s))ds−

∫ t

a
χ(t, s, ω(s))ds|)

≤
∫ b

a
θ(|χ(t, s, Ω(s))− χ(t, s, ω(s))|)ds

≤
∫ b

a

[θ(|Ω(t)−ω(t)|)]τ1 [θ(|Ω(t)−
∫ b

a χ(t, s, Ω(s)ds)|)]τ2 [θ(|ω(t)−
∫ b

a χ(t, s, ω(s))ds|)]τ3

b− a

[θ(|ω(t)−
∫ b

a
χ(t, s, Ω(s))ds|)]τ4 ds

≤ 1
b− a

∫ b

a
[θ(d(Ω, ω))]τ1 [θ(d(Ω, ΥΩ))]τ2 [θ(d(ω, Υω))]τ3 [θ(d(ω, ΥΩ))]τ4 ds

= [θ(d(Ω, ω))]τ1 [θ(d(Ω, ΥΩ))]τ2 [θ(d(ω, Υω))]τ3 [θ(d(ω, ΥΩ))]τ4 .

Thus Υ is a P-contraction. All the conditions of Theorem 2 hold, and so Υ has a unique fixed
point, that is, (22) has a unique solution.

5. Conclusions

In this paper, we restricted the conditions on the control function θ (with respect to the ones given
in [27,28]) and we obtained a real generalization of the Banach contraction principle (BCP). We also
initiated a weakly JS-contractive condition that generalizes its corresponding of Jleli and Samet [26],
and we provided some related fixed point results.
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12. Hussain, N.; Dorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces.

Fixed Point Theory Appl. 2012, 2012, 126. [CrossRef]
13. Karapinar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2018,

11, 8. [CrossRef]
14. Meir, A.; Keeler, E. A theoremon contraction mapping. J. Math. Anal. Appl. 1969, 28, 326–329. [CrossRef]
15. Mizoguchi, N.; Takahashi, W. Fixed point theorems for multivalued mappings on complete metric spaces.

J. Math. Anal. Appl. 1989, 141, 177–188. [CrossRef]
16. Mustafa, Z.; Parvaneh, V.; Jaradat, M.M.M.; Kadelburg, Z. Extended rectangular b-metric spaces and some

fixed point theorems for contractive mappings. Symmetry 2019, 11, 594. [CrossRef]
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22. Dosenović, T.; Radenović, S. A comment on “Fixed point theorems of JS-quasi-contractions”. Indian J. Math.

Dharma Prakash Gupta Meml. 2018, 60, 141–152.
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