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Abstract: The questions of the one-value solvability of an inverse boundary value problem for a
mixed type integro-differential equation with Caputo operators of different fractional orders and
spectral parameters are considered. The mixed type integro-differential equation with respect to the
main unknown function is an inhomogeneous partial integro-differential equation of fractional order
in both positive and negative parts of the multidimensional rectangular domain under consideration.
This mixed type of equation, with respect to redefinition functions, is a nonlinear Fredholm type
integral equation. The fractional Caputo operators’ orders are smaller in the positive part of the
domain than the orders of Caputo operators in the negative part of the domain under consideration.
Using the method of Fourier series, two systems of countable systems of ordinary fractional
integro-differential equations with degenerate kernels and different orders of integro-differentation
are obtained. Furthermore, a method of degenerate kernels is used. In order to determine arbitrary
integration constants, a linear system of functional algebraic equations is obtained. From the
solvability condition of this system are calculated the regular and irregular values of the spectral
parameters. The solution of the inverse problem under consideration is obtained in the form of Fourier
series. The unique solvability of the problem for regular values of spectral parameters is proved.
During the proof of the convergence of the Fourier series, certain properties of the Mittag–Leffler
function of two variables, the Cauchy–Schwarz inequality and Bessel inequality, are used. We also
studied the continuous dependence of the solution of the problem on small parameters for regular
values of spectral parameters. The existence and uniqueness of redefined functions have been justified
by solving the systems of two countable systems of nonlinear integral equations. The results are
formulated as a theorem.

Keywords: integro-differential equation; mixed type equation; small parameter; spectral parameters;
Caputo operators of different fractional orders; inverse problem; one value solvability

1. Introduction

Fractional calculus plays an important role in the mathematical modeling of many natural and
engineering processes (see [1]). We can gladly refer to many examples of applied research works,
where fractional integro-differential operators are successfully and widely used. For example, in [2]
some applications of basic problems in continuum and statistical mechanics are considered. In [3],
the mathematical problems of an Ebola epidemic model by fractional order equations are studied.
In [4,5], fractional models of the dynamics of tuberculosis infection and novel coronavirus (nCoV-2019)
are studied, respectively. The construction of various models for studying problems of theoretical
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physics by the aid of fractional calculus is described in [6] (vol. 4, 5), [7,8]. A specific physical
interpretation of the fractional derivatives, describing the random motion of a particle moving on the
real line at Poisson-paced times with finite velocity, is given in [9]. A detailed review of the applications
of fractional calculus in solving practical problems is given in [6] (vol. 6–8), [10]. More detailed
information, as well as a bibliography related to the theory of fractional integro-differentiation and
fractional derivatives, can also be found in [11–18].

We also note the special role of generalized special functions, such as polynomials, in solving
fractional differential equations. In [19], using Hermite polynomials of higher and fractional order,
some operational techniques to find general solutions of extended forms to d’Alembert and Fourier
equations. In [20], the solutions of various generalized forms of the Heat Equation, by means of
different tools ranging from the use of Hermite–Kampé de Fériet polynomials of higher and fractional
order to operational techniques, are discussed. In [21], the combined use of integral transforms and
special polynomials provides a powerful tool to deal with fractional derivatives and integrals. The real
need to know the properties of such special functions in solving direct and inverse problems for
fractional partial differential equations has been shown in [22].

Applications for equations of mixed type are studied in the works of many researchers.
For example, in [23], an example of gas motion in a channel surrounded by a porous medium was
studied, with the gas motion in a channel being described by a wave equation, while—outside the
channel—a diffusion equation was posed. In [24], a problem related to the propagation of electric
oscillations in compound lines, when the losses on a semi-infinite line were neglected and the rest
of the line was treated as a cable with no leaks, was investigated. This reduced the problem under
consideration to a mixed parabolic–hyperbolic type equation. In [25], a hyperbolic–parabolic system,
in relation to pulse combustion, is investigated. Mixed type fractional differential equations are studied
in many works by scientists—particularly in [26–35].

The theories of integral and integro-differential equations are important in studying the large
directions of the general theory of equations of mathematical physics. The presence of an integral
term in differential equations of the first and second order has an important role in the theory of
dynamical systems of automatic control [36,37]. Boundary value problems for integro-differential
equations with spectral parameters have singularities in studying the questions of one-value
solvability [38,39]. Mixed type integer order integro-differential equations with degenerate kernels
and spectral parameters are studied in [40,41].

To find the solutions of direct mixed and boundary value problems of mathematical physics, it is
required to set the coefficients of the equation, the boundary of the domain under consideration,
and the initial and boundary data. It usually happens that, in solving the applied problems
experimentally, the quantitative characteristics of the object under study are not available for direct
observation, or it is impossible to carry out the experiment itself for one reason or another. Then,
in practice, the researchers can obtain some indirect information and draw a conclusion about the
properties of the studied object. This information is determined by the nature of the object under study
and here requires mathematical processing and the interpretation of research results. Nonlocal integral
conditions often arise when the experiment gives averaged information about this object. When the
structure of the mathematical model of the studying process is known, the problem of redefining the
mathematical model is posed. Such problems belong to the class of inverse problems. By inverse
problems we mean problems whose solution consists of determining the parameters of a model
based on the available observation results and other experimental information. Inverse problems for
equations of mixed type are studied relatively rarely due to the complexity of the studying process.

In the present paper, we study the questions of the one-value solvability of an inverse boundary
value problem for a mixed type integro-differential equation with Caputo operators of different
fractional orders and spectral parameters in a multidimensional rectangular domain.

The rest of this paper is organized as follows. In Section 2, we state the problem, which we will
investigate in this work. Section 3 is devoted to formally expanding the solution of the direct problem
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into Fourier series. In Section 4, we formally determine the redefinition functions. Section 5 contains
the proof of existence and uniqueness of Fourier coefficients of redefinition functions from a countable
system of nonlinear integral equations. Section 6 is devoted to the justification of convergence and the
possibility of the term by term differentiation of the obtained Fourier series. Section 7 contains the
proof of the continuous dependence of the solution on the small parameter. In the last Section 8, as a
conclusion, we formulate the theorem, which we have proved in this paper.

2. Statement of the Problem

We recall that the Caputo differential operator of fractional order m− 1 < α < m has the form

CD α
a t f (t) =

1
Γ (m− α)

t∫
a

(t− s)m−α−1 f (m) (s) d s,

where Γ (z) is Euler gamma function.
In the multidimensional domain Ω = {−T < t < T, 0 < x1, . . . , xm < l}, a mixed type

integro-differential equation of the following form is considered:

A ε(U)− B ω(U) =


ν

T∫
0

K 1(t, s)U(s, x) d s + F1 (t, x), t > 0,

ν
0∫
−T

K 2(t, s)U(s, x) d s + F2 (t, x), t < 0,
(1)

where

Fi (t, x) = k i (t)

g i (x) + f i

x,
∫

Ω m
l

Θi(y) g i (y) d y


 , i = 1, 2,

A ε(U) =
1 + sgn (t)

2

[
CD α1

0 t − ε
m

∑
i=1

∂ 2

∂ xi ∂ xi
CD β1

0 t

]
U (t, x)

+
1− sgn (t)

2

[
CD α2

0 t − ε
m

∑
i=1

∂ 2

∂ xi ∂ xi
CD β2

0 t

]
U (t, x),

B ω(U) =


m
∑

i=1
Uxi xi , t > 0,

ω 2
m
∑

i=1
Uxi xi , t < 0,

T and l are given as positive real numbers, ω is a positive spectral parameter, ε is a positive small
parameter, ν is a real non-zero spectral parameter, 0 6= K j(t, s) = aj(t) bj(s), aj(t) ∈ C 2[−T; T], bj(s) ∈

C [−T; T], f i ∈ C 2
x
(
Ω m

l ×R
)
,
∫

Ω m
l

|Θi(y) | d y < ∞,
∫

Ω m
l

|Θi(y) | d y =
l∫

0
. . .

l∫
0
|Θi(y) | d y 1 · . . . · d y m,

i, j = 1, 2, k 1(t) ∈ C 2[0; T], k 2(t) ∈ C 2[−T; 0], while g 1(x) and g 2(x) are redefinition functions,
R ≡ (−∞; ∞), x ∈ Ω m

l ≡ [0; l]m, 0 < β1 < α1 ≤ 1, 1 < β2 < α2 ≤ 2.
Problem. Find in the domain Ω a triple of unknown function

U (t, x) ∈ C (Ω) ∩ C 0, 1 (Ω′) ∩ C α1, 2(Ω+) ∩ C α2, 2(Ω−) ∩ Cα1+2
t, x (Ω+) ∩ Cα2+2

t, x (Ω−)

∩Cα1+2+0+ ...+0
t, x1, x2, ..., xm

(Ω+) ∩ Cα2+2+0+ ...+0
t, x1, x2, ..., xm

(Ω−) ∩ Cα1+0+2+0+ ...+0
t, x1, x2, x3, ..., xm

(Ω+)

∩C α2+0+2+0+ ...+0
t, x1, x2, x3, ..., xm

(Ω−) ∩ . . . ∩ C α1+0+ ...+0+2
t, x1, ..., xm−1, xm

(Ω+) ∩ C α2+0+ ...+0+2
t, x1, ..., xm−1, xm

(Ω−)

(2)
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and redefinition functions g i(x) ∈ C
(
Ωm

l
)

, i = 1, 2, satisfying the mixed integro-differential
Equation (1) and the following boundary conditions

U (−T, x) = ϕ 1(x), CD θ
0 t U (−T, x) = ϕ 2(x), x ∈ Ωm

l , (3)

U (t, 0) = U (t, l) = 0, −T < t < T (4)

and additional conditions
T∫

0

Φ 1(t)U (t, x) = ψ1(x), x ∈ Ωm
l , (5)

0∫
−T

Φ 2(t)U (t, x) = ψ2(x), x ∈ Ωm
l , (6)

where 0 < θ < 1, ϕi(x), ψi(x) are given smooth functions, ϕi(0) = ϕi(l) = 0, ψi(0) =

ψi(l) = 0, i = 1, 2, C r(Ω) is a class of functions U (t, x1, . . . , xm) with continuous derivatives
∂ rU
∂ t r , ∂ rU

∂ x r
1

, . . . , ∂ rU
∂ x r

m
in Ω, C r, s

t, x(Ω) is a class of functions U (t, x1, . . . , xm) with continuous derivatives
∂ rU
∂ t r , ∂ sU

∂ x s
1

, . . . , ∂ sU
∂ x s

m
in Ω, C r+r+0+ ...+0

t, x1, x2, ..., xm
(Ω) is a class of functions U (t, x1, . . . , xm) with continuous

derivative ∂ 2 rU
∂ t r ∂ x r

1
in Ω, . . ., C r+0+ ...+0+r

t, x1, ..., xm−1, xm
(Ω) is a class of functions U (t, x1, . . . , xm) with

continuous derivative ∂ 2 rU
∂ t r∂ x r

m
in Ω, r, s are positive real numbers, Ω =

{
−T ≤ t ≤ T, x ∈ Ωm

l
}

,
Ω′ = Ω ∪ {x1, . . . , xm = 0} ∪ {x1, . . . , xm = l}, Ω− = {−T < t < 0, 0 < x1, . . . , xm < l},
Ω+ = {0 < t < T, 0 < x1, . . . , xm < l}.

3. Expansion of the Solution of the Direct Problem (1)–(4) into Fourier Series

Our investigation is based on the application of sine Fourier series to the mixed type
integro-differential Equation (1) of the complicated form. Hence, the solution of the mixed
integro-differential Equation (1) in domain Ω is sought in the form of the following Fourier series

U (t, x) =
∞

∑
n1, ..., nm=1

u±n1, ..., nm(t) ϑn1, ..., nm(x), (7)

where

u±n1, ..., nm(t) =


u+

n1, ..., nm(t) =
∫

Ωm
l

U (t, x) ϑn1, ..., nm(x) d x, t > 0,

u−n1, ..., nm(t) =
∫

Ωm
l

U (t, x) ϑn1, ..., nm(x) d x, t < 0,
(8)

∫
Ωm

l

U (t, x) ϑn1, ..., nm(x) d x =

l∫
0

. . .
l∫

0

U (t, x) ϑn1, ..., nm(x) d x1 · . . . · d xm,

ϑn1, ..., nm(x) =

(√
2
l

)m

sin
π n1

l
x1 · . . . · sin

π nm

l
xm, n1, . . . , nm = 1, 2, . . .

In this order, we also suppose that the redefinition functions and nonlinear functions on the
right-hand side of the integro-differential Equation (1) are representable as the following Fourier series

gi(x) =
∞

∑
n1, ..., nm=1

gi n1, ..., nm ϑn1, ..., nm(x), fi(x, Vi) =
∞

∑
n1, ..., nm=1

fi n1, ..., nm(Vi) ϑn1, ..., nm(x), (9)
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where

gi n1, ..., nm =
∫

Ωm
l

gi(x) ϑn1, ..., nm(x) d x, fi n1, ..., nm(Vi) =
∫

Ωm
l

fi(y, Vi) ϑn1, ..., nm(y) d y,

fi(y, Vi) = fi

y,
∫

Ωm
l

Θi(z) gi(z) d z

 , i = 1, 2.

Substituting series (7) and (9) into mixed Equation (1), we obtain two fractional countable systems
of ordinary integro-differential equations

CDα1
0 tu

+
n1, ..., nm(t) + ε µ2

n1, ..., nm CDβ1
0 t u+

n1, ..., nm(t) + µ2
n1, ..., nm u+

n1, ..., nm(t)

= ν
T∫
0

a1(t) b1(s) u+
n1, ..., nm(s) d s + F1 n1, ..., nm(t), t > 0,

(10)

CDα2
0 tu
−
n1, ..., nm(t) + ε µ2

n1, ..., nm CDβ2
0 t u−n1, ..., nm(t) + µ2

n1, ..., nm ω2u−n1, ..., nm(t)

= ν
0∫
−T

a2(t) b2(s) u−n1, ..., nm(s) d s + F2 n1, ..., nm(t), t < 0,
(11)

where µn1, ..., nm = π
l

√
n2

1 + . . . + n2
m,

Fi n1, ..., nm(t) = ki(t)
[
gi n1, ..., nm + fi n1, ..., nm(Vi)

]
, i = 1, 2. (12)

We use the method of degenerate kernels. In this order, by the aid of designations

τ+
n1, ..., nm =

T∫
0

b1(s) u+
n1, ..., nm(s) d s, (13)

τ−n1, ..., nm =

0∫
−T

b2(s) u−n1, ..., nm(s) d s (14)

we present the countable systems of ordinary integro-differential Equations (10) and (11) as follows

CDα1
0 tu

+
n1, ..., nm(t) + ε µ2

n1, ..., nm CDβ1
0 t u+

n1, ..., nm(t) + µ2
n1, ..., nm u+

n1, ..., nm(t)

= ν a1(t) τ+
n1, ..., nm + F1 n1, ..., nm(t), t > 0,

(15)

CDα2
0 tu
−
n1, ..., nm(t) + ε µ2

n1, ..., nm CDβ2
0 t u−n1, ..., nm(t) + µ2

n1, ..., nm ω2u−n1, ..., nm(t)

= ν a2(t) τ−n1, ..., nm + F2 n1, ..., nm(t), t < 0.
(16)

The solutions of the countable systems of differential Equations (15) and (16), satisfying conditions

u+
n1, ..., nm(0) = C+

1 n1, ..., nm
, u−n1, ..., nm(0) = C−1 n1, ..., nm

,
d

d t
u−n1, ..., nm(0) = C−2 n1, ..., nm

have the following form:

u+
n1,...,nm(t) = ν τ+

n1,...,nm Ψ11n1,...,nm(t, ε) + Ψ12n1,...,nm(t, ε) + C+
1n1,...,nm

Ψ13n1,...,nm(t, ε), t > 0, (17)



Axioms 2020, 9, 121 6 of 24

u−n1, ..., nm(t) = ν τ−n1, ..., nm Ψ21 n1, ..., nm(t, ε, ω) + Ψ22 n1, ..., nm(t, ε, ω)

+C−1 n1, ..., nm
Ψ23 n1, ..., nm(t, ε, ω)− C−2 n1, ..., nm

Ψ24 n1, ..., nm(t, ε, ω), t < 0,
(18)

where C+
1 n1, ..., nm

, C−i n1, ..., nm
, (i = 1, 2) are for unknown constants to be uniquely determined,

Ψ11 n1, ..., nm(t, ε) =

t∫
0

a1(t− s) sα1−1 E(α1−β1, α1), α1

(
−ε µ2

n1, ..., nm sα1−β1 , −µ2
n1, ..., nm sα1

)
d s,

Ψ12 n1, ..., nm (t, ε) =

t∫
0

F1 n1, ..., nm (t− s) sα1−1 E(α1−β1, α1), α1

(
−ε µ2

n1, ..., nm
sα1−β1 , −µ2

n1, ..., nm
sα1
)

d s,

Ψ13 n1, ..., nm(t, ε) = E(α1−β1, α1), 1

(
−ε µ2

n1, ..., nm t α1−β1 , −µ2
n1, ..., nm tα1

)
,

Ψ21 n1, ..., nm(t, ε, ω) =

0∫
t

a2(s− t) (−s)α2−1Ψ25 n1, ..., nm(t, ε, ω)d s,

Ψ22 n1, ..., nm(t, ε, ω) =

0∫
t

F2 n1, ..., nm(s− t) (−s)α2−1Ψ25 n1, ..., nm(t, ε, ω)d s,

Ψ23 n1, ..., nm(t, ε, ω) = E(α2−β2, α2), 1

(
−ε µ2

n1, ..., nm(−t)α2−β2 , −µ2
n1, ..., nm ω2(−t)α2

)
,

Ψ24 n1, ..., nm(t, ε, ω) = t E(α2−β2, α2), 2

(
−ε µ2

n1, ..., nm(−t)α2−β2 , −µ2
n1, ..., nm ω2(−t)α2

)
,

Ψ25 n1, ..., nm(t, ε, ω) = E(α2−β2, α2), α2

(
−ε µ2

n1, ..., nm(−s)α2−β2 , −µ2
n1, ..., nm ω2(−s)α2

)
,

The function E(α, β), γ(z1, z2) is a Mittag–Leffler function of two variables:

E(α, β), γ(z1, z2) =
∞

∑
m1, m2=0

zm1
1 zm2

2
Γ (γ + α m1 + β m2)

,

where zi, α, β, γ ∈ C, Re (α) > 0, Re (β) > 0.
From the statement of the problem (properties in (2)), it follows that the continuous conjugation

condition is fulfilled for the main unknown function: U (0 + 0, x) = U (0− 0, x). Therefore, by taking
Formula (6) into account, we have the conditions for Fourier coefficients of the main unknown function

u+
n1, ..., nm(0 + 0) =

∫
Ωm

l

U (0 + 0, x) ϑn1, ..., nm(x) d x

=
∫

Ωm
l

U (0− 0, x) ϑn1, ..., nm(x) d x = u−n1, ..., nm(0− 0).
(19)

We put

ϕi n1, ..., nm =
∫

Ωm
l

ϕi(x) ϑn1, ..., nm(x) d x, i = 1, 2.

Then, taking (8) into account, from the conditions in (3), we obtain

u−n1, ..., nm(−T) =
∫

Ωm
l

U (−T, x) ϑn1, ..., nm(x) d x =
∫

Ωm
l

ϕ1(x) ϑn1, ..., nm(x) d x = ϕ1 n1, ..., nm , (20)
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CDθ
0 tu
−
n1, ..., nm(−T) =

∫
Ωm

l

CDθ
0 t U (−T, x) ϑn1, ..., nm(x) d x

=
∫

Ωm
l

ϕ2(x) ϑn1, ..., nm(x) d x = ϕ2 n1, ..., nm .
(21)

By the aid of the continuous conjugation condition (19) from (17) and (18), we have the relation
that C+

1 n1, ..., nm
= C−1 n1, ..., nm

. To find the unknown coefficients of the integration C−1 n1, ..., nm
and

C−2 n1, ..., nm
in (18), we use the conditions (20) and (21) and deduce the following system of linear

algebraic equations:
ν τ−n1, ..., nm Ψ21 n1, ..., nm(−T, ε, ω) + Ψ22 n1, ..., nm(−T, ε, ω)+

+C−1 n1, ..., nm
Ψ23 n1, ..., nm(−T, ε, ω)− C−2 n1, ..., nm

Ψ24 n1, ..., nm(−T, ε, ω) = ϕ1 n1, ..., nm ,
ν τ−n1, ..., nm Dθ

0 tΨ21 n1, ..., nm(−T, ε, ω) + Dθ
0 tΨ22 n1, ..., nm(−T, ε, ω)+

+C−1n1,...,nm
Dθ

0tΨ23n1,...,nm(−T, ε, ω)− C−2n1,...,nm
Dθ

0tΨ24n1,...,nm(−T, ε, ω) = ϕ2n1,...,nm ,

(22)

where by Dθ
0 tΨ(−T) is denoted Dθ

0 tΨ(t)| t=−T . We assume that

σn1, ..., nm (ω) = Ψ24 n1, ..., nm(−T, ε, ω) · Dθ
0 tΨ23 n1, ..., nm(−T, ε, ω)

−Ψ23 n1, ..., nm(−T, ε, ω) · Dθ
0 tΨ24 n1, ..., nm(−T, ε, ω) 6= 0.

(23)

If the condition (23) is fulfilled, then the system (22) with respect to C−1 n1, ..., nm
and C−2 n1, ..., nm

is uniquely solvable. By solving this system (22), we arrive at the following presentations for these
unknown coefficients

C−1 n1, ..., nm
=

1
σn1, ..., nm(ω)

×
[

ϕ1 n1, ..., nm D θ
0 tΨ24 n1, ..., nm(−T, ε, ω) + ϕ2 n1, ..., nm Ψ24 n1, ..., nm(−T, ε, ω)− ν τ−n1, ..., nm

×
(

Ψ24n1,...,nm (−T, ε, ω) Dθ
0tΨ21n1,...,nm (−T, ε, ω)−Ψ21n1,...,nm (−T, ε, ω) Dθ

0tΨ24n1,...,nm (−T, ε, ω)
)

+ Ψ22n1,...,nm (−T, ε, ω) Dθ
0tΨ24n1,...,nm (−T, ε, ω)−Ψ24n1,...,nm (−T, ε, ω) Dθ

0tΨ22n1,...,nm (−T, ε, ω)
]

,

C−2 n1, ..., nm
=

1
σn1, ..., nm (ω)

×
[

ϕ1n1,...,nm Dθ
0tΨ23n1,...,nm(−T, ε, ω) + ϕ2n1,...,nm Ψ23n1,...,nm(−T, ε, ω)− ν τ−n1,...,nm

×
(

Ψ23n1,...,nm (−T, ε, ω) Dθ
0tΨ21n1,...,nm (−T, ε, ω)−Ψ21n1,...,nm (−T, ε, ω) Dθ

0tΨ23n1,...,nm (−T, ε, ω)
)

+ Ψ22n1,...,nm (−T, ε, ω) Dθ
0tΨ23n1,...,nm (−T, ε, ω)−Ψ23n1,...,nm (−T, ε, ω) Dθ

0tΨ22n1,...,nm (−T, ε, ω)
]

.

By substituting these results into (18) and taking into account C+
1 n1, ..., nm

= C−1 n1, ..., nm
in (17)

and designation (12), we obtain the following representations for the Fourier coefficients of the main
unknown functions in the positive and negative parts of the domain:

u+
n1, ..., nm(t, ε, ω, ν) =

[
ϕ1 n1, ..., nm + ϕ2 n1, ..., nm

]
N11 n1, ..., nm(t, ε, ω)

+ν τ+
n1, ..., nm N12 n1, ..., nm(t, ε)− ν τ−n1, ..., nm N13 n 1, ..., nm(t, ε, ω) +

[
g 1 n1, ..., nm + f 1 n1, ..., nm(V1)

]
×N14 n1, ..., nm(t, ε) +

[
g 2 n1, ..., nm + f 2 n1, ..., nm(V2)

]
N15 n1, ..., nm(t, ε, ω), t > 0,

(24)

u−n1, ..., nm(t, ε, ω, ν) = ϕ1 n1, ..., nm N21 n1, ..., nm(t, ε, ω) + ϕ2 n1, ..., nm N22 n1, ..., nm(t, ε, ω)

+ν τ−n1, ..., nm N23 n1, ..., nm(t, ε, ω) +
[
g 2 n1, ..., nm + f2 n1, ..., nm(V2)

]
N24 n1, ..., nm(t, ε, ω), t < 0,

(25)
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where
N11 n1, ..., nm(t, ε, ω) =

1
σn1, ..., nm(ω)

Ψ13 n1, ..., nm(t, ε)Ψ24 n1, ..., nm(−T, ε, ω),

N12 n1, ..., nm(t, ε) = Ψ11 n1, ..., nm(t, ε),

N13 n1, ..., nm(t, ε, ω) =
1

σn1, ..., nm(ω)

[
Ψ24 n1, ..., nm(−T, ε, ω) D θ

0 t Ψ21 n1, ..., nm(−T, ε, ω)

−Ψ21 n1, ..., nm(−T, ε, ω) D θ
0 t Ψ24 n1, ..., nm(−T, ε, ω)

]
Ψ13 n1, ..., nm(t, ε),

N14 n1, ..., nm(t, ε) = Ψ12 n1, ..., nm(t, ε),

N15 n1, ..., nm(t, ε, ω) =
1

σn1, ..., nm(ω)

[
Ψ22 n1, ..., nm(−T, ε, ω) D θ

0 t Ψ24 n1, ..., nm(−T, ε, ω)

−Ψ24 n1, ..., nm(−T, ε, ω) D θ
0 tΨ22 n1, ..., nm(−T, ε, ω)

]
Ψ13 n1, ..., nm(t, ε),

N21 n1, ..., nm(t, ε, ω) =
1

σn1, ..., nm(ω)

[
Ψ23 n1, ..., nm(t, ε, ω) D θ

0 t Ψ24 n1, ..., nm(−T, ε, ω)

−Ψ24 n1, ..., nm(t, ε, ω) D θ
0 t Ψ23 n1, ..., nm(−T, ε, ω)

]
,

N22 n1, ..., nm(t, ε, ω) =
1

σn1, ..., nm(ω)

[
Ψ23 n1, ..., nm(t, ε, ω)Ψ24 n1, ..., nm(−T, ε, ω)

+Ψ24 n1, ..., nm(t, ε, ω)Ψ23 n1, ..., nm(−T, ε, ω)
]

, N23 n1, ..., nm(t, ε, ω) = Ψ21 n1, ..., nm(t, ε, ω)

− 1
σn1, ..., nm(ω)

[
Ψ24 n1, ..., nm(−T, ε, ω) D θ

0 t Ψ21 n1, ..., nm(−T, ε, ω)

−Ψ21 n1, ..., nm(−T, ε, ω) D θ
0 t Ψ24 n1, ..., nm(−T, ε, ω)

]
Ψ23 n1, ..., nm(t, ε, ω)

+
1

σn1, ..., nm(ω)

[
Ψ23 n1, ..., nm(−T, ε, ω) D θ

0 t Ψ21 n1, ..., nm(−T, ε, ω)

−Ψ21 n1, ..., nm(−T, ε, ω) D θ
0 t Ψ23 n1, ..., nm(−T, ε, ω)

]
Ψ24 n1, ..., nm(t, ε, ω),

N24 n1, ..., nm(t, ε, ω) = Ψ22 n1, ..., nm(t, ε, ω)

+
1

σn1, ..., nm (ω)

[
Ψ22 n1, ..., nm(−T, ε, ω) D θ

0 t Ψ24 n1, ..., nm(−T, ε, ω)

−Ψ24 n1, ..., nm(−T, ε, ω) D θ
0 t Ψ22 n1, ..., nm(−T, ε, ω)

]
Ψ23 n1, ..., nm(t, ε, ω)

+
1

σn1, ..., nm(ω)

[
Ψ22 n1, ..., nm(−T, ε, ω) D θ

0 t Ψ23 n1, ..., nm(−T, ε, ω)

−Ψ23 n1, ..., nm(−T, ε, ω) D θ
0 t Ψ22 n1, ..., nm(−T, ε, ω)

]
Ψ24 n1, ..., nm(t, ε, ω),

Ψ 12 n1, ..., nm(t, ε) =

t∫
0

k1(t− s) sα1−1 E(α1−β1, α1), α1

(
−ε µ 2

n1, ..., nm sα1−β1 , −µ 2
n1, ..., nm sα1

)
d s,

Ψ22 n1, ..., nm(t, ε, ω) =

0∫
t

k2(s− t) (−s)α2−1 Ψ 25 n1, ..., nm(t, ε, ω) d s.
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According to the degenerate kernels method, we substitute these presentations, (24) and (25),
into designations (13) and (14):

τ +
n1, ..., nm

[
1− ν χ12 n 1, ..., nm(ε, ω)

]
+ ν τ−n1, ..., nm χ13 n1, ..., nm(ε, ω)

=
[
ϕ1 n1, ..., nm + ϕ2 n1, ..., nm

]
χ11 n1, ..., nm(ε, ω) +

[
g 1 n1, ..., nm + f1 n1, ..., nm(V1)

]
χ14 n1, ..., nm(ε, ω)

+
[
g2 n1, ..., nm + f2 n1, ..., nm(V2)

]
χ15 n1, ..., nm(ε, ω),

(26)

τ−n1, ..., nm

[
1− ν χ23 n1, ..., nm(ε, ω)

]
= ϕ1 n1, ..., nm χ21 n1, ..., nm(ε, ω) + ϕ2 n1, ..., nm χ22 n1, ..., nm(ε, ω)

+
[
g2 n1, ..., nm + f2 n 1, ..., nm(V2)

]
χ24 n1, ..., nm(ε, ω),

(27)

where

χ1i n1, ..., nm(ε, ω) =

T∫
0

b1(s) N1i n1, ..., nm(s, ε, ω) d s, i = 1, 5,

χ2i n1, ..., nm(ε, ω) =

0∫
−T

b2(s) N2i n1, ..., nm(s, ε, ω) d s, i = 1, 4.

We solve the linear algebraic Equations (26) and (27) as a system of algebraic equations with
respect to quantities τ+

n1, ..., nm and τ−n1, ..., nm . If the following conditions are fulfilled

ν χ12 n1, ..., nm(ε, ω) 6= 1, ν χ23 n1, ..., nm(ε, ω) 6= 1, (28)

then, from (26) and (27), we derive

τ+
n1, ..., nm

= ϕ1 n1, ..., nm M11 n1, ..., nm (ε, ω) + ϕ2 n1, ..., nm M12 n1, ..., nm (ε, ω)

+ [g1n1,...,nm + f1n1,...,nm (V1)] M13n1,...,nm (ε, ω) + [g2n1,...,nm + f2n1,...,nm (V2)] M14n1,...,nm (ε, ω),
(29)

τ−n1, ..., nm = ϕ1 n1, ..., nm M21 n1, ..., nm(ε, ω) + ϕ2 n1, ..., nm M22 n1, ..., nm(ε, ω)

+
[
g2 n1, ..., nm + f2 n1, ..., nm(V2)

]
M23 n1, ..., nm(ε, ω),

(30)

where

M1in1,...,nm (ε, ω) =
1

1− ν χ12n1,...,nm (ε, ω)

[
χ11n1,...,nm (ε, ω)− ν

χ13n1,...,nm (ε, ω) χ2in1,...,nm (ε, ω)

1− ν χ23n1,...,nm (ε, ω)

]
,

i = 1, 2, M13 n1, ..., nm(ε, ω) =
χ14 n1, ..., nm(ε, ω)

1− ν χ12 n1, ..., nm(ε, ω)
,

M14n1,...,nm (ε, ω) =
1

1− ν χ12n1,...,nm (ε, ω)

[
χ15n1,...,nm (ε, ω)− ν

χ13n1,...,nm (ε, ω) χ24n1,...,nm (ε, ω)

1− ν χ23n1,...,nm (ε, ω)

]
,

M2i n1, ..., nm (ε, ω) =
χ2i n1, ..., nm (ε, ω)

1− ν χ23 n1, ..., nm (ε, ω)
, i = 1, 2, M23 n1, ..., nm (ε, ω) =

χ24 n1, ..., nm (ε, ω)

1− ν χ23 n1, ..., nm (ε, ω)
.

Substituting presentations (29) and (30) of τ±n1, ..., nm into (24) and (25), we derive

u+
n1, ..., nm(t, ε, ω, ν) = ϕ1 n1, ..., nm Q11 n1, ..., nm(t, ε, ω, ν) + ϕ2 n1, ..., nm Q12 n1, ..., nm(t, ε, ω, ν)

+
[
g1 n1, ..., nm + f1 n1, ..., nm(V1)

]
Q13 n1, ..., nm(t, ε, ω, ν)

+
[
g2 n 1, ..., nm + f2 n1, ..., nm(V2)

]
Q14 n1, ..., nm(t, ε, ω, ν), t > 0,

(31)
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u−n1, ..., nm(t, ε, ω, ν) = ϕ1 n1, ..., nm Q21 n1, ..., nm(t, ε, ω, ν) + ϕ2 n1, ..., nm Q22 n1, ..., nm(t, ε, ω, ν)

+
[
g2 n1, ..., nm + f2 n1, ..., nm(V2)

]
Q23 n1, ..., nm(t, ε, ω, ν), t < 0,

(32)

where

Q1i n1, ..., nm(t, ε, ω, ν) = N11 n1, ..., nm(t, ε, ω) + ν N12 n1, ..., nm(t, ε, ω) M1i n1, ..., nm (ε, ω)

−ν N13 n1, ..., nm(t, ε, ω) M2i n1, ..., nm(ε, ω), i = 1, 2,

Q13 n1, ..., nm(t, ε, ω, ν) = N14 n1, ..., nm(t, ε, ω) + ν N12 n1, ..., nm(t, ε, ω) M13 n1, ..., nm(ε, ω),

Q14 n1, ..., nm(t, ε, ω, ν) = N15 n1, ..., nm(t, ε, ω) + ν N12 n1, ..., nm(t, ε, ω) M14 n1, ..., nm(ε, ω)

−ν N13 n1, ..., nm(t, ε, ω) M23 n1, ..., nm(ε, ω),

Q2i n1, ..., nm (t, ε, ω, ν) = N2i n1, ..., nm (t, ε, ω) + ν N23 n1, ..., nm (t, ε, ω) M2i n1, ..., nm (ε, ω), i = 1, 2,

Q23 n1, ..., nm(t, ε, ω, ν) = N24 n1, ..., nm(t, ε, ω) + ν N23 n1, ..., nm(t, ε, ω) M23 n1, ..., nm(ε, ω).

Now, we substitute presentations (31) and (32) into the Fourier series (7) and obtain the following
formal solution of the direct problem (1)–(4)

U (t, x, ε, ω, ν) =
∞
∑

n1 , ..., nm=1
ϑn1 , ..., nm (x)

[
ϕ1 n1 , ..., nm Q11 n1 , ..., nm (t, ε, ω, ν)

+ϕ2 n1 , ..., nm Q12 n1 , ..., nm (t, ε, ω, ν) +
(

g1 n1 , ..., nm + f1 n1 , ..., nm (V1)
)

Q13 n1 , ..., nm (t, ε, ω, ν)

+
(

g2 n1 , ..., nm + f2 n1 , ..., nm (V2)
)

Q14 n1 , ..., nm (t, ε, ω, ν)
]

, t > 0,

(33)

U (t, x, ε, ω, ν) =
∞
∑

n1 , ..., nm=1
ϑn1 , ..., nm (x)

[
ϕ1 n1 , ..., nm Q21 n1 , ..., nm (t, ε, ω, ν) + ϕ2 n1 , ..., nm

×Q22 n1 , ..., nm (t, ε, ω, ν) +
(

g2 n1 , ..., nm + f2 n1 , ..., nm (V2)
)

Q23 n1 , ..., nm (t, ε, ω, ν)
]

, t < 0.

(34)

We suppose that the conditions of (23) were violated for some values of spectral parameter ω. So,
we have to consider the algebraic equation with respect to spectral parameter ω

σn1, ..., nm(ω) = Ψ24n1, ..., nm(−T, ε, ω) · Dθ
0 tΨ23n1, ..., nm(−T, ε, ω)

−Ψ23n1, ..., nm(−T, ε, ω) · D θ
0 tΨ24n1, ..., nm(−T, ε, ω) = 0.

(35)

The set of positive solutions of this algebraic Equation (35) with respect to the spectral parameter
ω, we denote by = 1. We call these values ω ∈ = 1 as irregular values and, for these values,
the condition (23) is violated. Another set Λ 1 = (0; ∞) \ = 1 is called the set of regular values of
the spectral parameter ω and, for these regular values, the condition (23) is fulfilled.

Now, we assume that the conditions in (28) are violated ν χ12 n1, ..., nm(ε, ω) = 1, ν χ23 n1, ..., nm(ε, ω) = 1.
Hence, we have

ν1 =
1

χ12 n1, ..., nm(ε, ω)
, ν2 =

1
χ23 n1, ..., nm(ε, ω)

.

For regular values ω ∈ Λ 1 there hold χ12 n1, ..., nm(ε, ω) 6= 0, χ23 n1, ..., nm(ε, ω) 6= 0. So, we denote
the set {ν1, ν2} by = 2. Then a set Λ 2 = (−∞; 0) ∪ (0; ∞) \ = 2 is called the set of regular values of
the spectral parameter ν. Therefore, for all values of ν ∈ Λ 2, condition (28) is satisfied. We use the
following notation ℵ = {n1, . . . , nm ∈ N; ω ∈ Λ 1; ν ∈ Λ 2}, where N is the set of natural numbers.
This is the set on which all values of the spectral parameters ω and ν are regular. Therefore, in this case,
we study the solution of the direct problem (1)–(4) in the domain Ω as Fourier series (33) and (34).
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4. Redefinition Functions

Suppose that the functions ψi(x) expand in the Fourier series

ψi(x) =
∞

∑
n1, ..., nm=1

ψi n1, ..., nm ϑn1, ..., nm(x), (36)

where
ψi n1, ..., nm =

∫
Ωm

l

ψi(x) ϑn1, ..., nm(x) d x, i = 1, 2, n1, . . . , nm = 1, 2, . . .

By virtue of series (33), (34) and (36), we apply conditions (5) and (6):

∞

∑
n1, ..., nm=1

ψ1 n1, ..., nm ϑn1, ..., nm(x) =
∞

∑
n1, ..., nm=1

ϑn1, ..., nm(x)

×
T∫

0

Φ1(t)
[
ϕ1 n1, ..., nm Q 11 n1, ..., nm(t, ε, ω, ν) + ϕ2 n1, ..., nm Q12 n1, ..., nm(t, ε, ω, ν)

+ (g1n1,...,nm + f1n1,...,nm (V1)) Q13n1,...,nm (t, ε, ω, ν) + (g2n1,...,nm + f2n1,...,nm (V2)) Q14n1,...,nm (t, ε, ω, ν)] dt,

∞

∑
n1, ..., nm=1

ψ2 n1, ..., nm ϑn1, ..., nm(x) =
∞

∑
n1, ..., nm=1

ϑn1, ..., nm(x)

×
0∫
−T

Φ2(t)
[
ϕ1 n1, ..., nm Q21 n1, ..., nm(t, ε, ω, ν) + ϕ2 n 1, ..., nm Q 22 n 1, ..., nm(t, ε, ω, ν)

+
(

g 2 n1, ..., nm + f2 n1, ..., nm(V2)
)

Q23 n1, ..., nm(t, ε, ω, ν)
]

d t.

Hence, we obtain

ψ1n1,...,nm = ϕ1n1,...,nm Υ11n1,...,nm(ε, ω, ν) + ϕ2n1,...,nm Υ12n1,...,nm(ε, ω, ν)

+
(

g1 n1, ..., nm + f1 n1, ..., nm(V1)
)

Υ13 n1, ..., nm(ε, ω, ν)

+
(

g2 n1, ..., nm + f2 n1, ..., nm(V2)
)

Υ14 n1, ..., nm(ε, ω, ν),

(37)

ψ2 n1, ..., nm = ϕ1 n1, ..., nm Υ21 n1, ..., nm(ε, ω, ν) + ϕ2 n1, ..., nm Υ22 n1, ..., nm(ε, ω, ν)

+
(

g2 n1, ..., nm + f2 n1, ..., nm(V2)
)

Υ23 n1, ..., nm(ε, ω, ν),
(38)

where

Υ1 i n1, ..., nm(ε, ω, ν) =

T∫
0

Φ1(t) Q1 i n1, ..., nm(t, ε, ω, ν) d t, i = 1, 4,

Υ2 i n1, ..., nm(ε, ω, ν) =

0∫
−T

Φ2(t) Q2 i n1, ..., nm(t, ε, ω, ν) d t, i = 1, 3.

The relations of (37) and (38) we consider as a system of functional algebraic equations with respect
to coefficients of redefinition functions. By solving this system, we obtain the following representations

g1n1,...,nm(ε, ω, ν) + f1n1,...,nm(V1) = ψ1n1,...,nm ∆11n1,...,nm(ε, ω, ν) + ψ2n1,...,nm ∆12n1,...,nm(ε, ω, ν)

+ϕ1 n1, ..., nm ∆13 n1, ..., nm(ε, ω, ν) + ϕ2 n1, ..., nm ∆14 n1, ..., nm(ε, ω, ν),
(39)
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g2 n1, ..., nm(ε, ω, ν) + f2 n1, ..., nm(V2) = ψ2 n1, ..., nm ∆21 n1, ..., nm(ε, ω, ν)

+ϕ1 n1, ..., nm ∆22 n1, ..., nm(ε, ω, ν) + ϕ2 n1, ..., nm ∆23 n1, ..., nm(ε, ω, ν),
(40)

where
∆11 n1, ..., nm(ε, ω, ν) =

(
Υ13 n1, ..., nm(ε, ω, ν)

)−1 ,

∆12 n1, ..., nm(ε, ω, ν) = −Υ23 n1, ..., nm(ε, ω, ν)
(
Υ13 n1, ..., nm(ε, ω, ν)

)−1 ,

∆13n1,...,nm (ε, ω, ν) = [−Υ11n1,...,nm (ε, ω, ν) + Υ21n1,...,nm (ε, ω, ν)Υ23n1,...,nm (ε, ω, ν)] (Υ13n1,...,nm (ε, ω, ν))−1 ,

∆14n1,...,nm (ε, ω, ν) = [−Υ12n1,...,nm (ε, ω, ν) + Υ22n1,...,nm (ε, ω, ν)Υ23n1,...,nm (ε, ω, ν)] (Υ13n1,...,nm (ε, ω, ν))−1 ,

∆21 n1, ..., nm(ε, ω, ν) =
(
Υ23 n1, ..., nm(ε, ω, ν)

)−1 ,

∆22 n1, ..., nm(ε, ω, ν) = −Υ21 n1, ..., nm(ε, ω, ν)
(
Υ23 n1, ..., nm(ε, ω, ν)

)−1 ,

∆23 n1, ..., nm(ε, ω, ν) = −Υ22 n1, ..., nm(ε, ω, ν)
(
Υ23 n1, ..., nm(ε, ω, ν)

)−1 .

We rewrite Formulas (39) and (40) in the form of countable systems of nonlinear integral
equations (CSNIE)

gi n1, ..., nm(ε, ω, ν) = Ii
(

gi n1, ..., nm

)
≡ ci n1, ..., nm(ε, ω, ν)

−
∫

Ωm
l

fi

y,
∫

Ωm
l

Θi(z)
∞
∑

n1, ..., nm=1
gi n1, ..., nm(ε, ω, ν) ϑn1, ..., nm(z) d z

 ϑn1, ..., nm(y) d y, i = 1, 2,
(41)

where

c1 n1, ..., nm(ε, ω, ν) = ψ1 n1, ..., nm ∆11 n1, ..., nm(ε, ω, ν) + ψ2 n1, ..., nm ∆12 n1, ..., nm(ε, ω, ν)

+ϕ1 n1, ..., nm ∆13 n1, ..., nm(ε, ω, ν) + ϕ2 n1, ..., nm ∆14 n1, ..., nm(ε, ω, ν),

c2 n1, ..., nm(ε, ω, ν) = ψ2 n1, ..., nm ∆21 n1, ..., nm(ε, ω, ν)

+ϕ1 n1, ..., nm ∆22 n1, ..., nm(ε, ω, ν) + ϕ2 n1, ..., nm ∆23 n1, ..., nm(ε, ω, ν).

5. Unique Solvability of CSNIE (41)

We use the concepts of the following well-known Banach spaces, including a Hilbert coordinate
space `2 of number sequences {bn1, ..., nm}

∞
n1, ..., nm=1 with the norm

‖ b ‖` 2
=

√√√√ ∞

∑
n1, ..., nm=1

| b n1, ..., nm |
2 < ∞.

We also use the space L2(Ωm
l ) of square-summable functions on the domain Ωm

l with the norm

‖ ϑ (x) ‖ L 2(Ωm
l ) =

√√√√√ ∫
Ωm

l

| ϑ (x) | 2 d x < ∞.

In the process of proofing the unique solvability of CSNIE (41), we need the following conditions.
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Smoothness conditions. Let functions

ϕi(x), ψi(x) ∈ C 2(Ωm
l ), fi

x,
∫

Ωm
l

Θi(y) g i(y) d y

 ∈ C 2
x(Ω

m
l ×R), i = 1, 2

in the domain Ωm
l have piecewise continuous third order derivatives.

Then, by integrating them in parts three times over all variables x 1, x 2, . . . , x m, we obtain the
following formulas [41]

∞

∑
n1, ..., nm=1

[
ϕ
(3 m)
i n1, ..., nm

] 2
≤
(

2
l

)m ∫
Ω m

l

[
∂ 3 m ϕi(x)

∂ x 3
1∂ x 3

2 . . . ∂ x 3
m

] 2

d x, (42)

∞

∑
n1, ..., nm=1

[
ψ

(3 m)
i n1, ..., nm

] 2
≤
(

2
l

)m ∫
Ω m

l

[
∂ 3 mψi(x)

∂ x 3
1∂ x 3

2 . . . ∂ x 3
m

] 2

d x, (43)

∣∣ϕi n1, ..., nm

∣∣ = ( l
π

)3 m
∣∣∣ ϕ

(3 m)
i n1, ..., nm

∣∣∣
n 3

1 . . . n 3
m

,
∣∣ψi n1, ..., nm

∣∣ = ( l
π

)3 m
∣∣∣ψ

(3 m)
i n1, ..., nm

∣∣∣
n 3

1 . . . n 3
m

, (44)

where

ϕ
(3 m)
i n1, ..., nm

=
∫

Ω m
l

∂ 3 m ϕi(x)
∂ x 3

1∂ x 3
2 . . . ∂ x 3

m
ϑn1, ..., nm(x) d x,

ψ
(3 m)
i n1, ..., nm

=
∫

Ω m
l

∂ 5 mψi(x)
∂ x 3

1∂ x 3
2 . . . ∂ x 3

m
ϑn1, ..., nm(x) d x, i = 1, 2.

We obtain also that

∣∣ fi n1, ..., nm(Vi)
∣∣ = ( l

π

)3 m
∣∣∣ f (3 m)

i n1, ..., nm
(x, Vi)

∣∣∣
n 3

1 . . . n 3
m

, (45)

∞

∑
n1, ..., nm=1

[
f (3 m)
i n1, ..., nm

(Vi)
] 2
≤
(

2
l

)m ∫
Ω m

l

[
∂ 3 m fi(x, Vi)

∂ x 3
1∂ x 3

2 . . . ∂ x 3
m

] 2

d x, (46)

where

f (3 m)
i n1, ..., nm

(Vi) =
∫

Ω m
l

∂ 3 m fi(x, Vi)

∂ x 3
1∂ x 3

2 . . . ∂ x 3
m

ϑ n 1, ..., nm(x) d x, i = 1, 2.

We use also the following well known properties of the Mittag–Leffler function:
(1) For all k > 0, α0, β0, γ0 ∈ (0; 2], α0 ≤ β0 ≤ γ0, t ≥ 0 the function

t β0−1E α0, β0, γ0

(
−k t α, −k t β

)
is complete and monotonous and there holds

(−1)s
[
t β0−1E (α0, β0), γ0

(
−k t α0 , −k t β0

)] (s)
≥ 0, s = 0, 1, 2, . . . (47)

(2) For all α0, β0 ∈ (0, 2), γ ∈ R and arg z1 = π, there hold the following estimates∣∣∣ E (α0, β0), γ0
(z1, z2)

∣∣∣ ≤ C 1

1 +
∣∣z1
∣∣ , (48)

∣∣∣ E (α0, β0), γ0
(ε1z1, z2)− E (α0, β0), γ0

(ε2z1, z2)
∣∣∣ ≤ | ε1 − ε2 |

C 2

1 +
∣∣z 1
∣∣ , (49)
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where 0 < C i = const does not depend on z, εi ∈ (0; ε0) , 0 < ε0 = const, i = 1, 2.
According to the properties of the Mittag–Leffler function (Formulas (47) and (48)) the quantities

∆ 1,j n1, ..., nm(ε, ω, ν) (j = 1, 4) and ∆ 2,j n1, ..., nm(ε, ω, ν) (j = 1, 3) are uniformly bounded. So, for any
positive integers n1, . . . , nm, there exist finite constant numbers C 0i (i = 1, 2), by which the following
estimates take place

max
n1, ..., nm∈N

max
j

∣∣∆ 1, j n1, ..., nm(ε, ω, ν)
∣∣ ≤ C 01, j = 1, 4, (50)

max
n1, ..., nm∈/mathbbN

max
j

∣∣∆ 2, j n1, ..., nm(ε, ω, ν)
∣∣ ≤ C 02, j = 1, 3, (51)

where 0 < C 0i = const, i = 1, 2.

Lemma 1. Suppose that the smoothness conditions are fulfilled and

| fi(x, V1i)− fi(x, V2i) | ≤ K 1i(x) |V1i −V2i | , ρ < 1,

where ρ = C 04γ3 ‖Θ i(x) ‖ L 2(Ω m
l ), γ3 = C 03

(
l
π

)3 m ( 2
l
)m,

C 03 =

√√√√ ∞

∑
n1, ..., nm=1

1
n 6

1 . . . n 6
m

< ∞; max
i

∥∥∥∥∥ ∂ 3 mK 1i(x)
∂ x 3

1∂ x 3
2 . . . ∂ x 3

m

∥∥∥∥∥
L 2(Ω m

l )

≤ C 04 < ∞, i = 1, 2.

Then, for regular values of spectral parameters ω and ν, CSNIE (41) is uniquely solvable in the space ` 2.
In this case, successive approximations are defined as follows:

g 0
i n1, ..., nm

(ε, ω, ν) = c i n1, ..., nm , g k+1
i n1, ..., nm

(ε, ω, ν) = I i n1, ..., nm(g k
i ), i = 1, 2. (52)

Proof. We apply the method of successive approximations and the method of compressive mappings.
We use Formulas (42)–(44) and estimates (50) and (51). By the aid of the Cauchy–Schwartz inequality
and the Bessel inequality for the zeroth approximation of the coefficients of the redefinition functions
from successive approximations (52), we obtain

∥∥ g 0
1(ε, ω, ν)

∥∥
` 2
≤

∞
∑

n1, ..., nm=1
| c 1 n1, ..., nm (ε, ω, ν) |

≤
∞
∑

n1, ..., nm=1
|ψ1 n1, ..., nm ∆ 1 1 n1, ..., nm (ε, ω, ν) |+

∞
∑

n1, ..., nm=1
|ψ2 n1, ..., nm ∆ 12 n1, ..., nm (ε, ω, ν) |

+
∞
∑

n1, ..., nm=1
| ϕ 1 n1, ..., nm ∆ 13 n1, ..., nm (ε, ω, ν) |+

∞
∑

n1, ..., nm=1
| ϕ2 n1, ..., nm ∆ 14 n1, ..., nm (ε, ω, ν) |

≤ C01

[
∞
∑

n1,...,nm=1
|ψ1n1,...,nm |+

∞
∑

n1,...,nm=1
|ψ2n1,...,nm |+

∞
∑

n1,...,nm=1
|ϕ1n1,...,nm |+

∞
∑

n1,...,nm=1
|ϕ2n1,...,nm |

]

≤ C 01

(
l
π

)3 m
[

∞
∑

n1, ..., nm=1

∣∣∣ψ
(3 m)
1 n1, ..., nm

∣∣∣
n 3

1 ...n 3
m

+
∞
∑

n1, ..., nm=1

∣∣∣ψ
(3 m)
2 n1, ..., nm

∣∣∣
n 3

1 ...n 3
m

+
∞
∑

n1, ..., nm=1

∣∣∣ ϕ
(3 m)
1n1, ..., nm

∣∣∣
n 3

1 ...n 3
m

+
∞
∑

n1, ..., nm=1

∣∣∣ ϕ
(3 m)
2n1, ..., nm

∣∣∣
n 3

1 ...n 3
m

]

≤ C 01

(
l
π

)3 m
√

∞
∑

n1, ..., nm=1

1
n 6

1 ...n 6
m

[∥∥∥ψ
(3 m)
1

∥∥∥
` 2
+
∥∥∥ψ

(3 m)
2

∥∥∥
` 2
+
∥∥∥ ϕ

(3 m)
1

∥∥∥
` 2
+
∥∥∥ ϕ

(3 m)
2

∥∥∥
` 2

]
≤ γ1

[∥∥∥ ∂ 3 mψ1(x)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

) + ∥∥∥ ∂ 3 mψ2(x)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

)
+
∥∥∥ ∂ 3 m ϕ1(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

∥∥∥
L 2

(
Ω m

l

) + ∥∥∥ ∂ 3 m ϕ2(x)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

)] < ∞,

(53)
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where γ 1 = C 01C 03
( 2

l
)m
(

l
π

)3 m
, C 03 =

√
∞
∑

n1, ..., nm=1

1
n 6

1 ...n 6
m
< ∞;

∥∥ g 0
2(ε, ω, ν)

∥∥
` 2
≤

∞
∑

n1, ..., nm=1
| c 2 n1, ..., nm (ε, ω, ν) | ≤

∞
∑

n1, ..., nm=1
|ψ2 n1, ..., nm ∆ 21 n1, ..., nm (ε, ω, ν) |

+
∞
∑

n1, ..., nm=1
| ϕ1 n1, ..., nm ∆ 22 n1, ..., nm (ε, ω, ν) |+

∞
∑

n1, ..., nm=1
| ϕ2 n1, ..., nm ∆ 23 n1, ..., nm (ε, ω, ν) |

≤ C 02

(
l
π

)3 m
[

∞
∑

n1, ..., nm=1

∣∣∣ψ
(3 m)
2 n1, ..., nm

∣∣∣
n 3

1 ...n 3
m

+
∞
∑

n1, ..., nm=1

∣∣∣ ϕ
(3 m)
1n1, ..., nm

∣∣∣
n 3

1 ...n 3
m

+
∞
∑

n1, ..., nm=1

∣∣∣ ϕ
(3 m)
2n1, ..., nm

∣∣∣
n 3

1 ...n 3
m

]

≤ γ2

[∥∥∥ ∂3mψ2(x)
∂ x3

1∂ x3
2 ...∂ x3

m

∥∥∥
L2

(
Ωm

l

) + ∥∥∥ ∂3m ϕ1(x)
∂ x3

1∂ x3
2 ...∂ x3

m

∥∥∥
L2

(
Ωm

l

) + ∥∥∥ ∂3m ϕ2(x)
∂ x3

1∂ x3
2 ...∂ x3

m

∥∥∥
L2

(
Ωm

l

)] < ∞,

(54)

where γ2 = C 02C 03
( 2

l
)m
(

l
π

)3 m
.

By Formulas (45) and (46), using the Cauchy–Schwartz inequality and Bessel inequality for the
first difference of approximation (52), we obtain

∥∥g1
i (ε, ω, ν)− g0

i (ε, ω, ν)
∥∥
`2
≤

∞
∑

n1,...,nm=1

∣∣∣∣∣ ∫Ωm
l

fi

(
x,
∫

Ωm
l

Θi(y) g0
i (y, ε, ω, ν) d y

)
ϑn1,...,nm (x) d x

∣∣∣∣∣
≤
(

l
π

)3 m ∞
∑

n1, ..., nm=1

∣∣∣ f (3 m)
i n1, ..., nm

(
x, V0

i

) ∣∣∣
n 3

1 ...n 3
m

≤ γ3

∥∥∥∥ ∂ 3 m fi

(
x, V0

i

)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥∥
L 2

(
Ω m

l

) < ∞,

(55)

where γ3 = C 03

(
l
π

)3 m ( 2
l
)m

, V0
i =

∫
Ω m

l

Θ i(x) g0
i(x, ε, ω, ν) d x, i = 1, 2.

Analogously, by the condition of the lemma and expansion (9), using the Cauchy–Schwartz
inequality and Bessel inequality for an arbitrary difference of approximation (52), we obtain∥∥∥ g k+1

i (ε, ω, ν)− g k
i (ε, ω, ν)

∥∥∥
` 2

≤ γ 3

∥∥∥ ∂ 3 m

∂ x 3
1 ∂ x 3

2 ... ∂ x 3
m

∣∣∣ fi(x, Vk
i )− fi(x, Vk−1

i )
∣∣∣ ∥∥∥

L 2(Ω m
l )

≤ γ 3
∫

Ω m
l

|Θi(y) | ·
∣∣∣ g k

i (y, ε, ω, ν)− g k−1
i (y, ε, ω, ν)

∣∣∣ d y
∥∥∥ ∂ 3 mK 1i(x)

∂ x 3
1 ∂ x 3

2 ... ∂ x 3
m

∥∥∥
L 2(Ω m

l )

≤ C 04 γ 3
∫

Ω m
l

|Θ i(y) |
∞
∑

n1, ..., nm=1

∣∣∣ g k
i n1, ..., nm

(ε, ω, ν)− g k−1
i n 1, ..., nm

(ε, ω, ν)
∣∣∣ · | ϑ n1, ..., nm (y) | d y

≤ ρ
∥∥∥ g k

i (ε, ω, ν)− g k−1
i (ε, ω, ν)

∥∥∥
` 2

, i = 1, 2,

(56)

where

ρ = C 04γ 3 ‖Θi(x) ‖
L 2

(
Ω m

l

) , max
i

∥∥∥∥∥ ∂ 3 mK 1i(x)
∂ x 3

1∂ x 3
2 . . . ∂ x 3

m

∥∥∥∥∥
L 2

(
Ω m

l

) ≤ C 04 < ∞, i = 1, 2.

By the condition of the lemma, ρ < 1. Therefore, it follows from estimate (56) that the operators
on the right-hand side of (41) are contracting. From the estimates (53)–(56), it is implied that there
exists a unique pair of fixed points

{
g 1n1, ..., nm(ε, ω, ν); g 2n1, ..., nm(ε, ω, ν)

}
, which is a solution of

CSNIE (41) in the space ` 2. The Lemma 1 is proved.
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6. Convergence of Fourier Series (57)

Now, we determine the redefinition functions. In this order, we substitute representations (41)
into the Fourier series (9) and obtain

g i(x, ε, ω, ν) =
∞
∑

n1, ..., nm=1
ϑn1, ..., nm(x)

[
c i n1, ..., nm(ε, ω, ν)

−
∫

Ωm
l

fi

y,
∫

Ωm
l

Θi(z)
∞
∑

n1,...,nm=1
g i n1,...,nm(ε, ω, ν) ϑn1,...,nm(z) d z

 ϑn1,...,nm(y) d y

 , i = 1, 2.
(57)

We prove that the following lemma holds.

Lemma 2. Assume that the conditions of Lemma 1 are satisfied. Then for regular values of spectral parameters
ω and ν, the series (57) converge absolutely.

Proof. We use estimates (53)–(55). Using the Cauchy–Schwartz inequality and Bessel inequality for
series (57), we obtain the following estimates

| g1(x, ε, ω, ν) | ≤
∞
∑

n1, ..., nm=1
| ϑn1, ..., nm (x) |

[
| c 1 n1, ..., nm (ε, ω, ν)|

+

∣∣∣∣∣ ∫Ω m
l

f1

(
y,
∫

Ω m
l

Θ1(z)
∞
∑

n1, ..., nm=1
g1 n1, ..., nm (ε, ω, ν) ϑn1, ..., nm (z) d z

)
ϑn1, ..., nm (y) d y

∣∣∣∣∣
]

≤ C 03

(
2
l

) 3 m
2
(

l
π

)3 m
[

C 01

∥∥∥ψ
(3 m)
1

∥∥∥
` 2
+ C 01

∥∥∥ψ
(3 m)
2

∥∥∥
` 2

+C 01

∥∥∥ ϕ
(3 m)
1

∥∥∥
` 2
+ C 01

∥∥∥ ϕ
(3 m)
2

∥∥∥
` 2
+
∥∥∥ f (3 m)

1 (V1)
∥∥∥
` 2

]
≤ γ4

[∥∥∥ ∂ 3 mψ1(x)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

) + ∥∥∥ ∂ 3 mψ2(x)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

) + ∥∥∥ ∂ 3 m ϕ 1(x)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

)
+
∥∥∥ ∂ 3 m ϕ 2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

∥∥∥
L 2

(
Ω m

l

) + ∥∥∥ ∂ 3 m f1(x, V1)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l )

]
< ∞,

(58)

| g2(x, ε, ω, ν) | ≤
∞
∑

n1, ..., nm=1
| ϑn1, ..., nm (x) |

[
| c 2 n1, ..., nm (ε, ω, ν)|

+

∣∣∣∣∣ ∫Ω m
l

f2

(
y,
∫

Ω m
l

Θ2(z)
∞
∑

n1, ..., nm=1
g2 n1, ..., nm (ε, ω, ν) ϑn1, ..., nm (z) d z

)
ϑn1, ..., nm (y) d y

∣∣∣∣∣
]

≤ γ4

[∥∥∥ ∂ 3 mψ2(x)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

) + ∥∥∥ ∂ 3 m ϕ1(x)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

)
+
∥∥∥ ∂ 3 m ϕ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

∥∥∥
L 2

(
Ω m

l

) + ∥∥∥ ∂ 3 m f2(x, V2)
∂ x 3

1∂ x 3
2 ...∂ x 3

m

∥∥∥
L 2

(
Ω m

l

)] < ∞,

(59)

where ∥∥∥∥∥ ∂ 3 m fi
(

x, V2
)

∂ x 3
1∂ x 3

2 . . . ∂ x 3
m

∥∥∥∥∥
L 2

(
Ω m

l

) =
√√√√√ ∫

Ω m
l

[
∂ 3 m fi

(
x, Vi

)
∂ x 3

1∂ x 3
2 . . . ∂ x 3

m

] 2

d x,

Vi =
∫

Ω m
l

Θ i(y)
∞

∑
n1, ..., nm=1

gi n1, ..., nm(ε, ω, ν) ϑn1, ..., nm(z) d z, i = 1, 2,

γ4 = C 03C 05

(
2
l

) 3 m
2
(

l
π

)3 m
, C 05 = max {C 01; C 02; 1} .

From (58) and (59) the convergence of series (57) is implied. Lemma 2 is proved.
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So, we determined the redefinition functions as a Fourier series (57). Using representations (39)
and (40),we can present Fourier series (33) and (34) of the main unknown functions as

U(t, x, ε, ω, ν) =
∞
∑

n1,...,nm=1
ϑn1,...,nm (x) [ψ1n1,...,nm W11n1,...,nm (t, ε, ω, ν) + ψ2n1,...,nm W12n1,...,nm (t, ε, ω, ν)

+ϕ1 n1, ..., nm W13 n1, ..., nm (t, ε, ω, ν) + ϕ2 n1, ..., nm W14 n1, ..., nm (t, ε, ω, ν)] , t > 0,
(60)

U (t, x, ε, ω, ν) =
∞
∑

n1, ..., nm=1
ϑ n1, ..., nm (x) [ψ2 n1, ..., nm W21 n1, ..., nm (t, ε, ω, ν)

+ϕ1 n1, ..., nm W22 n1, ..., nm (t, ε, ω, ν) + ϕ2 n1, ..., nm W23 n1, ..., nm (t, ε, ω, ν)] , t < 0,
(61)

where
Wi1 n1, ..., nm(t, ε, ω, ν) = ∆ i1 n1, ..., nm(ε, ω, ν) Q i3 n1, ..., nm(t, ε, ω, ν), i = 1, 2,

W12n1,...,nm (t, ε, ω, ν) = ∆12n1,...,nm (ε, ω, ν) Q13n1,...,nm (t, ε, ω, ν) + ∆21n1,...,nm (ε, ω, ν) Q14n1,...,nm (t, ε, ω, ν),

W1j n1, ..., nm (t, ε, ω, ν) = Q 1j−2 n1, ..., nm (t, ε, ω, ν) + ∆ 1j n1, ..., nm (ε, ω, ν) Q 13 n1, ..., nm (t, ε, ω, ν)

+∆ 2j−1 n1, ..., nm (ε, ω, ν) Q 14 n1, ..., nm (t, ε, ω, ν), j = 3, 4,

W2kn1, ..., nm (t, ε, ω, ν) = Q2k−1n1, ..., nm (t, ε, ω, ν) + ∆2kn1, ..., nm (ε, ω, ν) Q23n1, ..., nm (t, ε, ω, ν), k = 2, 3.

To establish the uniqueness of the function U (t, x, ε, ω, ν), we suppose that there are two
solutions U1 and U2 to this problem. Then, their difference U = U1 −U2 is a solution of Equation (1),
satisfying conditions (2)–(6) with functions ϕi(x) ≡ 0, ψi(x) ≡ 0 (i = 1, 2). Then, for ϕi n1, ..., nm =

ψi n1, ..., nm = 0 (i = 1, 2), it follows from Formulas (60) and (61) in the domain Ω that∫
Ω m

l

U (t, x, ε, ω, ν) ϑn1, ..., nm(x) d x = 0.

Hence, by virtue of the completeness of the systems of eigenfunctions
{√

2
l sin π n1

l x1

}
,{√

2
l sin π n2

l x2

}
, . . .,

{√
2
l sin π nm

l xm

}
in L 2

(
Ω m

l
)
, we deduce that U (t, x, ε, ω, ν) ≡ 0 for all

x ∈ Ω m
l ≡ [0; l]m and t ∈ [−T; T].

Therefore, for regular values of spectral parameters ω and ν, the function U (t, x, ε, ω, ν) is a
unique solution tp the mixed type integro-differential Equation (1) with conditions (2)–(6), if this
function exists in the domain Ω.

Lemma 3. Let smoothness conditions hold. Then, for regular values of spectral parameters ω and ν, series (60)
and (61) converge. At the same time, their term by term differentiation is possible.

Proof. According to the properties of the Mittag–Leffler function (Formulas (47) and (48)), the functions
W1i n1, ..., nm(t, ε, ω, ν) (i = 1, 4) and W2j n1, ..., nm(t, ε, ω, ν) (j = 1, 3) are uniformly bounded on
the segment [−T; T]. So, for any positive integers n1, . . . , nm, there exist finite constant numbers
C 1k (k = 1, 2); then, the following estimates take place

max
n1,...,nm∈N

max
i=1,4

∣∣W1in1,...,nm(t, ε, ω, ν)
∣∣ ≤ C11, max

n1,...,nm∈N
max
j=1,3

∣∣W1jn1,...,nm(t, ε, ω, ν)
∣∣ ≤ C12, (62)

where C 1k = const, k = 1, 2.
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Analogously to the estimates (58) and (59), by applying estimates (62), the Cauchy–Schwartz
inequality and Bessel inequality for series (60) and (61), we

|U (t, x, ε, ω, ν) | ≤
∞
∑

n1, ..., nm=1

∣∣ u+
n1, ..., nm

(t, ε, ω, ν)
∣∣ · | ϑn1, ..., nm (x) |

≤
(√

2
l

)m
C 11

∞
∑

n1, ..., nm=1
[|ψ1 n1, ..., nm |+ |ψ2 n1, ..., nm |+ | ϕ1 n1, ..., nm |+ | ϕ2 n1, ..., nm |]

≤ γ5

√ ∫
Ω m

l

[
∂ 3 mψ1(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x +

√ ∫
Ω m

l

[
∂ 3 mψ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x

+

√ ∫
Ω m

l

[
∂ 3 m ϕ1(x)

∂ x 3
1∂ x 3

2 ... ∂ x 3
m

] 2
d x +

√ ∫
Ω m

l

[
∂ 3 m ϕ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x

 < ∞,

(63)

where γ5 =

(√
2
l

) 3 m
2

C 11C 03

(
l
π

)3 m
,

|U (t, x, ε, ω, ν) | ≤
∞
∑

n1, ..., nm=1

∣∣ u−n1, ..., nm(t, ε, ω, ν)
∣∣ · | ϑn1, ..., nm(x) |

≤ γ6

√√√√ ∫
Ω m

l

[
∂ 3 mψ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x

+

√√√√ ∫
Ω m

l

[
∂ 3 m ϕ1(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x +

√√√√ ∫
Ω m

l

[
∂ 3 m ϕ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x

 < ∞,

(64)

where γ6 =

(√
2
l

) 3 m
2

C 12C 03

(
l
π

)3 m
.

It follows from estimates (63) and (64) that the series (60) and (61) are convergent absolutely and
uniformly in the domain Ω for the

(n1, . . . , nm, ω, ν) ∈ ℵ = {n1, . . . , nm ∈ N; ω ∈ Λ 1; ν ∈ Λ 2} .

Therefore, for the (n1, . . . , nm, ω, ν) ∈ ℵ functions, (63) and (64) formally differentiate in Ω the
required number of times

CD α1
0 t U(t, x, ε, ω, ν) =

∞
∑

n1, ..., nm=1
ϑn1, ..., nm(x)

×
[
ψ1 n1, ..., nm CDα1

0 tW11 n1, ..., nm(t, ε, ω, ν) + ψ2 n1, ..., nm CDα1
0 tW12 n1, ..., nm(t, ε, ω, ν)

+ϕ1 n1, ..., nm CDα1
0 tW13 n1, ..., nm(t, ε, ω, ν) + ϕ2 n1, ..., nm CDα1

0 tW14 n1, ..., nm(t, ε, ω, ν)
]

, t > 0,

(65)

CDα2
0 tU (t, x, ε, ω, ν) =

∞
∑

n1, ..., nm=1
ϑn1, ..., nm(x)

[
ψ2 n1, ..., nm CDα2

0 tW21 n1, ..., nm(t, ε, ω, ν)

+ϕ1 n1, ..., nm CDα2
0 tW22 n1, ..., nm(t, ε, ω, ν) + ϕ2 n1, ..., nm CDα2

0 tW23 n1, ..., nm(t, ε, ω, ν)
]

, t < 0,
(66)

U x1x1(t, x, ε, ω, ν) = −
∞
∑

n1, ..., nm=1

(π n1
l
) 2

ϑ n1, ..., nm(x)
[
ψ1 n1, ..., nm W11 n1, ..., nm(t, ε, ω, ν)

+ψ 2 n1,...,nm W12 n1,...,nm (t, ε, ω, ν) + ϕ 1n1,...,nm W13 n1,...,nm (t, ε, ω, ν)

+ϕ 2 n1,...,nm W14 n1,...,nm (t, ε, ω, ν)
]

, t > 0,

(67)

Ux1x1(t, x, ε, ω, ν) = −
∞
∑

n1, ..., nm=1

(π n1
l
) 2

ϑn1, ..., nm(x)
[
ψ2 n1, ..., nm W21 n1, ..., nm(t, ε, ω, ν)

+ ϕ1 n1, ..., nm W22 n1, ..., nm(t, ε, ω, ν) + ϕ2 n1, ..., nm W23 n1, ..., nm(t, ε, ω, ν)
]

, t < 0,
(68)
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Ux2x2(t, x, ε, ω, ν) = −
∞
∑

n1, ..., nm=1

(π n2
l
) 2

ϑn1, ..., nm(x)
[
ψ1 n1, ..., nm W11 n1, ..., nm(t, ε, ω, ν)

+ψ 2 n1,...,nm W12 n1,...,nm (t, ε, ω, ν) + ϕ 1n1,...,nm W13 n1,...,nm (t, ε, ω, ν)

+ϕ 2 n1,...,nm W14 n1,...,nm (t, ε, ω, ν)
]

, t > 0,

(69)

Ux2x2(t, x, ε, ω, ν) = −
∞
∑

n1, ..., nm=1

(π n2
l
) 2

ϑn1, ..., nm(x)
[
ψ2 n1, ..., nm W21 n 1, ..., nm(t, ε, ω, ν)

+ ϕ1 n1, ..., nmW22 n1, ..., nm(t, ε, ω, ν) + ϕ2 n1, ..., nm W23 n1, ..., nm(t, ε, ω, ν)
]

, t < 0.
(70)

The expansions of the following functions into Fourier series are defined in the domain Ω in a
similar way

Ux3x3(t, x, ε, ω, ν), . . . , Uxmxm(t, x, ε, ω, ν), C Dα1
0 tUx1x1(t, x, ε, ω, ν),

C Dα2
0 tUx1x1(t, x, ε, ω, ν), C Dα1

0 tUx2x2(t, x, ε, ω, ν), . . . , C Dα2
0 tUx2x2(t, x, ε, ω, ν), . . . ,

C Dα1
0 tUxmxm(t, x, ε, ω, ν), C Dα2

0 tUxmxm(t, x, ε, ω, ν).

The convergence of series (65) and (66) is proved similarly to the proof of the convergence of
series (60) and (61). So, it is enough to show the convergence of series (67) and (70). Taking into
account Formulas (42)–(44) and estimates (62) and applying the Cauchy–Schwartz inequality and
Bessel inequality, we obtain

|Ux1x1(t, x, ε, ω, ν) | ≤
∞

∑
n1, ..., nm=1

(π n1

l

) 2 ∣∣ u+
n1, ..., nm(t, ε, ω, ν)

∣∣ · | ϑn1, ..., nm(x) |

≤
(√

2
l

)m (π

l

) 2
C 11

∞

∑
n1, ..., nm=1

n 2
1 [|ψ1 n1, ..., nm |+ |ψ2 n1, ..., nm |+ | ϕ1 n1, ..., nm |+ |ϕ2 n1, ..., nm |]

≤
(√

2
l

)m

C 11

(
l
π

)3 m−2
[

∞

∑
n1, ..., nm=1

1
n1n3

2 . . . n3
m

∣∣∣ψ
(3 m)
1n1, ..., nm

∣∣∣+ ∞

∑
n1, ..., nm=1

1
n1n3

2 . . . n3
m

∣∣∣ψ
(3 m)
2 n1, ..., nm

∣∣∣
+

∞

∑
n1, ..., nm=1

1
n1n3

2 . . . n3
m

∣∣∣ ϕ
(3 m)
1n1, ..., nm

∣∣∣+ ∞

∑
n1, ..., nm=1

1
n1n3

2 . . . n3
m

∣∣∣ ϕ
(3 m)
2 n1, ..., nm

∣∣∣]

≤ γ7


√√√√√ ∫

Ωm
l

[
∂3 mψ1(x)

∂ x3
1∂ x3

2 . . . ∂ x3
m

] 2

d x +

√√√√√ ∫
Ωm

l

[
∂ 3 mψ2(x)

∂ x3
1 ∂ x3

2 . . . ∂ x3
m

] 2

d x

+

√√√√√ ∫
Ωm

l

[
∂ 3 m ϕ1(x)

∂ x3
1∂ x3

2 . . . ∂ x3
m

] 2

d x +

√√√√√ ∫
Ωm

l

[
∂ 3 m ϕ2(x)

∂ x3
1 ∂ x3

2 . . . ∂ x3
m

] 2

d x

 < ∞,

where γ7 =

(√
2
l

) 3 m
2

C 11C 06

(
l
π

)3 m−2
, C 06 =

√
∞
∑

n1, ..., nm=1

1
n2

1n6
2 ...n6

m
;

|Ux2x2(t, x, ε, ω, ν) | ≤
∞

∑
n1, ..., nm=1

(π n2

l

) 2 ∣∣ u−n1, ..., nm(t, ε, ω, ν)
∣∣ · | ϑn1, ..., nm(x) |

≤
(√

2
l

)m (π

l

) 2
C 12

∞

∑
n1, ..., nm=1

n2
2
[∣∣ψ2 n1, ..., nm

∣∣+ ∣∣ ϕ1 n1, ..., nm

∣∣+ ∣∣ ϕ2 n1, ..., nm

∣∣]
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≤
(√

2
l

)m

C 12

(
l
π

)3 m−2
[

∞

∑
n1, ..., nm=1

1
n3

1n2n3
3 . . . n3

m

∣∣∣ψ
(3 m)
2n1, ..., nm

∣∣∣
+

∞

∑
n1, ..., nm=1

1
n3

1n2n3
3 . . . n3

m

∣∣∣ ϕ
(3 m)
1n1, ..., nm

∣∣∣+ ∞

∑
n1, ..., nm=1

1
n3

1n2n3
3 . . . n3

m

∣∣∣ ϕ
(3 m)
2 n1, ..., nm

∣∣∣]

≤ γ8


√√√√√ ∫

Ωm
l

[
∂ 3 mψ2(x)

∂ x3
1 ∂ x3

2 . . . ∂ x3
m

] 2

d x

+

√√√√√ ∫
Ωm

l

[
∂ 3 m ϕ1(x)

∂ x3
1∂ x3

2 . . . ∂ x3
m

] 2

d x +

√√√√√ ∫
Ωm

l

[
∂ 3 m ϕ2(x)

∂ x3
1∂ x3

2 . . . ∂ x3
m

] 2

d x

 < ∞,

where γ8 =

(√
2
l

) 3 m
2

C 12C 07

(
l
π

)3 m−2
, C 07 =

√
∞
∑

n1, ..., nm=1

1
n6

1n2
2 ...n6

m
.

The convergence of series (68) and (69) is similar to the convergence of series (67) and (70).
The convergence of Fourier series for functions

Ux3x3(t, x, ε, ω, ν), . . . , Uxmxm(t, x, ε, ω, ν), C D α1
0 t Ux1x1(t, x, ε, ω, ν),

C D α2
0 t Ux1 x1(t, x, ε, ω, ν), C D α1

0 t Ux2x2(t, x, ε, ω, ν), . . . , C D α2
0 t Ux2x2(t, x, ε, ω, ν), . . . ,

C D α1
0 t Uxmxm(t, x, ε, ω, ν), C D α2

0 t Uxmxm(t, x, ε, ω, ν)

is proved in a similar way in the domain Ω. It follows from these last estimates that functions (60)
and (61) possess the properties of (2) for the regular values of spectral parameters ω and ν.

7. Continuous Dependence of Solution on the Small Parameter

We consider the continuous dependence of the solution to the problem (1)–(4) on small-parameter
ε > 0 for regular values of spectral parameters ω and ν. Let ε1 and ε2 be two different values of small
positive parameter ε. It is easy to check from (47)–(49) that the following estimates hold

max
n1,...,nm∈N

max
t∈[0;T]

∣∣W1in1,...,nm(t, ε1, ω, ν)−W1in1,...,nm(t, ε2, ω, ν)
∣∣ ≤ C21 | ε1 − ε2 | , i = 1, 4, (71)

max
n1,...,nm∈N

max
t∈[−T;0]

∣∣W2in1,...,nm(t, ε1, ω, ν)−W2in1,...,nm(t, ε2, ω, ν)
∣∣ ≤ C22 | ε1 − ε2 | , i = 1, 3, (72)

where 0 < C 2i = const, ε i ∈ (0; ε0) , 0 < ε0 = const, i = 1, 2.
Then, taking estimates (63), (64), (71) and (72) into account and applying the Cauchy–Schwartz

inequality and Bessel inequality, from series (60) and (61), we obtain

|U (t, x, ε 1, ω, ν)−U (t, x, ε 2, ω, ν |

≤
∞
∑

n1, ..., nm=1

∣∣ u+
n1, ..., nm

(t, ε 1, ω, ν)− u+
n1, ..., nm

(t, ε 2, ω, ν)
∣∣ · | ϑn1, ..., nm (x) |

≤
(√

2
l

)m
C 21 | ε 1 − ε 2 |

∞
∑

n1, ..., nm=1
[|ψ1 n1, ..., nm |+ |ψ2 n1, ..., nm |+ | ϕ1 n1, ..., nm |+ | ϕ2 n1, ..., nm |]

≤ γ 9 | ε 1 − ε 2 |

√ ∫
Ω m

l

[
∂ 3 mψ1(x)

∂ x 3
1 ∂ x 3

2 ... ∂ x 3
m

] 2
d x +

√ ∫
Ω m

l

[
∂ 3 mψ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x

+

√ ∫
Ω m

l

[
∂ 3 m ϕ1(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x +

√ ∫
Ω m

l

[
∂ 3 m ϕ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x

 = | ε 1 − ε 2 | · C 31,

(73)



Axioms 2020, 9, 121 21 of 24

where γ 9 =

(√
2
l

) 3 m
2

C 21C 03

(
l
π

)3 m
, 0 < C 31 = const < ∞;

|U (t, x, ε 1, ω, ν)−U (t, x, ε 2, ω, ν |

≤
∞
∑

n1, ..., nm=1

∣∣ u−n1, ..., nm(t, ε 1, ω, ν)− u−n1, ..., nm(t, ε 2, ω, ν)
∣∣ · | ϑn1, ..., nm(x) |

≤ γ10 | ε 1 − ε 2 |

√√√√ ∫
Ω m

l

[
∂ 3 mψ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x+

+

√√√√ ∫
Ω m

l

[
∂ 3 m ϕ1(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x +

√√√√ ∫
Ω m

l

[
∂ 3 m ϕ2(x)

∂ x 3
1∂ x 3

2 ...∂ x 3
m

] 2
d x

 = | ε 1 − ε 2 | · C 32,

(74)

where γ10 =

(√
2
l

) 3 m
2

C 22C 03

(
l
π

)3 m
, 0 < C 32 = const < ∞.

It follows from estimates (73) and (74) that |U (t, x, ε 1, ω, ν)−U (t, x, ε 2, ω, ν | is small
if | ε 1 − ε 2 | is small in the domain Ω for the (n1, . . . , nm, ω, ν) ∈ ℵ.

8. Conclusions and Statement of the Theorem

In the present paper, we study the questions of the one-value solvability of an inverse boundary
value problem (1)–(6) for a mixed type integro-differential equation with Caputo operators of
different fractional orders and spectral parameters in a multidimensional rectangular domain.
For (n1, . . . , nm, ω, ν) ∈ ℵ, we proved four lemmas under the following conditions A: Let functions

ϕi(x), ψi(x) ∈ C 2(Ωm
l ), f i

x,
∫

Ω m
l

Θi(y) g i(y) d y

 ∈ C 2
x(Ω

m
l ×R), i = 1, 2

in the domain Ωm
l have piecewise continuous third order derivatives.

We will formulate a theorem as generalizing the above four proved lemmas. Thus, the following
theorem is true.

Theorem 1. Let the conditions of A be fulfilled. Then, for the possible numbers n1, . . . , nm and regular values
of spectral parameters ω and ν from the set ℵ, the inverse boundary value problem (1)–(6) is uniquely solvable
in the domain Ω and the triple of solutions is represented in the form of series (57), (60) and (61). Moreover, it is
true that

lim
ε→0

U (t, x, ε, ω, ν) = U (t, x, 0, ω, ν),

where U (t, x, 0, ω, ν) is the solution of the mixed type fractional integro-differential equation of the form

A 0(U)− B ω(U) =


ν

T∫
0

K 1(t, s)U(s, x) d s + F1(t, x), t > 0,

ν
0∫
−T

K 2(t, s)U(s, x) d s + F2(t, x), t < 0,

A 0(U) =

[
1 + sgn (t)

2 CD α1
0 t +

1− sgn (t)
2 CD α2

0 t

]
U (t, x), B ω(U) =


m
∑

i=1
Uxixi , t > 0,

ω 2
m
∑

i=1
Uxixi , t < 0
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with boundary value conditions (3)–(6) under consideration,

Fi(t, x) = k i(t)

g i(x) + f i

x,
∫

Ω m
l

Θi(y) g i(y) d y


 , i = 1, 2.

As a conclusion, we say that the numerical methods for solving fractional differential equations
are important in the implementation of applied problems. In the future, we will also try to consider the
applications of the numerical solution to the problems that we are solving. There are many methods
for the numerical implementation of fractional differential equations. In this regard, we note the work
done in [42]. In this paper, a new class of (C, G f )-invex functions is introduced and given nontrivial
numerical examples, which justify the existence of such functions. Moreover, we construct generalized
convexity definitions (such as, (F, G f )-invexity, C-convex etc.).
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