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Abstract: A number of applications from mathematical programmings, such as minimization
problems, variational inequality problems and fixed point problems, can be written as equilibrium
problems. Most of the schemes being used to solve this problem involve iterative methods, and for that
reason, in this paper, we introduce a modified iterative method to solve equilibrium problems in real
Hilbert space. This method can be seen as a modification of the paper titled “A new two-step proximal
algorithm of solving the problem of equilibrium programming” by Lyashko et al. (Optimization and
its applications in control and data sciences, Springer book pp. 315–325, 2016). A weak convergence
result has been proven by considering the mild conditions on the cost bifunction. We have given the
application of our results to solve variational inequality problems. A detailed numerical study on
the Nash–Cournot electricity equilibrium model and other test problems is considered to verify the
convergence result and its performance.

Keywords: pseudomonotone bifunction; Lipschitz-type conditions; equilibrium problem; variational
inequalities

1. Introduction

An equilibrium problem (EP) is a generalized concept that unifies several mathematical problems,
such as the variational inequality problems, minimization problems, complementarity problems,
the fixed point problems, non-cooperative games of Nash equilibrium, the saddle point problems
and scalar and vector minimization problems (see e.g., [1–3]). The particular form of an equilibrium
problem was firstly established in 1992 by Muu and Oettli [4] and then further elaborated by Blum and
Oettli [1]. Next, we consider the concept of an equilibrium problem introduced by Blum and Oettli
in [1]. Let C be a non-empty, closed and convex subset H of a real Hilbert space and f : H×H→ R is
bifunction with f (v, v) = 0, for each v ∈ C. A equilibrium problem regarding f on the set C is defined
in the following way:

Find p ∈ C such that f (p, v) ≥ 0, for all v ∈ C. (1)

Many methods have been already established over the past couple of years to figure out the
equilibrium problem in Hilbert spaces [5–15], the inertial methods [11,16–18] and others in [18–24].
In particular, Tran et al. introduced an iterative scheme in [8], in that a sequence {un} was generated
in the following way:
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u0 ∈ C,
vn = arg min{λ f (un, y) + 1

2‖un − y‖2 : y ∈ C},

un+1 = arg min{λ f (vn, y) + 1
2‖un − y‖2 : y ∈ C},

(2)

where 0 < λ < min
{ 1

2c1
, 1

2c2

}
and c1, c2 are Lipschitz constants. Lyashko et al. [25] in 2016 introduced

an improvement of the method (2) to solve equilibrium problem and sequence {un} was generated in
the following way: 

u0, v0 ∈ C,
un+1 = arg min{λ f (vn, y) + 1

2‖un − y‖2 : y ∈ C},

vn+1 = arg min{λ f (vn, y) + 1
2‖un+1 − y‖2 : y ∈ C},

(3)

where 0 < λ < 1
2c2+4c1

and c1, c2 are Lipschitz constants.
In this paper, we consider the extragradient method in (3) and to provide its improvement by

using the inertial scheme [26] and continue to improve the step size rule for its second step. The step
size is not fixed in our case, but it is dependent on a particular formula by using prior information of
the bifunction values. A weak convergence theorem dealing with the suggested technique is presented
by having the specific bi-functional condition. We have also considered how our results are presented
to the problems of a variational inequality. A few other formulations of the problem of variational
inequalities are discussed, and many computational examples in finite and infinite dimensions spaces
are also presented to demonstrate the applicability of our proposed results.

In this study, we study the equilibrium problem through the following assumptions:

( f1) A bifunction f : H×H→ R is said to be (see [1,27]) pseudomonotone on C if

f (v1, v2) ≥ 0 =⇒ f (v2, v1) ≤ 0, for all v1, v2 ∈ C.

( f2) A bifunction f : H×H → R is said to be Lipschitz-type continuous [28] on C if there exist
c1, c2 > 0 such that

f (v1, v3) ≤ f (v1, v2) + f (v2, v3) + c1‖v1 − v2‖2 + c2‖v2 − v3‖2, for all v1, v2, v3 ∈ C.

( f3) lim sup
n→+∞

f (vn, z) ≤ f (v∗, z) for each z ∈ C and {vn} ⊂ C satisfying vn ⇀ v∗;

( f4) f (u, ·) is convex and subdifferentiable on H for each u ∈ H.

The rest of this paper will be organized as follows: In Section 2, we give a few definitions
and important lemmas to be used in this paper. Section 3 includes the main algorithm involving
pseudomonotone bifunction and provides a weak convergence theorem. Section 4 describes some
applications in the variational inequality problems. Section 5 sets out the numerical studies to
demonstrate the algorithmic efficiency.

2. Preliminaries

In this section, some important lemmas and basic definitions are provided. Moreover, EP( f , C)
denotes the solution set of an equilibrium problem on the set C and p is any arbitrary element
of EP( f , C).

A metric projection PC(u) of u onto a closed, convex subset C of H is defined by

PC(u) = arg min
v∈C

{‖v− u‖}.

Lemma 1. [29] Let PC : H→ C be a metric projection from H onto C. Then
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(i) For all u ∈ C, v ∈ H and

‖u− PC(v)‖2 + ‖PC(v)− v‖2 ≤ ‖u− v‖2.

(ii) w = PC(u) if and only if
〈u− w, v− w〉 ≤ 0, for all v ∈ C.

Lemma 2. [29] For all u, v ∈ H with k ∈ R. Then, the following relationship is holds.

‖ku + (1−k)v‖2 = k‖u‖2 + (1−k)‖v‖2 −k(1−k)‖u− v‖2.

Assume that g : C → R be a convex function and subdifferential of g at u ∈ C is defined by

∂g(u) = {w ∈ C : g(v)− g(u) ≥ 〈w, v− u〉, for all v ∈ C}.

Given that f (u, .) is convex and subdifferentiable on H for each fixed u ∈ H and subdifferential of
f (u, .) at x ∈ H defined by

∂2 f (u, .)(x) = ∂2 f (u, x) = {z ∈ H : f (u, v)− f (u, x) ≥ 〈z, v− x〉, for all v ∈ H}.

A normal cone of C at u ∈ C is defined by

NC(u) = {w ∈ H : 〈w, v− u〉 ≤ 0, for all v ∈ C}.

Lemma 3. [30] Assume that C is a nonempty, closed and convex subset of a real Hilbert space H and h : C → R
be a convex, lower semi-continuous and subdifferentiable function on C. Then, u ∈ C is a minimizer of a function
h if and only if 0 ∈ ∂h(u) + NC(u) where ∂h(u) and NC(u) denotes the subdifferential of h at u and the normal
cone of C at u, respectively.

Lemma 4. [31] Let an, bn and cn are non-negative real sequences such that

an+1 ≤ an + bn(an − an−1) + cn, for all n ≥ 1, with
+∞

∑
n=1

cn < +∞,

where b > 0 such that 0 ≤ bn ≤ b < 1 for all n ∈ N. Then, the following relations are true.

(i)
+∞

∑
n=1

[an − an−1]+ < +∞, with [s]+ := max{s, 0};

(ii) limn→+∞ an = a∗ ∈ [0,+∞).

Lemma 5. [32] Let a sequence {an} in H and C ⊂ H and the following conditions have been met:

(i) for each a ∈ C, limn→+∞ ‖an − a‖ exists;
(ii) each weak sequentially limit point of {an} belongs to set C.

Then, {an} weakly converges to an element in C.

3. Main Results

In this section, we present our main algorithm and provide a weak convergence theorem for our
proposed method. The detailed method is given below.

Remark 1. By Expression (5), we obtain

λn+1

[
f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖vn − un+1‖2

]
≤ µ f (vn, un+1). (4)
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Lemma 6. Let {un} be a sequence generated by Algorithm 1. Then, the following inequality holds.

µλn f (vn, y)− µλn f (vn, un+1) ≥ 〈ρn − un+1, y− un+1〉, for all y ∈ C.

Algorithm 1 Modified Popov’s subgradient extragradient-like iterative scheme.

Step 1: Choose u−1, v−1, u0, v0 ∈ H and a sequence ℘n is non-decreasing such that 0 ≤ ℘n ≤ ℘ < 1
3 ,

λ0 > 0 and 0 < σ < min
{

1−3℘
(1−℘)2+4c1(℘+℘2)

, 1
2c2+4c1(1+℘)

}
and µ ∈ (0, σ).

Step 2: Evaluate

un+1 = arg min{µλn f (vn, y) +
1
2
‖ρn − y‖2 : y ∈ C},

where ρn = un + ℘n(un − un−1).

Step 3: Updated the step size in the following order:

λn+1 =


min

{
σ, µ f (vn ,un+1)

f (vn−1,un+1)− f (vn−1,vn)−c1‖vn−1−vn‖2−c2‖un+1−vn‖2+1

}
,

if µ f (vn ,un+1)
f (vn−1,un+1)− f (vn−1,vn)−c1‖vn−1−vn‖2−c2‖un+1−vn‖2+1 > 0,

λ0 else.

(5)

Step 4: Evaluate

vn+1 = arg min{λn+1 f (vn, y) +
1
2
‖ρn+1 − y‖2 : y ∈ C},

where ρn+1 = un+1 + ℘n+1(un+1 − un). If un+1 = vn = ρn or ρn+1 = vn+1 = vn then Stop.
Else, take n := n + 1 and go back to Step 2.

Proof. By the use of Lemma 3, we get

0 ∈ ∂2

{
µλn f (vn, y) +

1
2
‖ρn − y‖2

}
(un+1) + NC(un+1).

From above there is a ω ∈ ∂2 f (vn, un+1) and ω ∈ NC(un+1) such that

µλnω + un+1 − ρn + ω = 0.

Therefore, we obtain

〈ρn − un+1, y− un+1〉 = µλn〈ω, y− un+1〉+ 〈ω, y− un+1〉, for all y ∈ C.

Due to ω ∈ NC(un+1) then 〈ω, y− un+1〉 ≤ 0, for each y ∈ C. It implies that

µλn〈ω, y− un+1〉 ≥ 〈ρn − un+1, y− un+1〉, for all y ∈ C. (6)

Given that ω ∈ ∂2 f (vn, un+1), we have

f (vn, y)− f (vn, un+1) ≥ 〈ω, y− un+1〉, for all y ∈ H. (7)

By combining Expressions (6) and (7), we obtain

µλn f (vn, y)− µλn f (vn, un+1) ≥ 〈ρn − un+1, y− un+1〉, for all y ∈ C.
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Lemma 7. Let {vn} be a sequence generated by Algorithm 1. Then, the following inequality holds.

λn+1 f (vn, y)− λn+1 f (vn, vn+1) ≥ 〈ρn+1 − vn+1, y− vn+1〉, for all y ∈ C.

Proof. The proof is same as the proof of Lemma 6.

Lemma 8. If un+1 = vn = ρn and ρn+1 = vn+1 = vn in Algorithm 1, then vn ∈ EP( f , C).

Proof. The proof of this can easily be seen from Lemmas 6 and 7.

Lemma 9. Let f : H × H → R be a bifunction and satisfies the conditions ( f1)–( f4). Then, for each
p ∈ EP( f , C) 6= ∅, we have

‖un+1 − p‖2

≤ ‖ρn − p‖2 − (1− λn+1)‖un+1 − ρn‖2 + 4c1λn+1λn‖ρn − vn−1‖2

− λn+1(1− 4c1λn)‖ρn − vn‖2 − λn+1(1− 2c2λn)‖un+1 − vn‖2.

Proof. By Lemma 6, we obtain

µλn f (vn, p)− µλn f (vn, un+1) ≥ 〈ρn − un+1, p− un+1〉. (8)

Thus, p ∈ EP( f , C) and the condition ( f1) implies that f (vn, p) ≤ 0. From (8), we have

〈ρn − un+1, un+1 − p〉 ≥ µλn f (vn, un+1). (9)

From Expression (4), we obtain

µ f (vn, un+1) ≥ λn+1
(

f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖vn − un+1‖2). (10)

Combining expression (9) and (10), implies that

〈ρn − un+1, un+1 − p〉 ≥ λn+1

[
λn
{

f (vn−1, un+1)− f (vn−1, vn)
}

− c1λn‖vn−1 − vn‖2 − c2λn‖un+1 − vn‖2
]
.

(11)

By Lemma 7, we have

λn
{

f (vn−1, un+1)− f (vn−1, vn)
}
≥ 〈ρn − vn, un+1 − vn〉. (12)

Thus, combining (11) and (12) we get

〈ρn − un+1, un+1 − p〉 ≥ λn+1

[
〈ρn − vn, un+1 − vn〉

− c1λn‖vn−1 − vn‖2 − c2λn‖un+1 − vn‖2
]
.

(13)

We have the following mathematical expressions:

2〈ρn − un+1, un+1 − p〉 = ‖ρn − p‖2 − ‖un+1 − ρn‖2 − ‖un+1 − p‖2.

2〈ρn − vn, un+1 − vn〉 = ‖ρn − vn‖2 + ‖un+1 − vn‖2 − ‖ρn − un+1‖2.
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From the above equation and (13), we have

‖un+1 − p‖2

≤ ‖ρn − p‖2 − (1− λn+1)‖un+1 − ρn‖2 − λn+1(1− 2c2λn)‖un+1 − vn‖2

− λn+1‖ρn − vn‖2 + λn+1(2c1λn)‖vn−1 − vn‖2

We also have

‖vn−1 − vn‖2 ≤
(
‖vn−1 − ρn‖+ ‖ρn − vn‖

)2 ≤ 2‖vn−1 − ρn‖2 + 2‖ρn − vn‖2.

Finally, we get

‖un+1 − p‖2

≤ ‖ρn − p‖2 − (1− λn+1)‖un+1 − ρn‖2 + 4c1λnλn+1‖ρn − vn−1‖2

− λn+1(1− 4c1λn)‖ρn − vn‖2 − λn+1(1− 2c2λn)‖un+1 − vn‖2.

Theorem 1. Assume that f : H×H→ R satisfies the conditions ( f1)–( f4). Then, for some p ∈ EP( f , C) 6= ∅,
the sequence {ρn}, {un} and {vn} generated by Algorithm 1, weakly converge to p ∈ EP( f , C).

Proof. By Lemma 9, we obtain

‖un+1 − p‖2

≤ ‖ρn − p‖2 − (1− λn+1)‖un+1 − ρn‖2 + 4c1λnλn+1‖ρn − vn−1‖2

− λn+1(1− 4c1λn)‖ρn − vn‖2 − λn+1(1− 2c2λn)‖un+1 − vn‖2. (14)

By definition of ρn in the Algorithm 1, we have

‖ρn − vn−1‖2 = ‖un + ℘n(un − un−1)− vn−1‖2

= ‖(1 + ℘n)(un − vn−1)− ℘n(un−1 − vn−1)‖2

= (1 + ℘n)‖un − vn−1‖2 − ℘n‖un−1 − vn−1‖2 + ℘n(1 + ℘n)‖un − un−1‖2

≤ (1 + ℘)‖un − vn−1‖2 + ℘(1 + ℘)‖un − un−1‖2. (15)
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Adding the term 4c1σλn+1(1 + ℘)‖un+1 − vn‖2 on both sides in (14) with (15) for n ≥ 1, we have

‖un+1 − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

≤ ‖ρn − p‖2 − (1− σ)‖un+1 − ρn‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

+ 4c1σλn
[
(1 + ℘)‖un − vn−1‖2 + ℘(1 + ℘)‖un − un−1‖2]

− λn+1(1− 4c1σ)‖ρn − vn‖2 − λn+1(1− 2c2σ)‖un+1 − vn‖2 (16)

≤ ‖ρn − p‖2 − (1− σ)‖un+1 − ρn‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ 4c1σ(℘+ ℘2)‖un − un−1‖2 − λn+1(1− 4c1σ)‖ρn − vn‖2

− λn+1(1− 2c2σ− 4c1σ(1 + ℘))‖un+1 − vn‖2 (17)

≤ ‖ρn − p‖2 − (1− σ)‖un+1 − ρn‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ 4c1σ(℘+ ℘2)‖un − un−1‖2

− λn+1

2
(1− 2c2σ− 4c1σ(1 + ℘))

[
2‖un+1 − vn‖2 + 2‖ρn − vn‖2] (18)

≤ ‖ρn − p‖2 − (1− σ)‖un+1 − ρn‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ 4c1σ(℘+ ℘2)‖un − un−1‖2

− λn+1

2
(1− 2c2σ− 4c1σ(1 + ℘))‖un+1 − ρn‖2. (19)

Given that 0 < λn ≤ σ < 1
2c2+4c1(1+℘)

, then the last inequality turns into

‖un+1 − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

≤ ‖ρn − p‖2 − (1− σ)‖un+1 − ρn‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ 4c1σ(℘+ ℘2)‖un − un−1‖2. (20)

From the definition of ρn, we have

‖ρn − p‖2 = ‖un + ℘n(un − un−1)− p‖2

= ‖(1 + ℘n)(un − p)− ℘n(un−1 − p)‖2

= (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + ℘n(1 + ℘n)‖un − un−1‖2. (21)

From ρn+1, we obtain

‖un+1 − ρn‖2 = ‖un+1 − un − ℘n(un − un−1)‖2

= ‖un+1 − un‖2 + ℘2
n‖un − un−1‖2 − 2℘n〈un+1 − un, un − un−1〉 (22)

≥ ‖un+1 − un‖2 + ℘2
n‖un − un−1‖2 − 2℘n‖un+1 − un‖‖un − un−1‖

≥ ‖un+1 − un‖2 + ℘2
n‖un − un−1‖2 − ℘n‖un+1 − un‖2 − ℘n‖un − un−1‖2

= (1− ℘n)‖un+1 − un‖2 + (℘2
n − ℘n)‖un − un−1‖2. (23)
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Combining the Expressions (20), (21) and (23) we have

‖un+1 − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

≤ (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + ℘n(1 + ℘n)‖un − un−1‖2

− (1− σ)
[
(1− ℘n)‖un+1 − un‖2 + (℘2

n − ℘n)‖un − un−1‖2]
+ 4c1σλn(1 + ℘)‖un − vn−1‖2 + 4c1σ(℘+ ℘2)‖un − un−1‖2 (24)

≤ (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+
[
℘(1 + ℘)− (1− σ)(℘2

n − ℘n) + 4c1σ(℘+ ℘2)
]
‖un − un−1‖2

− (1− σ)(1− ℘n)‖un+1 − un‖2 (25)

≤ (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2

+ rn‖un − un−1‖2 − qn‖un+1 − un‖2, (26)

where
rn =

[
℘(1 + ℘)− (1− σ)(℘2

n − ℘n) + 4c1σ(℘+ ℘2)
]
;

qn = (1− σ)(1− ℘n).

Assume that
Γn = Ψn + rn‖un − un−1‖2,

where Ψn = ‖un − p‖2 − ℘n‖un−1 − p‖2 + 4c1σλn(1 + ℘)‖un − vn−1‖2. Next, (26) implies that

Γn+1 − Γn

= ‖un+1 − p‖2 − ℘n+1‖un − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2 + rn+1‖un+1 − un‖2

− ‖un − p‖2 + ℘n‖un−1 − p‖2 − 4c1σλn(1 + ℘)‖un − vn−1‖2 − rn‖un − un−1‖2

≤ ‖un+1 − p‖2 − (1 + ℘n)‖un − p‖2 + ℘n‖un−1 − p‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

+ rn+1‖un+1 − un‖2 − 4c1σλn(1 + ℘)‖un − vn−1‖2 − rn‖un − un−1‖2

≤ −(qn − rn+1)‖un+1 − un‖2. (27)

Next, we have to compute

(qn − rn+1) = (1− σ)(1− ℘n)− ℘(1 + ℘) + (1− σ)(℘2
n − ℘n)− 4c1σ(℘+ ℘2)

≥ (1− σ)(1− ℘)2 − ℘(1 + ℘)− 4c1σ(℘+ ℘2)

= (1− ℘)2 − ℘(1 + ℘)− σ(1− ℘)2 − 4c1σ(℘+ ℘2)

= 1− 3℘− σ
(
(1− ℘)2 + 4c1(℘+ ℘2)

)
≥ 0. (28)

By the use of (27) and (28) for some δ ≥ 0 implies that

Γn+1 − Γn ≤ −(qn − rn+1)‖un+1 − un‖2 ≤ −δ‖un+1 − un‖2 ≤ 0. (29)

The relation (29) implies that {Γn} is non-increasing. From Γn+1 we have

Γn+1 = ‖un+1 − p‖2 − ℘n+1‖un − p‖2 + rn+1‖un+1 − un‖2 + 4c1σλn+1(1 + ℘)‖un+1 − vn‖2

≥ −℘n+1‖un − p‖2.
(30)
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By definition Γn, we have

‖un − p‖2 ≤ Γn + ℘n‖un−1 − p‖2

≤ Γ1 + ℘‖un−1 − p‖2

≤ · · · ≤ Γ1(℘
n−1 + · · ·+ 1) + ℘n‖u0 − p‖2

≤ Γ1

1− ℘
+ ℘n‖u0 − p‖2. (31)

From Equations (30) and (31), we obtain

−Γn+1 ≤ ℘n+1‖un − p‖2

≤ ℘‖un − p‖2

≤ ℘
Γ1

1− ℘
+ ℘n+1‖u0 − p‖2. (32)

It follows (29) and (32) that

δ
k

∑
n=1
‖un+1 − un‖2 ≤ Γ1 − Γk+1

≤ Γ1 + ℘
Γ1

1− ℘
+ ℘k+1‖u0 − p‖2

≤ Γ1

1− ℘
+ ‖u0 − p‖2. (33)

By letting k→ +∞ in (33), we obtain

+∞

∑
n=1
‖un+1 − un‖2 < +∞ implies that lim

n→+∞
‖un+1 − un‖ = 0. (34)

From Expressions (22) with (34), we obtain

‖un+1 − ρn‖ → 0 as n→ +∞. (35)

From (32), we have

−Ψn+1 ≤ ℘
Γ1

1− ℘
+ ℘n+1‖u0 − p‖2 + rn+1‖un+1 − un‖2. (36)

From Expression (18) and using (21), we have

λn+1(1− 2c2σ− 4c1σ(1 + ℘))
[
‖un+1 − vn‖2 + ‖ρn − vn‖2

]
≤ Ψn −Ψn+1 + ℘(1 + ℘)‖un − un−1‖2 + 4c1σ℘(1 + ℘)‖un − un−1‖2.

(37)
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Fix k ∈ N and using above expression for n = 1, 2, · · · , k. Summing them up, we obtain

λn+1(1− 2c2σ− 4c1σ(1 + ℘))
k

∑
n=1

[
‖un+1 − vn‖2 + ‖ρn − vn‖2

]
≤ Ψ0 −Ψk+1 + ℘(1 + ℘)

k

∑
n=1
‖un − un−1‖2 + 4c1σ℘(1 + ℘)

k

∑
n=1
‖un − un−1‖2

≤ Ψ0 + ℘
Γ1

1− ℘
+ ℘k+1‖u0 − p‖2 + rk+1‖uk+1 − uk‖2

+ ℘(1 + ℘)
k

∑
n=1
‖un − un−1‖2 + 4c1σ℘(1 + ℘)

k

∑
n=1
‖un − un−1‖2, (38)

letting k→ +∞, and due to sum of the positive terms series, we obtain

+∞

∑
n=1
‖un+1 − vn‖2 < +∞ and

+∞

∑
n=1
‖ρn − vn‖2 < +∞. (39)

Moreover, we obtain
lim

n→+∞
‖un+1 − vn‖ = lim

n→+∞
‖ρn − vn‖ = 0. (40)

By using the triangular inequality, we get

lim
n→+∞

‖un − vn‖ = lim
n→+∞

‖un − ρn‖ = lim
n→+∞

‖vn−1 − vn‖ = 0. (41)

It is follow from the relation (24), we obtain

‖un+1 − p‖2

≤ (1 + ℘n)‖un − p‖2 − ℘n‖un−1 − p‖2 + ℘(1 + ℘)‖un − un−1‖2

+ 4c1σ(1 + ℘)‖un − vn−1‖2 + 4c1σ(℘+ ℘2)‖un − un−1‖2, (42)

with (34), (39) and Lemma 4 imply that the sequences ‖un − p‖, ‖ρn − p‖ and ‖vn − p‖ limits exist for
every p ∈ EP( f , C). It means that {un}, {ρn} and {vn} are bounded sequences. Take z an arbitrary
sequential cluster point of the sequence {un}. Now our aim to prove that z ∈ EP( f , C). By Lemma 6
with Expressions (10) and (12), we write

µλnk f (vnk , y) ≥ µλnk f (vnk , unk+1) + 〈ρnk − unk+1, y− unk+1〉
≥ λnk λnk+1 f (vnk−1, unk+1)− λnk λnk+1 f (vnk−1, vnk )− c1λnk λnk+1‖vnk−1 − vnk‖

2

− c2λnk λnk+1‖vnk − unk+1‖2 + 〈ρnk − unk+1, y− unk+1〉
≥ λnk+1〈ρnk − vnk , unk+1 − vnk 〉 − c1λnk λnk+1‖vnk−1 − vnk‖

2

− c2λnk λnk+1‖vnk − unk+1‖2 + 〈ρnk − unk+1, y− unk+1〉 (43)

where y in C. Next, from (35), (40), (41) and due to boundedness of {un} gives that the right hand side
reaches to zero. Due to µ, λnk > 0 and vnk ⇀ z, we have

0 ≤ lim sup
k→+∞

f (vnk , y) ≤ f (z, y), for all y ∈ C. (44)

Thus, z ∈ C implies that f (z, y) ≥ 0, for all y ∈ C. It proves that z ∈ EP( f , C). By Lemma 5,
the sequence {un} converges weakly to p ∈ EP( f , C).

If ℘n = 0 in Algorithm 1, we have a better version of Lyashko et al. [25] extragradient method in
terms of step size improvement.
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Corollary 1. Let f : H×H→ R satisfy the conditions ( f1)-( f4). For some p ∈ EP( f , C) 6= ∅, the sequence
{un} and {vn} generated in the following way:

(i) Given u0, v−1, v0 ∈ H, 0 < σ < min
{

1, 1
2c2+4c1

}
, µ ∈ (0, σ) and λ0 > 0.

(ii) Compute 
un+1 = arg min

y∈C
{µλn f (vn, y) + 1

2‖un − y‖2},

vn+1 = arg min
y∈C

{λn+1 f (vn, y) + 1
2‖un+1 − y‖2},

where

λn+1 =min
{

σ,
µ f (vn, un+1)

f (vn−1, un+1)− f (vn−1, vn)− c1‖vn−1 − vn‖2 − c2‖un+1 − vn‖2 + 1

}
.

Then, the sequences {un} and {vn} converge weakly to p ∈ EP( f , C).

4. Applications

Now, we consider the applications of Theorem 1 to solve the variational inequality problems
involving pseudomonotone and Lipschitz continuous operator. A variational inequality problem is
defined in the following way:

Find p∗ ∈ C such that
〈

F(p∗), v− p∗
〉
≥ 0, for all v ∈ C.

We consider that F meets the following conditions.

(F1) Solution set VI(F, C) is non-empty and F is pseudomonotone on C, i.e.,〈
F(u), v− u

〉
≥ 0 implies that

〈
F(v), u− v

〉
≤ 0, for all u, v ∈ C;

(F2) F is L-Lipschitz continuous on C if there exists a positive constants L > 0 such that

‖F(u)− F(v)‖ ≤ L‖u− v‖, for all u, v ∈ C.

(F3) lim sup
n→+∞

〈F(un), v− un〉 ≤ 〈F(p∗), v− p∗〉 for every v ∈ C and {un} ⊂ C satisfying un ⇀ p∗.

Corollary 2. Assume that F : C → H meet the conditions (F1)–(F3). Let {ρn}, {un} and {vn} be the sequences
are generated in the following way:

(i) Choose u−1, v−1, u0, v0 ∈ H and a sequence ℘n is non-decreasing such that 0 ≤ ℘n ≤ ℘ < 1
3 , λ0 > 0,

0 < σ < min
{

1−3℘
(1−℘)2+2L(℘+℘2)

, 1
3L+2℘L)

}
and µ ∈ (0, σ).

(ii) Compute{
un+1 = PC(ρn − µλnF(vn)), where ρn = un + ℘n(un − un−1),
vn+1 = PC(ρn+1 − λn+1F(vn)), where ρn+1 = un+1 + ℘n+1(un+1 − un),

while

λn+1 =min
{

σ,
µ〈Fvn, un+1 − vn〉

〈Fvn−1, un+1 − vn〉 − L
2 ‖vn−1 − vn‖2 − L

2 ‖un+1 − vn‖2 + 1

}
.

Then, the sequence {ρn}, {un} and {vn} converge weakly to p.
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Corollary 3. Assume that F : C → H meets the conditions (F1)-(F3). Let {un} and {vn} be the sequences are
generated in the following way:

(i) Choose v−1, u0, v0 ∈ H, 0 < σ < min
{

1, 1
3L
}

and λ0 > 0.
(ii) Compute {

un+1 = PC(un − µλnF(vn)),
vn+1 = PC(un+1 − λn+1F(vn)),

while

λn+1 =min
{

σ,
µ〈Fvn, un+1 − vn〉

〈Fvn−1, un+1 − vn〉 − L
2 ‖vn−1 − vn‖2 − L

2 ‖un+1 − vn‖2 + 1

}
.

Then, the sequence {un} and {vn} converge weakly to p.

5. Computational Illustration

Numerical findings are discussed in this section to show the efficiency of our suggested method.
Moreover, for Lyashko et al.’s [25] method (L.EgA), our proposed algorithm (Algo.1) and we use error
term Dn = ‖un+1 − un‖.

Example 1. Consider the Nash–Cournot equilibrium of electricity markets as in [7]. In this problem, there are
total three electricity producing firms: i (i = 1, 2, 3). The firm’s 1,2,3 have generating units named as I1 = {1},
I2 = {2, 3} and I3 = {4, 5, 6}, respectively. Assume that uj denote the producing power of the unit for
i = {1, 2, 3, 4, 5, 6}. Suppose that the value p of electricity can be taken as p = 378.4− 2 ∑6

j=1 uj. The cost of
the manufacture j unit follows:

cj(uj) := max{ ◦cj(uj),
•
cj(uj)},

where
◦
cj(uj) :=

◦
αj
2 u2

j +
◦
β juj +

◦
γj and

•
cj(uj) :=

•
αjuj +

•
β j
•
β j+1

•
γj

−1
•
βj (uj)

(
•
βj+1)
•
βj . The values are provided in

◦
αj,

◦
β j,

◦
γj,

•
αj,

•
β j and

•
γj in Table 1. Profit of the firm i is

fi(u) := p ∑
j∈Ii

uj − ∑
j∈Ii

cj(uj) =
(

378.4− 2
6

∑
l=1

ul

)
∑
j∈Ii

uj − ∑
j∈Ii

cj(uj),

where u = (u1, · · · , u6)
T with reference to set u ∈ C := {u ∈ R6 : umin

j ≤ uj ≤ umax
j }, with umin

j and umax
j

give in Table 2. Define the equilibrium bifunction f in the following way:

f (u, v) :=
3

∑
i=1

(
φi(u, u)− φi(u, v)

)
,

where

φi(u, v) :=
[

378.4− 2
(

∑
j 6∈Ii

uj + ∑
j∈Ii

vj

)]
∑
j∈Ii

vj − ∑
j∈Ii

cj(vj).

This model of electricity markets can be viewed as an equilibrium problem

Find u∗ ∈ C such that f (u∗, v) ≥ 0, for all v ∈ C.

Numerical conclusions have shown in Figures 1–4 and Table 3. For these numerical experiments we take
u−1 = v−1 = u0 = v0 = (48, 48, 30, 27, 18, 24)T and λ = 0.01, σ = 0.026, µ = 0.024, ℘n = 0.20, λ0 = 0.1.
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Table 1. Parameters for cost bi-function.

Unit j
◦
αj

◦
βj

◦
γj

•
αj

•
βj

•
γj

1 0.04 2 0 2 1 25
2 0.035 1.75 0 1.75 1 28.5714
3 0.125 1 0 1 1 8
4 0.0116 3.25 0 3.25 1 86.2069
5 0.05 3 0 3 1 20
6 0.05 3 0 3 1 20

Table 2. Values used for constraint set.

j umin
j umax

j

1 0 80
2 0 80
3 0 50
4 0 55
5 0 30
6 0 40

0 20 40 60 80 100 120 140

Number of iterartions

10-2

10-1

100

101

0 1 2 3 4 5 6 7 8

Elapsed time [sec]

10-2

10-1

100

101

Figure 1. Example 1 while tolerance is 0.01.
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10-1

100

101

0 20 40 60 80 100 120 140 160 180 200
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100
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Figure 2. Example 1 while tolerance is 0.001.
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Figure 3. Example 1 while tolerance is 0.0001.
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100

101

Figure 4. Example 1 while tolerance is 0.00001.

Table 3. Figures 1–4 numerical values.

L.EgA Algo.1

TOL Iter. time (s) Iter. time (s)

0.01 125 7.3692 61 3.4055
u∗L.EgA = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)
u∗Algo.1 = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

0.001 2761 193.3939 2063 150.6757
u∗L.EgA = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)
u∗Algo.1 = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

0.0001 11,526 818.7184 4687 324.3571
u∗L.EgA = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)
u∗Algo.1 = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

0.00001 20,946 1449.3959 7307 526.9766
u∗L.EgA = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)
u∗Algo.1 = (47.3245, 47.3245, 47.3245, 47.3245, 47.3245, 47.3245)

Example 2. Assume that the following cost bifunction f defined by

f (u, v) =
〈
(AAT + B + C)u, v− u

〉
,

on the convex set C = {u ∈ Rn : Du ≤ d} while D is an 100× n matrix and d is a non-negative vector.
In the above bifunction definition we take A is an n × n matrix, B is an n × n skew-symmetric matrix,
C is an n × n diagonal matrix having diagonal entries are non-negative. The matrices are generated as;
A = rand(n), K = rand(n), B = 0.5K − 0.5KT and C = diag(rand(n,1)). The bifunction f is monotone and
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having Lipschitz-type constants are c1 = c2 = 1
2‖AAT + B + C‖. Numerical results are presented in the

Figures 5–8 and Table 4. For these numerical experiments we take u−1 = v−1 = u0 = v0 = (1, 1, · · · , 1)T and
λ = 1

10c1
, σ = 1

8c1
, µ = 1

8.2c1
, ℘n = 1

5 , λ0 = 1/4c1.

0 5 10 15 20 25 30 35

Number of iterartions
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10-1

100

101

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of iterartions
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10-2

10-1

100

101

Figure 5. Example 2 for average number of iterations while n = 5.
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Figure 6. Example 2 for average number of iterations while n = 10.
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Figure 7. Example 2 for average number of iterations while n = 20.
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Figure 8. Example 2 for average number of iterations while n = 40.

Table 4. Numerical results for Figures 5–8.

L.EgA Algo.1

n T. Samples Avg Iter. Avg time(s) Avg Iter. Avg time(s)

5 10 35 0.8066 6 0.1438
10 10 51 1.1779 6 0.1302
20 10 84 1.7441 7 0.1801
40 10 30 0.6859 8 0.1999

Example 3. Assume that F : R2 → R2 is defined by

F(u) =

(
0.5u1u2 − 2u2 − 107

−4u1 − 0.1u2
2 − 107

)

with C = {u ∈ R2 : (u1 − 2)2 + (u2 − 2)2 ≤ 1}. It is not hard to check that F is Lipschitz continuous
with L = 5 and pseudomonotone. The step size λ = 10−6 for Lyashko et al. [25] and λ0 = 0.1, σ = 0.129,
℘n = 0.20 and µ = 0.119. Computational results are shown in the Table 5 and in Figures 9–12.

0 2 4 6 8 10 12 14 16 18 20
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102

Figure 9. Example 3 while u0 = (1.5, 1.7).
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Figure 10. Example 3 while u0 = (2, 3).
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Figure 11. Example 3 while u0 = (1, 2).

0 2 4 6 8 10 12 14 16 18 20

Number of iterartions

10-10

10-8

10-6

10-4

10-2

100

102

Figure 12. Example 3 while u0 = (2.7, 2.6).
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Table 5. Numerical results for Figures 9–12.

L.EgA Algo.1

u0 Iter. time(s) Iter. time(s)

(1.5, 1.7) 20 0.7506 8 0.5316
(2.0, 3.0) 21 0.7879 8 0.6484
(1.0, 2.0) 23 1.1450 14 0.9730
(2.7, 2.6) 19 0.7254 7 0.5835

Example 4. Let F : R2 → R2 is defined by

F(u) =

(
(u2

1 + (u2 − 1)2)(1 + u2)

−u3
1 − u1(u2 − 1)2

)

and C = {u ∈ R2 : (u1 − 2)2 + (u2 − 2)2 ≤ 1}. Here, F is not monotone but pseudomonotone on C and
L-Lipschitz continuous through L = 5 (see, e.g., [33]). The stepsize λ = 10−2 for Lyashko et al. [25] and
λ0 = 0.01, σ = 0.129, ℘n = 0.15 and µ = 0.119. The computational experimental findings are written in
Table 6 and in Figures 13–15.
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Figure 13. Example 4 while u0 = (10, 10).
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Figure 14. Example 4 while u0 = (−10,−10).
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Figure 15. Example 4 while u0 = (10, 20).

Table 6. Figures 13–15 numerical values.

L.EgA Algo.1

u0 Iter. time(s) Iter. time(s)

(10, 10) 67 1.9151 31 1.0752
(−10,−10) 92 2.5721 71 2.0469
(10, 20) 60 1.7689 41 1.1864

6. Conclusions

We have established an extragradient-like method to solve pseudomonotone equilibrium
problems in real Hilbert space. The main advantage of the proposed method is that an iterative
sequence has been incorporated with a certain step size evaluation formula. The step size formula is
updated for each iteration based on the previous iterations. Numerical findings were presented to show
our algorithm’s numerical efficiency compared with other methods. Such numerical investigations
indicate that inertial effects often generally improve the effectiveness of the iterative sequence in
this context.
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