Article

On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a $b_{v}(s)$-Metric Space and Its Application

Reny George ${ }^{1,2, *}$, Zoran D. Mitrović ${ }^{3, *}$ © and Stojan Radenović ${ }^{4}$
1 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
2 Department of Mathematics and Computer Science, St. Thomas College, Bhilai, Chhattisgarh 491022, India
3 Faculty of Electrical Emgineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina
4 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11000 Beograd, Serbia; radens@beotel.net
* Correspondence: r.kunnelchacko@psau.edu.sa (R.G.); zoran.mitrovic@etf.unibl.org (Z.D.M.)

Received: 16 October 2020; Accepted: 7 November 2020; Published: 9 November 2020

Abstract

Common coupled fixed point theorems for generalized T-contractions are proved for a pair of mappings $S: X \times X \rightarrow X$ and $g: X \rightarrow X$ in a $b_{v}(s)$-metric space, which generalize, extend, and improve some recent results on coupled fixed points. As an application, we prove an existence and uniqueness theorem for the solution of a system of nonlinear integral equations under some weaker conditions and given a convergence criteria for the unique solution, which has been properly verified by using suitable example.

Keywords: common coupled fixed point; $b_{v}(s)$-metric space; T-contraction; weakly compatible mapping

1. Introduction

In the last three decades, the definition of a metric space has been altered by many authors to give new and generalized forms of a metric space. In 1989, Bakhtin [1] introduced one such generalization in the form of a b-metric space and in the year 2000 Branciari [2] gave another generalization in the form a rectangular metric space and generalized metric space. Thereafter, using the above two concepts, many generalizations of a metric space appeared in the form of rectangular b-metric space [3], hexagonal b-metric space [4], pentagonal b-metric space [5], etc. The latest such generalization was given by Mitrović and Radenović [6] in which the authors defined a $b_{v}(s)$-metric space which is a generalization of all the concepts told above. Some recent fixed point theorems in such generalized metric spaces can be found in [6-9]. In [10-12], one can find some interesting coupled fixed point theorems and their applications proved in some generalized forms of a metric space. In the present note, we have given coupled fixed point results for a pair of generalized T-contraction mappings in a $b_{v}(s)$-metric space. Our results are new and it extends, generalize, and improve some of the coupled fixed point theorems recently dealt with in [10-12].

In recent years, fixed point theory has been successfully applied in establishing the existence of solution of nonlinear integral equations (see [11-15]). We have applied one of our results to prove the existence and convergence of a unique solution of a system of nonlinear integral equations using some weaker conditions as compared to those existing in literature.

2. Preliminaries

Definition 1. [6] Let X be a nonempty set. Assume that, for all $x, y, \in X$ and distinct $u_{1}, \cdots, u_{v} \in X-\{x, y\}$, $d_{v}: X \times X \rightarrow R$ satisfies :

1. $d_{v}(x, y) \geq 0$ and $d_{v}(x, y)=0$ if and only if $x=y$,
2. $\quad d_{v}(x, y)=d_{v}(y, x)$,
3. $d_{v}(x, y) \leq s\left[d_{v}\left(x, u_{1}\right)+d_{v}\left(u_{1}, u_{2}\right)+\cdots+d_{v}\left(u_{v-1}, u_{v}\right)+d_{v}\left(u_{v}, y\right)\right]$, for some $s \geq 1$.

Then, $\left(X, d_{v}\right)$ is a $b_{v}(s)$-metric space.
Definition 2. [6] In the $b_{v}(s)$-metric space $\left(X, d_{v}\right)$, the sequence $<u_{n}>$
(a) converges to $u \in X$ if $d_{v}\left(u_{n}, u\right) \rightarrow 0$ as $n \rightarrow \infty$;
(b) is a Cauchy sequence if $d_{v}\left(u_{n}, u_{m}\right) \rightarrow 0$ as $n, m \rightarrow+\infty$.

Clearly, $b_{1}(1)$-metric space is the usual metric space, whereas $b_{1}(s), b_{2}(1), b_{2}(s)$, and $b_{v}(1)$-metric spaces are, respectively, the b-metric space ([1]), rectangular metric space ([2]), rectangular b-metric space ([3]), and v-generalized metric space ([2]).

Lemma 1. [6] If $\left(X, d_{v}\right)$ is a $b_{v}(s)$-metric space, then $\left(X, d_{v}\right)$ is a $b_{2 v}\left(s^{2}\right)$-metric space.
Definition 3. An element $(u, v) \in X \times X$ is called a coupled coincidence point of $S: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $g(u)=S(u, v)$ and $g(v)=S(v, u)$. In this case, we also say that $(g(u), g(v))$ is the point of coupled coincidence of S and g. If $u=g(u)=S(u, v)$ and $v=g(v)=S(v, u)$, then we say that (u, v) is a common coupled fixed point of S and g.

We will denote by $\operatorname{COCP}\{S, g\}$ and $\operatorname{CCOFP}\{S, g\}$ respectively the set of all coupled coincidence points and the set of all common coupled fixed points of S and g.

Definition 4. $S: X \times X \rightarrow X$ and $g: X \rightarrow X$ are said to be weakly compatible if and only if $S(g(u), g(v))=$ $g(S(u, v))$ for all $(u, v) \in \operatorname{COCP}\{S, g\}$.

3. Main Results

We will start this section by proving the following lemma which is an extension of Lemma 1.12 of [6] to two sequences:

Lemma 2. Let $\left(X, d_{v}\right)$ be a $b_{v}(s)$-metric space and let $<u_{n}>$ and $<v_{n}>$ be two sequences in X such that $u_{n} \neq u_{n+1}, v_{n} \neq v_{n+1}(n \geq 0)$. Suppose that $\lambda \in[0,1)$ and c_{1}, c_{2} are real nonnegative numbers such that

$$
\begin{equation*}
K_{m, n} \leq \lambda K_{m-1, n-1}+c_{1} \lambda^{m}+c_{2} \lambda^{n}, \text { for all } m, n \in \mathbb{N}, \tag{1}
\end{equation*}
$$

where $K_{m, n}=\max \left\{d_{v}\left(u_{m}, u_{n}\right), d_{v}\left(v_{m}, v_{n}\right)\right\}$ or $K_{m, n}=d_{v}\left(u_{m}, u_{n}\right)+d_{v}\left(v_{m}, v_{n}\right)$. Then, $<u_{n}>$ and $<v_{n}>$ are Cauchy sequences.

Proof. From (1), we have

$$
\begin{align*}
K_{n, n+1} \leq & \lambda K_{n-1, n}+c_{1} \lambda^{n}+c_{2} \lambda^{n+1} \\
& \leq \cdots \\
& \leq \lambda^{n} K_{0,1}+c_{1} n \lambda^{n}+c_{2} n \lambda^{n+1} \tag{2}\\
& \leq \lambda^{n} K_{0,1}+C_{0} n \lambda^{n} .
\end{align*}
$$

For $m, n, k \in N$, by (1), we have

$$
\begin{align*}
K_{m+k, n+k} \leq & \left.\lambda \max \left\{K_{m+k-1, n+k-1}, c_{1} \lambda^{m+k-1}+c_{2} \lambda^{n+k-1}\right)\right\} \\
& \left.\leq \lambda K_{m+k-1, n+k-1}+c_{1} \lambda^{m+k}+c_{2} \lambda^{n+k}\right) \tag{3}\\
& \cdots \\
& \leq \lambda^{k} K_{m, n}+k C_{1} \lambda^{k}\left(\lambda^{m}+\lambda^{n}\right)
\end{align*}
$$

Since $0<\lambda<1$, we can find a positive integer q_{k} such that $0<\lambda^{q_{k}}<\frac{1}{s}$. Now, suppose $v \geq 2$. Then, by using condition 3. of a $b_{v}(s)$-metric and inequalities (2) and (3), we have

$$
\begin{aligned}
K_{m, n} \leq & s\left[K_{m, m+1}+K_{m+1, m+2}+\cdots+K_{m+v-3, m+v-2}+K_{m+v-2, m+q_{k}}+K_{m+q_{k}, n+q_{k}}+K_{n+q_{k}, n}\right] \\
& \leq s\left[\lambda^{m}+\lambda^{m+1}+\cdots+\lambda^{m+v-3}\right] K_{0}+s C_{0}\left[m \lambda^{m}+(m+1) \lambda^{m+1}+\cdots+(m+v-3) \lambda^{m+v-2}\right] \\
& +s\left[\lambda^{m} K_{v-2, q_{k}}+m \lambda^{m}\left(\lambda^{v-2}+\lambda^{q_{k}}\right) K_{0}\right] \\
& +s\left[\lambda^{q_{k}} K_{m, n}+q_{k} \lambda^{q_{k}}\left(\lambda^{m}+\lambda^{n}\right) K_{0}\right]+s\left[\lambda^{n} K_{q_{k}, 0}+n \lambda^{n}\left(\lambda^{q_{k}}+1\right) K_{0}\right] .
\end{aligned}
$$

Then,

$$
\begin{aligned}
K_{m, n} \leq & \frac{s \lambda^{m}}{\left(1-s \lambda^{q_{k}}\right)(1-\lambda)} K_{0,1}+\frac{s(m+v-3) \lambda^{m}}{(1-\lambda)\left(1-s \lambda^{q_{k}}\right)} \\
& +\frac{s}{1-s \lambda^{q_{k}}}\left[\lambda^{m} K_{v-2, q_{k}}+m \lambda^{m}\left(\lambda^{v-2}+\lambda^{q_{k}}\right) K_{0,1}\right] \\
& +\frac{s}{1-s \lambda^{q_{k}}}\left[q_{k} \lambda^{q_{k}}\left(\lambda^{m}+\lambda^{n}\right) K_{0,1}\right]+\frac{s}{1-s \lambda^{q_{k}}}\left[\lambda^{n} K_{q_{k}, 0}+n \lambda^{n}\left(\lambda^{q_{k}}+1\right) K_{0,1}\right]
\end{aligned}
$$

Thus, from the definition of $K_{m, n}$, we see that, as $m, n \rightarrow+\infty, d_{v}\left(u_{m}, u_{n}\right) \rightarrow 0$ and $d_{v}\left(v_{m}, v_{n}\right) \rightarrow 0$ and thus $<u_{n}>$ and $<v_{n}>$ are Cauchy sequences.

3.1. Coupled Fixed Point Theorems

We now present our main theorems as follows:
Theorem 1. Let $\left(X, d_{v}\right)$ be a $b_{v}(s)$-metric space, $T: X \rightarrow X$ be a one to one mapping, $S: X \times X \rightarrow X$ and $g: X \rightarrow X$ be mappings such that $S(X \times X) \subset g(X), T g(X)$ is complete. If there exist real numbers λ, μ, v with $0 \leq \lambda<1,0 \leq \mu, v \leq 1, \min \{\lambda \mu, \lambda v\}<\frac{1}{s}$ such that, for all $u, v, w, z \in X$

$$
\begin{align*}
d_{v}(T S(u, v), T S(w, z)) \leq & \lambda \max \left\{d_{v}(T g u, T g w), d_{v}(T g v, T g z), \mu d_{v}(T g u, T S(u, v)), \mu d_{v}(T g v, T S(v, u)\right. \tag{4}\\
& \left.v d_{v}(T g w, T S(w, z)), v d_{v}(T g z, T S(z, w))\right\}
\end{align*}
$$

then the following holds :

1. There exist $w_{x_{0}}, w_{y_{0}}$ in X, such that sequences $<T g u_{n}>$ and $<T g v_{n}>$ converge to $T g w_{x_{0}}$ and $T g w_{y_{0}}$ respectively, where the iterative sequences $<g u_{n}>$ and $<g v_{n}>$ are defined by $g u_{n}=S\left(u_{n-1}, v_{n-1}\right)$ and $g v_{n}=S\left(v_{n-1}, u_{n-1}\right)$ for some arbitrary $\left(u_{0}, v_{0}\right) \in X \times X$.
2. $\left(w_{x_{0}}, w_{y_{0}}\right) \in \operatorname{COCP}\{S, g\}$.
3. If S and g are weakly compatible, then S and g have a unique common coupled fixed point.

Proof. 1. We shall start the proof by showing that the sequences $<T g u_{n}>$ and $<T g v_{n}>$ are Cauchy sequences, where $<g u_{n}>$ and $<g v_{n}>$ are as mentioned in the hypothesis.

By (4), we have

$$
\begin{align*}
d_{v}\left(T g u_{n}, T g u_{n+1}\right)= & d_{v}\left(T S\left(u_{n-1}, v_{n-1}\right), T S\left(u_{n}, v_{n}\right)\right) \\
\leq & \lambda \max \left\{d_{v}\left(T g u_{n-1}, T g u_{n}\right), d_{v}\left(T g v_{n-1}, T g v_{n}\right), \mu d_{v}\left(T g u_{n-1}, T S\left(u_{n-1}, v_{n-1}\right)\right),\right. \\
& \left.\mu d_{v}\left(T g v_{n-1}, T S\left(v_{n-1}, u_{n-1}\right)\right), v d_{v}\left(T g u_{n}, T S\left(u_{n}, v_{n}\right)\right), v d_{v}\left(T g v_{n}, T S\left(v_{n}, u_{n}\right)\right)\right\} \tag{5}\\
\leq & \lambda \max \left\{d_{v}\left(T g u_{n-1}, T g u_{n}\right), d_{v}\left(T g v_{n-1}, T g v_{n}\right), d_{v}\left(T g u_{n-1}, T g u_{n}\right),\right. \\
& \left.d_{v}\left(T g v_{n-1}, T g v_{n}\right), d_{v}\left(T g u_{n}, T g u_{n+1}\right), d_{v}\left(T g v_{n}, T g v_{n+1}\right)\right\} .
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
d_{v}\left(T g v_{n}, T g v_{n+1}\right) \leq & \lambda \max \left\{d_{v}\left(T g v_{n-1}, T g v_{n}\right), d_{v}\left(T g u_{n-1}, T g u_{n}\right), d_{v}\left(T g v_{n-1}, T g v_{n}\right),\right. \\
& \left.d_{v}\left(T g u_{n-1}, T g u_{n}\right), d_{v}\left(T g v_{n}, T g v_{n+1}\right), d_{v}\left(T g u_{n}, T g u_{n+1}\right)\right\} . \tag{6}
\end{align*}
$$

Let $K_{n}=\max \left\{d_{v}\left(T g u_{n}, T g u_{n+1}\right), d_{v}\left(T g v_{n}, T g v_{n+1}\right)\right\}$. By (5) and (6), we get

$$
\begin{equation*}
K_{n} \leq \lambda \max \left\{d_{v}\left(T g v_{n-1}, T g v_{n}\right), d_{v}\left(T g u_{n-1}, T g u_{n}\right), d_{v}\left(T g v_{n}, T g v_{n+1}\right), d_{v}\left(T g u_{n}, T g u_{n+1}\right)\right\} . \tag{7}
\end{equation*}
$$

If

$$
\begin{array}{r}
\max \left\{d_{v}\left(T g v_{n-1}, T g v_{n}\right), d_{v}\left(T g u_{n-1}, T g u_{n}\right), d_{v}\left(T g v_{n}, T g v_{n+1}\right), d_{v}\left(T g u_{n}, T g u_{n+1}\right)\right\} \\
=d_{v}\left(T g v_{n}, T g v_{n+1}\right) \text { or } d_{v}\left(T g u_{n}, T g u_{n+1}\right),
\end{array}
$$

then (7) will yield a contradiction. Thus, we have

$$
\begin{aligned}
& \max \left\{d_{v}\left(T g v_{n-1}, T g v_{n}\right), d_{v}\left(T g u_{n-1}, T g u_{n}\right), d_{v}\left(T g v_{n}, T g v_{n+1}\right), d_{v}\left(T g u_{n}, T g u_{n+1}\right)\right\} \\
&= \max \left\{d_{v}\left(T g v_{n-1}, T g v_{n}\right), d_{v}\left(T g u_{n-1}, T g u_{n}\right)\right\},
\end{aligned}
$$

and then (7) gives

$$
\begin{equation*}
K_{n} \leq \lambda \max \left\{d_{v}\left(T g v_{n-1}, T g v_{n}\right), d_{v}\left(T g u_{n-1}, T g u_{n}\right)\right\}=\lambda K_{n-1} \preceq \lambda^{2} K_{n-2} \preceq \cdots \preceq \lambda^{n} K_{0} . \tag{8}
\end{equation*}
$$

For any $m, n \in N$, we have

$$
\begin{aligned}
d_{v}\left(T g u_{m}, T g u_{n}\right)= & d_{v}\left(T S\left(u_{m-1}, v_{m-1}\right), T S\left(u_{n-1}, v_{n-1}\right)\right. \\
\leq & \lambda \max \left\{d_{v}\left(T g u_{m-1}, T g u_{n-1}\right), d_{v}\left(T g v_{m-1}, T g v_{n-1}\right),\right. \\
& \mu d_{v}\left(T g u_{m-1}, T S\left(u_{m-1}, v_{m-1}\right)\right), \mu d_{v}\left(T g v_{m-1}, T S\left(v_{m-1}, u_{m-1}\right)\right), \\
& \left.v d_{v}\left(T g u_{n-1}, T S\left(u_{n-1}, v_{n-1}\right)\right), v d_{v}\left(T g v_{n-1}, T S\left(v_{n-1}, u_{n-1}\right)\right)\right\} \\
\leq & \lambda \max \left\{d_{v}\left(T g u_{m-1}, T g u_{n-1}\right), d_{v}\left(T g v_{m-1}, T g v_{n-1}\right), d_{v}\left(T g u_{m-1}, T g u_{m}\right),\right. \\
& \left.d_{v}\left(T g v_{m-1}, T g v_{m}\right), d_{v}\left(T g u_{n-1}, T g u_{n}\right), d_{v}\left(T g v_{n-1}, T g v_{n}\right)\right\} .
\end{aligned}
$$

Then, by using (8), we get

$$
\begin{align*}
d_{v}\left(T g u_{m}, T g u_{n}\right) \leq & \lambda \max \left\{d_{v}\left(T g u_{m-1}, T g u_{n-1}\right), d_{v}\left(T g v_{m-1}, T g v_{n-1}\right)\right\} \\
& \left.+\left(\lambda^{m}+\lambda^{n}\right) K_{0}\right\} \tag{9}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
d_{v}\left(T g v_{m}, T g v_{n}\right) \leq & \lambda \max \left\{d_{v}\left(T g u_{m-1}, T g u_{n-1}\right), d_{v}\left(T g v_{m-1}, T g v_{n-1}\right)\right\} \\
& \left.+\left(\lambda^{m}+\lambda^{n}\right) K_{0}\right\} \tag{10}
\end{align*}
$$

Let $K_{m, n}=\max \left\{d_{v}\left(T g u_{m}, T g u_{n}\right), d_{v}\left(T g v_{m}, T g v_{n}\right)\right\}$. By (9) and (10), we get

$$
K_{m, n} \leq \lambda K_{m-1, n-1}+\left(\lambda^{m}+\lambda^{n}\right) K_{0}
$$

Thus, we see that inequality (1) is satisfied with $c_{1}=c_{2}=K_{0}$. Hence, by Lemma $2,<\operatorname{Tg} u_{n}>$ and $<T g v_{n}>$ are Cauchy sequences. For $v=1$, the same follows from Lemma 1.
Since $(T g(X), d)$ is complete, we can find $w_{x_{0}}, w_{y_{0}} \in X$ such that

$$
\lim _{n \rightarrow \infty} T g u_{n}=T g w_{x_{0}} \text { and } \lim _{n \rightarrow \infty} T g v_{n}=T g w_{y_{0}} .
$$

2. Now,

$$
\begin{align*}
& d_{v}\left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T g w_{x_{0}}\right) \leq s\left[d _ { v } \left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T S\left(u_{n}, v_{n}\right)+d_{v}\left(T S\left(u_{n}, v_{n}\right), T S\left(u_{n+1}, v_{n+1}\right)\right)\right.\right. \\
& +\cdots+d_{v}\left(T S\left(u_{n+v-2}, v_{n+v-2}\right), T S\left(u_{n+v-1}, v_{n+v-1}\right)+d_{v}\left(T S\left(u_{n+v-1}, v_{n+v-1}\right), T g w_{x_{0}}\right)\right. \\
\leq & s\left[\lambda \operatorname { m a x } \left\{d_{v}\left(T g w_{x_{0}}, T g u_{n}\right), d_{v}\left(T g w_{y_{0}}, T g v_{n}\right), \mu d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right),\right.\right. \\
& \mu d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right), v d_{v}\left(T g u_{n}, T S\left(u_{n}, v_{n}\right)\right), v d_{v}\left(T g v_{n}, T S\left(v_{n}, u_{n}\right)\right)\right\} \tag{11}\\
& +d_{v}\left(T g u_{n+1}, T g u_{n+2}\right)+\cdots+d_{v}\left(T g u_{n+v-1}, T g u_{n+v}\right)+d_{v}\left(T g u_{n+v}, T g w_{x_{0}}\right) \\
\leq & s\left[\lambda \operatorname { m a x } \left\{d_{v}\left(T g w_{x_{0}}, T g u_{n}\right), d_{v}\left(T g w_{y_{0}}, T g v_{n}\right), \mu d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right),\right.\right. \\
& \mu d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right), v d_{v}\left(T g u_{n}, T g u_{n+1}\right), v d_{v}\left(T g v_{n}, T g v_{n+1}\right)\right\} \\
& +d_{v}\left(T g u_{n+1}, T g u_{n+2}\right)+\cdots+d_{v}\left(T g u_{n+v-1}, T g u_{n+v}+d_{v}\left(T g u_{n+v}, T g w_{x_{0}}\right) .\right.
\end{align*}
$$

Note that, since $<T g u_{n}>$ and $<T g v_{n}>$ are Cauchy sequences, by definition, $d_{v}\left(T g u_{n}, T g u_{n+1}\right) \rightarrow 0, d_{v}\left(T g v_{n}, T g v_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, from (11), as $n \rightarrow \infty$, we get

$$
d_{v}\left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T g w_{x_{0}}\right) \leq s \lambda \max \left\{\mu d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right), \mu d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right)\right\}
$$

Similarly, we get

$$
d_{v}\left(T S\left(w_{y_{0}}, w_{x_{0}}\right), T g w_{y_{0}}\right) \leq s \lambda \max \left\{\mu d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right), \mu d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right\}\right.
$$

Thus, we have

$$
\begin{align*}
& \max \left\{d_{v}\left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T g w_{x_{0}}\right), d_{v}\left(T S\left(w_{y_{0}}, w_{x_{0}}\right), T g w_{y_{0}}\right)\right\} \\
\leq \quad & s \lambda \mu \max \left\{d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right), d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right\}\right. \tag{12}
\end{align*}
$$

Proceeding along the same lines as above, we also have

$$
\begin{align*}
& \max \left\{d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right), d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right)\right\} \\
\leq & s \lambda v \max \left\{d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right), d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right\}\right. \tag{13}
\end{align*}
$$

Using (12) and (13) along with the condition $\min \{\lambda \mu, \lambda v\}<\frac{1}{s}$, we get $T S\left(w_{x_{0}}, w_{y_{0}}\right)=T g w_{x_{0}}$ and $T S\left(w_{y_{0}}, w_{x_{0}}\right)=T g w_{y_{0}}$. As T is one to one, we have $S\left(w_{x_{0}}, w_{y_{0}}\right)=g w_{x_{0}}$ and $S\left(w_{y_{0}}, w_{x_{0}}\right)=g w_{y_{0}}$. Therefore, $\left(w_{x_{0}}, w_{y_{0}}\right) \in \operatorname{COCP}\{S, g\}$.
3. Suppose S and g are weakly compatible. First, we will show that, if $\left(w_{x_{0}}^{*}, w_{y_{0}}^{*}\right) \in \operatorname{COCP}\{S, g\}$, then $g w_{x_{0}}^{*}=g w_{x_{0}}$ and $g w_{y_{0}}^{*}=g w_{y_{0}}$, or in other words the point of coupled coincidence of S and g is unique. By (5), we have

$$
\begin{aligned}
d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right)= & d_{v}\left(T S\left(w_{x_{0}}^{*}, w_{y_{0}}^{*}\right), T S\left(w_{x_{0}}, w_{y_{0}}\right)\right) \\
& \leq \lambda \max \left\{d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right), d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right), \mu d_{v}\left(T g w_{x_{0}}^{*}, T S\left(w_{x_{0}}^{*}, w_{y_{0}}^{*}\right)\right),\right. \\
& \mu d_{v}\left(T g w_{y_{0}}^{*}, T S\left(w_{y_{0}}^{*}, w_{x_{0}}^{*}\right), v d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right), v d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right)\right\} \\
& \leq \lambda \max \left\{d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right), d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right)\right\} .
\end{aligned}
$$

Similarly, we have

$$
d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right) \leq \lambda \max \left\{d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right), d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right)\right\}
$$

Thus, from the above two inequalities, we get

$$
\max \left\{d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right), d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right) \leq \lambda \max \left\{d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right), d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right)\right\}\right.
$$

which implies that $T g w_{x_{0}}^{*}=T g w_{x_{0}}$ and $T g w_{y_{0}}^{*}=T g w_{y_{0}}$. Since T is one to one, we get $g w_{x_{0}}^{*}=g w_{x_{0}}$ and $g w_{y_{0}}^{*}=g w_{y_{0}}$, which is the point of coupled coincidence of S and g is unique. Since S and g are weakly compatible and, since $\left(w_{x_{0}}, w_{y_{0}}\right) \in C O C P\{S, g\}$, we have

$$
g g w_{x_{0}}=g S\left(w_{x_{0}}, w_{y_{0}}\right)=S\left(g w_{x_{0}}, g w_{y_{0}}\right)
$$

and

$$
g g w_{y_{0}}=g S\left(w_{y_{0}}, w_{x_{0}}\right)=S\left(g w_{y_{0}}, g w_{x_{0}}\right)
$$

which shows that $\left(g w_{x_{0}}, g w_{y_{0}}\right) \in \operatorname{COCP}\{S, g\}$. By the uniqueness of the point of coupled coincidence, we get $g g w_{x_{0}}=g w_{x_{0}}$ and $g g w_{y_{0}}=g w_{y_{0}}$ and thus $\left(g w_{x_{0}}, g w_{y_{0}}\right) \in \operatorname{CCOFP}\{S, g\}$. Uniqueness of the coupled fixed point follows easily from (4).

Our next result is a generalized version of Theorem 2.1 of Gu [10].
Theorem 2. Let $\left(X, d_{v}\right), T, S$ and g be as in Theorem 1 and suppose there exist $\beta_{1}, \beta_{2}, \beta_{3}$ in the interval $[0,1)$, such that $\beta_{1}+\beta_{2}+\beta_{3}<1$, minimum $\left\{\beta_{2}, \beta_{3}\right\}<\frac{1}{s}$ and for all $u, v, w, z \in X$

$$
\begin{gather*}
d_{v}\left(T S(u, v), T S(w, z)+d_{v}\left(T S(v, u), T S(z, w) \leq \beta_{1}\left(d_{v}(T g u, T g w)+d_{v}(T g v, T g z)\right)+\right.\right. \\
\beta_{2}\left(d_{v}(T g u, T S(u, v))+d_{v}(T g v, T S(v, u))+\beta_{3}\left(d_{v}(T g w, T S(w, z))+d_{v}(T g z, T S(z, w))\right) .\right. \tag{14}
\end{gather*}
$$

Then, conclusions 1, 2, and 3 of Theorem 1 are true.
Proof. Let $K_{n}^{\prime}=d_{v}\left(T g u_{n}, T g u_{n+1}\right)+d_{v}\left(T g v_{n}, T g v_{n+1}\right)$ and $K_{m, n}^{\prime}=d_{v}\left(T g u_{m}, T g u_{n}\right)+$ $d_{v}\left(T g v_{m}, T g v_{n}\right)$. From condition (14), we obtain

$$
\begin{aligned}
& d_{v}\left(T g u_{n}, T g u_{n+1}\right)+d_{v}\left(T g v_{n}, T g v_{n+1}\right)=d_{v}\left(T S\left(u_{n-1}, v_{n-1}\right), T S\left(u_{n}, v_{n}\right)\right)+ \\
& d_{v}\left(T S\left(v_{n-1}, u_{n-1}\right), T S\left(v_{n}, u_{n}\right)\right) \\
\leq & \beta_{1}\left[d_{v}\left(T g u_{n-1}, T g u_{n}\right)+d_{v}\left(T g v_{n-1}, T g v_{n}\right)\right]+\beta_{2}\left[d_{v}\left(T g u_{n-1}, T S\left(u_{n-1}, v_{n-1}\right)\right)\right. \\
& \left.+d_{v}\left(T g v_{n-1}, T S\left(v_{n-1}, u_{n-1}\right)\right)\right]+\beta_{3}\left[d_{v}\left(T g u_{n}, T S\left(u_{n}, v_{n}\right)\right)+d_{v}\left(T g v_{n}, T S\left(v_{n}, u_{n}\right)\right)\right] \\
\leq & \left(\beta_{1}+\beta_{2}\right)\left[d_{v}\left(T g u_{n-1}, T g u_{n}\right)+d_{v}\left(T g v_{n-1}, T g v_{n}\right)\right] \\
& +\beta_{3}\left[d_{v}\left(T g u_{n}, T g u_{n+1}\right)+d_{v}\left(T g v_{n}, T g v_{n+1}\right)\right] .
\end{aligned}
$$

Therefore,

$$
d_{v}\left(T g u_{n}, T g u_{n+1}\right)+d_{v}\left(T g v_{n}, T g v_{n+1}\right) \leq \lambda^{\prime}\left[d_{v}\left(T g u_{n-1}, T g u_{n}\right)+d_{v}\left(T g v_{n-1}, T g v_{n}\right)\right]
$$

where $\lambda^{\prime}=\frac{\beta_{1}+\beta_{2}}{1-\beta_{3}}<1$. Thus, we get

$$
\begin{equation*}
K_{n}^{\prime} \leq \lambda^{\prime} K_{n-1}^{\prime} \leq \cdots \leq \lambda^{\prime \prime} K_{0}^{\prime} \tag{15}
\end{equation*}
$$

For any $m, n \in \mathbb{N}$, we have

$$
\begin{aligned}
d_{v}\left(T g u_{m}, T g u_{n}\right)+ & d_{v}\left(T g v_{m}, T g v_{n}\right)=d_{v}\left(T S\left(u_{m-1}, v_{m-1}\right), T S\left(u_{n-1}, v_{n-1}\right)+\right. \\
& d_{v}\left(T S\left(v_{m-1}, u_{m-1}\right), T S\left(v_{n-1}, u_{n-1}\right)\right. \\
\leq & \beta_{1}\left[d_{v}\left(T g u_{m-1}, T g u_{n-1}\right)+d_{v}\left(T g v_{m-1}, T g v_{n-1}\right)\right] \\
& +\beta_{2}\left[d_{v}\left(T g u_{m-1}, T S\left(u_{m-1}, v_{m-1}\right)\right)+d_{v}\left(T g v_{m-1}, T S\left(v_{m-1}, u_{m-1}\right)\right)\right] \\
& +\beta_{3}\left[d_{v}\left(T g u_{n-1}, T S\left(u_{n-1}, v_{n-1}\right)\right)+d_{v}\left(T g v_{n-1}, T S\left(v_{n-1}, u_{n-1}\right)\right)\right] \\
\leq & \left.\beta_{[} d_{v}\left(T g u_{m-1}, T g u_{n-1}\right)+d_{v}\left(T g v_{m-1}, T g v_{n-1}\right)\right]+\beta_{2}\left[d_{v}\left(T g u_{m-1}, T g u_{m}\right)\right. \\
& \left.+d_{v}\left(T g v_{m-1}, T g v_{m}\right)\right]+\beta_{3}\left[d_{v}\left(T g u_{n-1}, T g u_{n}\right)+d_{v}\left(T g v_{n-1}, T g v_{n}\right)\right] .
\end{aligned}
$$

Then, by using (15), we get

$$
\begin{aligned}
d_{v}\left(T g u_{m}, T g u_{n}\right)+d_{v}\left(T g v_{m}, T g v_{n}\right) \leq & \beta_{1}\left[d_{v}\left(T g u_{m-1}, T g u_{n-1}\right)+d_{v}\left(T g v_{m-1}, T g v_{n-1}\right)\right] \\
& \left.+\left(\beta_{2} \lambda^{\prime m}+\beta_{3} \lambda^{\prime n}\right) K_{0}^{\prime}\right\} .
\end{aligned}
$$

That is,

$$
K_{m, n}^{\prime} \leq \lambda K_{m-1, n-1}^{\prime}+\left(\lambda^{m}+\lambda^{n}\right) K_{0}^{\prime}
$$

where $\lambda^{\prime}=\beta_{1}+\beta_{2}+\beta_{3}<1$. Now for $m, n, r \in N$. Thus, we see that inequality (1) is satisfied with $c_{1}=c_{2}=K_{0}$. Hence, by Lemma $2,<T g u_{n}>$ and $\left\langle T g v_{n}\right\rangle$ are Cauchy sequences. For $v=1$, the same follows from Lemma 1.

Since $(T g(X), d)$ is complete, we can find $w_{x_{0}}, w_{y_{0}} \in X$ such that

$$
\lim _{n \rightarrow \infty} T g u_{n}=T g w_{x_{0}} \text { and } \lim _{n \rightarrow \infty} T g v_{n}=T g w_{y_{0}} .
$$

Again, from condition 3 in Definition 1, we have

$$
\begin{aligned}
\left.d_{v}\left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T g w_{x_{0}}\right)\right) \leq & s\left[d_{v}\left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T S\left(u_{n}, v_{n}\right)\right)+d_{v}\left(T S\left(u_{n}, v_{n}\right), T S\left(u_{n+1}, v_{n+1}\right)\right)+\cdots+\right. \\
& +d_{v}\left(T S\left(u_{n+v-2}, v_{n+v-2}\right), T S\left(u_{n+v-1}, v_{n+v-1}\right)\right)+ \\
& \left.\left.d_{v}\left(T S\left(u_{n+v-1}, v_{n+v-1}\right), T g w_{x_{0}}\right)\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\left.d_{v}\left(T S\left(w_{y_{0}}, w_{x_{0}}\right), T g w_{y_{0}}\right)\right) \leq & s\left[d_{v}\left(T S\left(w_{y_{0}}, w_{x_{0}}\right), T S\left(v_{n}, u_{n}\right)\right)+d_{v}\left(T S\left(v_{n}, u_{n}\right), T S\left(v_{n+1}, u_{n+1}\right)\right)+\cdots+\right. \\
& d_{v}\left(T S\left(v_{n+v-2}, u_{n+v-2}\right), T S\left(v_{n+v-1}, u_{n+v-1}\right)\right)+ \\
& \left.\left.d_{v}\left(T S\left(v_{n+v-1}, u_{n+v-1}\right), T g w_{x_{0}}\right)\right)\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& d_{v}\left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T g w_{x_{0}}\right)+d_{v}\left(T S\left(w_{y_{0}}, w_{x_{0}}\right), T g w_{y_{0}}\right) \leq s\left[d _ { v } \left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T S\left(u_{n}, v_{n}\right)\right.\right. \\
& +d_{v}\left(T S\left(w_{y_{0}}, w_{x_{0}}\right), T S\left(v_{n}, u_{n}\right)\right. \\
& +d_{v}\left(T S\left(u_{n}, v_{n}\right), T S\left(u_{n+1}, v_{n+1}\right)\right)+\cdots+d_{v}\left(T S\left(u_{n+v-2}, v_{n+v-2}\right), T S\left(u_{n+v-1}, v_{n+v-1}\right)\right) \\
& +d_{v}\left(T S\left(v_{n}, u_{n}\right), T S\left(v_{n+1}, u_{n+1}\right)\right)+\cdots+d_{v}\left(T S\left(v_{n+v-2}, u_{n+v-2}\right), T S\left(v_{n+v-1}, u_{n+v-1}\right)\right) \\
& \left.+d_{v}\left(T S\left(u_{n+v-1}, v_{n+v-1}\right), T g w_{x_{0}}\right)+d_{v}\left(T S\left(v_{n+v-1}, u_{n+v-1}\right), T g w_{y_{0}}\right)\right] \\
& \leq s\left[\beta_{1}\left(d_{v}\left(T g w_{x_{0}}, T g u_{n}\right)+d_{v}\left(T g w_{y_{0}}, T g v_{n}\right)\right)+\beta_{2}\left(d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right)+\right.\right. \\
& \left.d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right)+\beta_{3}\left(d_{v}\left(T g u_{n}, T S\left(u_{n}, v_{n}\right)\right)+d_{v}\left(T g v_{n}, T S\left(v_{n}, u_{n}\right)\right)\right)\right\} \\
& +d_{v}\left(T g u_{n}, T g u_{n+1}\right)+\cdots+d_{v}\left(T g u_{n-1}, T g u_{n}\right)++d_{v}\left(T g v_{n}, T g v_{n+1}\right)+\cdots+d_{v}\left(T g v_{n-1}, T g v_{n}\right) \\
& \left.+d_{v}\left(T g u_{n+v-1}, T g w_{x_{0}}\right)+d_{v}\left(T g v_{n+v-1}, T g w_{y_{0}}\right)\right] .
\end{aligned}
$$

As $n \rightarrow \infty$, we get

$$
\begin{align*}
& d_{v}\left(T S\left(w_{x_{0}}, w_{y_{0}}\right), T g w_{x_{0}}\right)+d_{v}\left(T S\left(w_{y_{0}}, w_{x_{0}}\right), T g w_{y_{0}}\right) \\
\leq \quad & s \beta_{2}\left[d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right)+d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right)\right] . \tag{16}
\end{align*}
$$

Similarly, we can show that

$$
\begin{align*}
& d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right)+d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right) \\
\leq \quad & s \beta_{3}\left[d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right)+d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right]\right. \tag{17}
\end{align*}
$$

Using (16) and (17) along with the condition $\min \left\{\beta_{2}, \beta_{3}\right\}<\frac{1}{s}$, we get $d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right)+$ $d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right)=0$, i.e., $T S\left(w_{x_{0}}, w_{y_{0}}\right)=T g w_{x_{0}}$ and $T S\left(w_{y_{0}}, w_{x_{0}}\right)=T g w_{y_{0}}$. As T is one to one, we have $S\left(w_{x_{0}}, w_{y_{0}}\right)=g w_{x_{0}}$ and $S\left(w_{y_{0}}, w_{x_{0}}\right)=g w_{y_{0}}$. Therefore, $\left(w_{x_{0}}, w_{y_{0}}\right) \in \operatorname{COCP}\{S, g\}$.

If $\left(w_{x_{0}}^{*}, w_{y_{0}}^{*}\right) \in \operatorname{COCP}\{S, g\}$, then, by (14), we have

$$
\begin{aligned}
d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right)+ & d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right)=d_{v}\left(T S\left(w_{x_{0}}^{*}, w_{y_{0}}^{*}\right), T S\left(w_{x_{0}}, w_{y_{0}}\right)\right)+d_{v}\left(T S\left(w_{y_{0}}^{*}, w_{x_{0}}^{*}\right), T S\left(w_{y_{0}}, w_{x_{0}}\right)\right) \\
& \leq \beta_{1}\left[d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right)+d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right)\right]+\beta_{2}\left[d_{v}\left(T g w_{x_{x_{0}}}^{*}, T S\left(w_{x_{0}}^{*}, w_{y_{0}}^{*}\right)\right)\right. \\
& +d_{v}\left(T g w_{y_{0}}^{*}, T S\left(w_{y_{0}}^{*}, w_{x_{0}}^{*}\right)\right]+\beta_{3}\left[d_{v}\left(T g w_{x_{0}}, T S\left(w_{x_{0}}, w_{y_{0}}\right)\right)+d_{v}\left(T g w_{y_{0}}, T S\left(w_{y_{0}}, w_{x_{0}}\right)\right)\right] \\
& \leq \beta_{1}\left[d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right)+d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right)\right] .
\end{aligned}
$$

Thus, $d_{v}\left(T g w_{x_{0}}^{*}, T g w_{x_{0}}\right)+d_{v}\left(T g w_{y_{0}}^{*}, T g w_{y_{0}}\right)=0$, which implies that $T g w_{x_{0}}^{*}=T g w_{x_{0}}$ and $T g w_{y_{0}}^{*}=T g w_{y_{0}}$. Since T is one to one, we get $g w_{x_{0}}^{*}=g w_{x_{0}}$ and $g w_{y_{0}}^{*}=g w_{y_{0}}$, which is the point of coupled coincidence of S, and g is unique. The remaining part of the proof is the same as in the proof of Theorem 1.

The next results can be proved as in Theorems 1 and 2 and so we will not give the proof.
Theorem 3. Theorem 1 holds if we replace condition (4) with the following condition:
There exist $\beta_{i} \in[0,1), i \in\{1, \ldots, 6\}$ such that $\sum_{i=1}^{6} \beta_{i}<1$, $\min \left\{\beta_{3}+\beta_{4}, \beta_{5}+\beta_{6}\right\}<\frac{1}{s}$ and for all $u, v, w, z \in X$,

$$
\begin{align*}
& d_{v}(T S(u, v), T S(w, z)) \leq \beta_{1} d_{v}(T g u, T g w)+\beta_{2} d_{v}(T g v, T g z)+\beta_{3} d_{v}(T g u, T S(u, v)) \\
& +\beta_{4} d_{v}\left(T g v, T S(v, u)+\beta_{5} d_{v}(T g w, T S(w, z))+\beta_{6} d_{v}(T g z, T S(z, w))\right. \tag{18}
\end{align*}
$$

Taking T to be the identity mapping in Theorems $1-3$, we have the following:

Corollary 1. Let $\left(X, d_{v}\right), S, g, \lambda, \mu$ and v be as in Theorem 1 such that, for all $u, v, w, z \in X$, the following holds :

$$
\begin{align*}
d_{v}(S(u, v), S(w, z) \leq & \lambda \max \left\{d_{v}(g u, g w), d_{v}(g v, g z), \mu d_{v}(g u, S(u, v)), \mu d_{v}(g v, S(v, u),\right. \\
& \left.v d_{v}(g w, S(w, z)), v d_{v}(g z, S(z, w))\right\} . \tag{19}
\end{align*}
$$

Then, $\operatorname{COCP}\{S, g\} \neq \phi$. Furthermore, if S and g are weakly compatible, then S and g has a unique common coupled fixed point. Moreover, for some arbitrary $\left(u_{0}, v_{0}\right) \in X \times X$, the iterative sequences $\left(<g u_{n}\right\rangle$,$\left.<g v_{n}>\right)$ defined by $g u_{n}=S\left(u_{n-1}, v_{n-1}\right)$ and $g v_{n}=S\left(v_{n-1}, u_{n-1}\right)$ converge to the unique common coupled fixed point of S and g.

Corollary 2. Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist $\beta_{1}, \beta_{2}, \beta_{3}$ in the interval $[0,1)$, such that $\beta_{1}+\beta_{2}+\beta_{3}<1, \min \left\{\beta_{2}, \beta_{3}\right\}<\frac{1}{s}$ and for all $u, v, w, z \in X$

$$
\begin{array}{r}
d_{v}\left(S(u, v), S(w, z)+d_{v}\left(S(v, u), S(z, w) \leq \beta_{1}\left(d_{v}(g u, g w)+d_{v}(g v, g z)\right)+\right.\right. \\
\beta_{2}\left(d_{v}(g u, S(u, v))+d_{v}(g v, S(v, u))+\beta_{3}\left(d_{v}(g w, S(w, z))+d_{v}(g z, S(z, w))\right) .\right. \tag{20}
\end{array}
$$

Corollary 3. Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist $\beta_{i} \in[0,1), i \in\{1, \ldots 6\}$ such that $\sum_{i=1}^{6} \beta_{i}<1, \min \left\{\beta_{3}+\beta_{4}, \beta_{5}+\beta_{6}\right\}<\frac{1}{s}$ and, for all $u, v, w, z \in X$,

$$
\begin{array}{r}
d_{v}(S(u, v), S(w, z)) \leq \beta_{1} d_{v}(g u, g w)+\beta_{2} d_{v}(g v, g z)+ \\
\beta_{3} d_{v}(g u, S(u, v))+\beta_{4} d_{v}\left(g v, S(v, u)+\beta_{5} d_{v}(g w, S(w, z))+\beta_{6} d_{v}(g z, S(z, w)) .\right. \tag{21}
\end{array}
$$

Remark 1. Since every b-metric space is a $b_{1}(s)$ metric space, we note that Theorem 1 is a substantial generalization of Theorem 2.2 of Ramesh and Pitchamani [11]. In fact, we do not require continuity and sub sequential convergence of the function T.

Remark 2. Note that condition (2.1) of Gu [10] implies (20) and hence Corollary 2 gives an improved version of Theorem 2.1 of Gu [10].

Remark 3. Condition (3.1) of Hussain et al. [12] implies (18) and hence Theorem 3 is an extended and generalized version of Theorem 3.1 of [12].

3.2. Application to a System of Integral Equations

In this section, we give an application of Theorem 1 to study the existence and uniqueness of solution of a system of nonlinear integral equations.

Let $X=C[0, A]$ be the space of all continuous real valued functions defined on $[0, A], A>0$. Our problem is to find $(u(t), v(t)) \in X \times X, t \in[0, A]$ such that, for $f:[0, A] \times R \times R \rightarrow R$ and $G:[0, A] \times[0, A] \rightarrow R$ and $K \in C([0, A]$, the following holds:

$$
\begin{align*}
u(t) & =\int_{0}^{A} G(t, r) f(t, u(r), v(r)) d r+K(t) \\
v(t) & =\int_{0}^{A} G(t, r) f(t, v(r), u(r)) d r+K(t) \tag{22}
\end{align*}
$$

Now, suppose $F: X \times X \rightarrow X$ is given by

$$
F(u(t), v(t))=\int_{0}^{A} G(t, r) f(t, u(r), v(r)) d r+K(t) .
$$

$$
F(v(t), u(t))=\int_{0}^{A} G(t, r) f(t, v(r), u(r)) d r+K(t)
$$

Then, (22) is equivalent to the coupled fixed point problem $F(u(t), v(t))=u(t), F(v(t), u(t))=v(t)$.
Theorem 4. The system of Equation (22) has a unique solution provided the following holds:
(i) $G:[0, A] \times[0, A] \rightarrow R$ and $f:[0, A] \times R \times R \rightarrow R$ are continuous functions.
(ii) $K \in C([0, A]$.
(iii) For all $x, y, u, v \in X$ and $t \in[0, A]$, we can find a function $g: X \rightarrow X$ and real numbers $p \geq 1, \lambda, \mu, v$ with $0 \leq \lambda<1,0 \leq \mu, v \leq 1$, minimum $\{\lambda \mu, \lambda v\}<\frac{1}{3^{s-1}}$ satisfying

$$
\begin{aligned}
(i i i-a): \mid f(t, u(r), v(r)))-f(t, x(r), y(r)))\left.\right|^{p} \leq & \lambda^{p} \max \left\{|g(u(r))-g(x(r))|^{p},|g(v(r))-g(y(r))|^{p},\right. \\
& \mu|g(u(r))-F(u(r), v(r))|^{p}, \mu|g(v(r))-F(v(r), u(r))|^{p}, \\
& \left.v|g(x(r))-F(x(r), y(r))|^{p}, v|g(y(r))-F(y(r), x(r))|^{p}\right\} .
\end{aligned}
$$

(iii-b) $F(g(u(t)), g(v(t)))=g(F(u(t), v(t)))$.
(iv) $\sup _{t \in[0, A]} \int_{0}^{A}|G(t, r)|^{p} d r \leq \frac{1}{\lambda^{p-1}}$.

Moreover, for some arbitrary $u_{0}(t), v_{0}(t)$ in X, the sequence $\left(<g u_{n}(t)>,<g v_{n}(t)>\right)$ defined by

$$
\begin{align*}
& g u_{n}(t)=\int_{0}^{A} G(t, r) f\left(t, u_{n-1}(r), v_{n-1}(r)\right) d r+K(t) \\
& g v_{n}(t)=\int_{0}^{A} G(t, r) f\left(t, v_{n-1}(r), u_{n-1}(r)\right) d r+K(t) \tag{23}
\end{align*}
$$

converges to the unique solution.
Proof. Define $d_{v}: X \times X \rightarrow R$ such that for all $u, v \in X$,

$$
\begin{equation*}
d_{v}(u, v)=\sup _{t \in[0, A]}|u(t)-v(t)|^{s} . \tag{24}
\end{equation*}
$$

Clearly, d_{v} is a $b_{v}\left((v+1)^{s-1}\right)$-metric space.
For some $r \in[0, A]$, we have

$$
\begin{aligned}
\mid F(u(t), v(t))= & \left.F(x(t), y(t))\right|^{p} \\
= & \left|\int_{0}^{A} G(t, r) f(t, u(r), v(r)) d r+g(t)-\int_{0}^{A} G(t, r) f(t, x(r), y(r)) d r+g(t)\right|^{p} \\
\leq & \int_{0}^{A}|G(t, r)|^{p}|f(t, u(r), v(r))-f(t, x(r), y(r))|^{p} d r \\
\leq & \left(\int_{0}^{A}|G(t, r)|^{p} d r\right) \lambda^{p}\left[\operatorname { m a x } \left\{|g(u(r))-g(x(r))|^{p},|g(v(r))-g(y(r))|^{p},\right.\right. \\
& \mu|g(u(r))-F(u(r), v(r))|^{p}, \mu|g(v(r))-F(v(r), u(r))|^{p}, \\
& \left.v|g(x(r))-F(x(r), y(r))|^{p}, v|g(y(r))-F(y(r), x(r))|^{p}\right\} . \\
\leq & \left(\int_{0}^{A}|G(t, r)|^{p} d r\right) \lambda^{p}\left[\operatorname { m a x } \left\{d_{v}(g(u), g(x)), d_{v}(g(v), g(y)), \mu d_{v}(g(u), F(u, v)), \mu d_{v}(g(v), F(v, u)),\right.\right. \\
& \left.v d_{v}(g(x), F(x, y)), v d_{v}(g(y), F(y, x))\right\} .
\end{aligned}
$$

Thus, using condition (iv), we have

$$
\begin{aligned}
d_{v}(F(u, v), F(x, y))= & \sup _{t \in[0, A]}|F(u(t), v(t))-F(x(t), y(t))|^{p} \\
\leq & \lambda\left[\operatorname { m a x } \left\{d_{v}(g(u), g(x)), d_{v}(g(v), g(y)), \mu d_{v}(g(u), F(u, v)), \mu d_{v}(g(v), F(v, u)),\right.\right. \\
& \left.v d_{v}(g(x), F(x, y)), v d_{v}(g(y), F(y, x))\right\} .
\end{aligned}
$$

Thus, all the conditions of Corollary 1 are satisfied and so F has a unique coupled fixed point $\left(u^{\prime}, v^{\prime}\right) \in C([0, A] \times C([0, A]$, which is the unique solution of (22) and the sequence $\left(<g u_{n}(t)>,<g v_{n}(t)>\right)$ defined by (23) converges to the unique solution of (22).

Example 1. Let $X=C[0,1]$ be the space of all continuous real valued functions defined on $[0,1]$ and define $d_{3}: X \times X \rightarrow R$ such that, for all $u, v \in X$,

$$
\begin{equation*}
d_{3}(u, v)=\sup _{t \in[0,1]}|u(t)-v(t)|^{2} \tag{25}
\end{equation*}
$$

Clearly, d_{3} is a $b_{2}(3)$-metric. Now, consider the functions $f:[0,1] \times R \times R \rightarrow R$ given by $f(t, u, v)=t^{2}+\frac{9}{20} u+\frac{8}{20} v, G:[0,1] \times[0,1] \rightarrow R$ given by $G(t, r)=\frac{\sqrt{45}(t+r)}{10}, K \in C([0,1]$ given by $K(t)=t$. Then, Equation (22) becomes

$$
\begin{align*}
& u(t)=t+\int_{0}^{1} \frac{\sqrt{45}(t+r)}{10}\left(t^{2}+\frac{9}{20} u(r)+\frac{8}{20} v(r)\right) d r \\
& v(t)=t+\int_{0}^{1} \frac{\sqrt{45}(t+r)}{10}\left(t^{2}+\frac{9}{20} v(r)+\frac{8}{20} u(r)\right) d r . \tag{26}
\end{align*}
$$

Then,

$$
\begin{aligned}
|f(t, u, v)-f(t, x, y)|^{2} & =\left|\frac{9}{20}(u-x)+\frac{8}{20}(v-y)\right|^{2} \\
& \leq\left|\operatorname{Max}\left\{\frac{9}{10}(u-x), \frac{8}{10}(v-y)\right\}\right|^{2} \\
& \left.\leq\left.\frac{81}{100} \operatorname{Max}\left\{|u-x|^{2}, \mid v-y\right)\right|^{2}\right\}
\end{aligned}
$$

In addition,

$$
\sup _{t \in[0,1]} \int_{0}^{1}|G(t, r)|^{2} d r=\int_{0}^{1} \frac{45}{100}(t+r)^{2} d r=1.05
$$

We see that all the conditions of Theorem 4 are satisfied, with $\lambda=\frac{9}{10}, \mu=0, v=0, p=2$ and $g=I_{X}$ (Identity mapping). Hence, Theorem 4 ensures a unique solution of (26). Now, for $u_{0}(t)=1$ and $v_{0}(t)=0$, we construct the sequence $\left(<u_{n}(t)>,<v_{n}(t)>\right\}$ given by

$$
\begin{align*}
& u_{n}(t)=t+\int_{0}^{1} \frac{\sqrt{45}(t+r)}{10}\left(t^{2}+\frac{9}{20} u_{n-1}(r)+\frac{8}{20} v_{n-1}(r)\right) d r \\
& v_{n}(t)=t+\int_{0}^{1} \frac{\sqrt{45}(t+r)}{10}\left(t^{2}+\frac{9}{20} v_{n-1}(r)+\frac{8}{20} u_{n-1}(r)\right) d r . \tag{27}
\end{align*}
$$

Using MATLAB, we see that above sequence converges to $\left\{0.6708 t^{3}+0.3354 t^{2}+2.2339 t+\right.$ $\left.0.7677,0.6708 t^{3}+0.3354 t^{2}+2.2339 t+0.7677\right\}$, and this is the unique solution of the system of nonlinear integral Equation (26). The convergence table is given in Table 1 below.

Table 1. Convergence of sequences $\left\langle u_{n}(t)\right\rangle$ and $\left\langle v_{n}(t)\right\rangle$.

n	$\begin{gathered} u_{n}(t)=t+\int_{0}^{1} \frac{\sqrt{45}(t+r)}{10}\left(t^{2}+\frac{9}{20} u_{n-1}(r)+\right. \\ \left.\frac{8}{20} v_{n-1}(r)\right) d r \end{gathered}$	$\begin{gathered} v_{n}(t)=t+\int_{0}^{1} \frac{\sqrt{45}(t+r)}{10}\left(t^{2}+\frac{9}{20} v_{n-1}(r)+\right. \\ \left.\frac{8}{20} u_{n-1}(r)\right) d r \end{gathered}$
1	$\left.u_{1}(t)=t+0.0167(2 t+1)\left(20 t^{2}+9\right)\right)$	$\left.v_{1}(t)=t+.0671(2 t+1)\left(5 t^{2}+2\right)\right)$
2	$u_{2}(t)=0.6708 t^{3}+0.3354 t^{2}+1.3 t+0.5007$	$v_{2}(t)=0.6708 t^{3}+0.3354 t^{2}+1.29 t+0.5115$
3	$u_{3}(t)=0.6708 t^{3}+0.3354 t^{2}+1.8210 t+0.5174$	$v_{3}(t)=0.6708 t^{3}+0.3354 t^{2}+1.8208 t+0.5171$
4	$u_{4}(t)=0.6708 t^{3}+0.3354 t^{2}+1.9734 t+0.6179$	$v_{4}(t)=0.6708 t^{3}+0.3354 t^{2}+1.9734 t+0.6178$
5	$u_{5}(t)=0.6708 t^{3}+0.3354 t^{2}+2.0743 t+0.6755$	$v_{5}(t)=0.6708 t^{3}+0.3354 t^{2}+2.0743 t+0.6755$
6	$u_{6}(t)=0.6708 t^{3}+0.3354 t^{2}+2.1359 t+0.7111$	$v_{6}(t)=0.6708 t^{3}+0.3354 t^{2}+2.1359 t+0.7111$
7	$u_{7}(t)=0.6708 t^{3}+0.3354 t^{2}+2.1737 t+0.73298$	$v_{7}(t)=0.6708 t^{3}+0.3354 t^{2}+2.1737 t+0.73298$
8	$u_{8}(t)=0.6708 t^{3}+0.3354 t^{2}+2.19699 t+0.7464$	$v_{8}(t)=0.6708 t^{3}+0.3354 t^{2}+2.19699 t+0.7464$
9	$u_{9}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2113 t+0.7547$	$v_{9}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2113 t+0.7547$
10	$u_{10}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2200 t+0.7597$	$v_{10}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2200 t+0.7597$
11	$u_{11}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2254 t+0.7628$	$v_{11}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2254 t+0.7628$
12	$u_{12}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2287 t+0.7647$	$v_{12}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2287 t+0.7647$
13	$u_{13}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2308 t+0.7658$	$v_{13}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2308 t+0.7658$
14	$u_{14}(t)=0.6708 t^{3}+0.3354 t^{2}+2.23199 t+0.7666$	$v_{14}(t)=0.6708 t^{3}+0.3354 t^{2}+2.23199 t+0.7666$
15	$u_{15}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2328 t+0.7671$	$v_{15}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2328 t+0.7671$
16	$u_{16}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2333 t+0.7674$	$v_{16}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2333 t+0.7674$
17	$u_{17}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2336 t+0.7675$	$v_{17}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2336 t+0.7675$
18	$u_{18}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2338 t+0.7676$	$v_{18}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2338 t+0.7676$
19	$u_{19}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2339 t+0.7677$	$v_{19}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2339 t+0.7677$
20	$u_{20}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2339 t+0.7677$	$v_{20}(t)=0.6708 t^{3}+0.3354 t^{2}+2.2339 t+0.7677$

Remark 4. Condition (iv) of Theorem 4 above is weaker than the corresponding conditions used in similar theorems of [11,13,14].

Remark 5. In example 1 above, we see that sup $p_{t \in[0,1]} \int_{0}^{1}|G(t, r)|^{2} d r=\int_{0}^{1} \frac{45}{100}(t+r)^{2} d r=1.05>1$ and thus condition (v) of Theorem 3.1 of [11], condition (30) of Theorem 3.1 of [13] and condition (iii) of Theorem 3.1 of [14] are not satisfied.

Author Contributions: Investigation, R.G., Z.D.M., and S.R.; Methodology, R.G.; Software, Z.D.M.; Supervision, R.G., Z.D.M., and S.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Acknowledgments: 1. The authors are thankful to the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia, for supporting this research. 2. The authors are thankful to the learned reviewers for their valuable comments which helped in improving this paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 1989, 30, 26-37.
2. Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen 2000, 57, 31-37.
3. George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric spaces and contraction principle. J. Nonlinear Sci. Appl. 2015, 8, 1005-1013. [CrossRef]
4. Hincal, E.; Auwalu, A. A note on Banach contraction mapping principle in cone hexagonal metric space. Br. J. Math. Comput. Sci. 2016, 16, 1-12.
5. Auwalul, A.; Hincal, E. Kannan type fixed point theorem in cone pentagonal metric spaces. Intern. J. Pure Appl. Math. 2016, 108, 29-38.
6. Mitrović, Z.D.; Radenović, S. The Banach and Reich contractions in $b_{v}(s)$-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3087-3095. [CrossRef]
7. Mitrović, Z.D. A fixed point theorem for mappings with a contractive iterate in rectangular b-metric spaces. Matematicki Vesnik 2018, 70, 204-210.
8. George, R.; Mitrović, Z.D. On Reich contraction principle in rectangular cone b-metric space over Banach algebra. J. Adv. Math. Stud. 2018, 11, 10-16.
9. George, R.; Nabwey, H.A.; Rajagopalan, R.; Radenović, S.; Reshma, K.P. Rectangular cone b-metric spaces over Banach algebra and contraction principle. Fixed Point Theory Appl. 2017, 2017, 14. [CrossRef]
10. Gu, F. On some common coupled fixed point results in rectangular b-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 4085-4098. [CrossRef]
11. Kumar, D.R.; Pitchaimani, M. New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process. Trans. A. Razmadze Math. Inst. 2018. [CrossRef]
12. Hussain, N.; Salimi, P.; Al-Mezel, S. Coupled fixed point results on quasi-Banach spaces with application to a system of integral equations. Fixed Point Theory Appl. 2013, 2013, 261. [CrossRef]
13. Nashine, H.K.; Sintunavarat, W.; Kumam, P. Cyclic generalized contractions and fixed point results with applications to an integral equation. Fixed Point Theory Appl. 2012, 2012, 217. [CrossRef]
14. Hussain, N.; Roshan, J.R.; Parvaneh, V.; Abbas, M. Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications. J. Ineq. Appl. 2013, 2013, 486. [CrossRef]
15. Garai, H.; Dey, L.K.; Mondal, P.; Radenović, S. Some remarks and fixed point results with an application in $b_{v}(s)$-metric spaces. Nonlinear Anal. Model. Control 2020, 25, 1015-1034. [CrossRef]

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

