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Abstract: Common coupled fixed point theorems for generalized T-contractions are proved for a pair
of mappings S : X x X — X and ¢ : X — X in a b, (s)-metric space, which generalize, extend, and
improve some recent results on coupled fixed points. As an application, we prove an existence and
uniqueness theorem for the solution of a system of nonlinear integral equations under some weaker
conditions and given a convergence criteria for the unique solution, which has been properly verified
by using suitable example.
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1. Introduction

In the last three decades, the definition of a metric space has been altered by many authors to give
new and generalized forms of a metric space. In 1989, Bakhtin [1] introduced one such generalization
in the form of a b-metric space and in the year 2000 Branciari [2] gave another generalization in
the form a rectangular metric space and generalized metric space. Thereafter, using the above two
concepts, many generalizations of a metric space appeared in the form of rectangular b-metric space [3],
hexagonal b-metric space [4], pentagonal b-metric space [5], etc. The latest such generalization was
given by Mitrovi¢ and Radenovi¢ [6] in which the authors defined a b, (s)-metric space which is
a generalization of all the concepts told above. Some recent fixed point theorems in such generalized
metric spaces can be found in [6-9]. In [10-12], one can find some interesting coupled fixed point
theorems and their applications proved in some generalized forms of a metric space. In the present
note, we have given coupled fixed point results for a pair of generalized T-contraction mappings in
a by(s)-metric space. Our results are new and it extends, generalize, and improve some of the coupled
fixed point theorems recently dealt with in [10-12].

In recent years, fixed point theory has been successfully applied in establishing the existence of
solution of nonlinear integral equations (see [11-15] ). We have applied one of our results to prove the
existence and convergence of a unique solution of a system of nonlinear integral equations using some
weaker conditions as compared to those existing in literature.

2. Preliminaries

Definition 1. [6] Let X be a nonempty set. Assume that, forall x,y, € X and distinct uq, - - - ,up € X —{x,y},
dy : X X X — R satisfies :
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1. dy(x,y) > 0and dy(x,y) = 0ifand only if x =y,

2. dy(x,y) =dy(y,x),

3. do(x,y) <sldy(x,u1) +do(uy, up) + - -+ do(thy_1,up) + dyp(1tp,y)], for some s > 1.
Then, (X, dy) is a by(s)-metric space.

Definition 2. [6] In the by (s)-metric space (X, dy), the sequence < u, >

(a)  converges tou € X if dy(un,u) — 0asn — oo;
(b) is a Cauchy sequence if dy(Un, Uy) — 0as n,m — +oo.

Clearly, b1 (1)-metric space is the usual metric space, whereas by (s), b2(1), ba(s), and by (1)-metric
spaces are, respectively, the b-metric space ([1]), rectangular metric space ([2]), rectangular b-metric
space ([3]), and v-generalized metric space ([2]).

Lemma 1. [6] If (X, d,) is a by(s)-metric space, then (X, dy) is a b, (s?)-metric space.

Definition 3. An element (u,v) € X x X is called a coupled coincidence point of S : X x X — X and
g: X — Xifg(u) = S(u,v) and g(v) = S(v,u). In this case, we also say that (g(u),g(v)) is the point of
coupled coincidence of S and g. If u = g(u) = S(u,v) and v = g(v) = S(v,u), then we say that (u,v) is
a common coupled fixed point of S and g.

We will denote by COCP{S, g} and CCOFP{S, g} respectively the set of all coupled coincidence
points and the set of all common coupled fixed points of S and g.

Definition4. S: X x X — Xand g : X — X are said to be weakly compatible if and only if S(g(u), g(v)) =
¢(S(u,v)) forall (u,v) € COCP{S,g}.

3. Main Results

We will start this section by proving the following lemma which is an extension of Lemma 1.12
of [6] to two sequences:

Lemma 2. Let (X, dy) be a by(s)-metric space and let < u, > and < v, > be two sequences in X such that
Up # Upi1,Un 7 U1 (n > 0). Suppose that A € [0,1) and cq, ¢y are real nonnegative numbers such that

K < AKy—14-1 +c1A™ + A", forallm,n € N, (1)

where Ky = max{dy(um, un),do(m, vn)} or Kyn = do(tiy, ttn) + do(0m, vn). Then, < u, > and
< vy > are Cauchy sequences.

Proof. From (1), we have

Kn,n+1 < /\Kn—l,n + Cl/\n + CZ/\’H_1

2
A'Ko1 4+ cinA™ + C271)\n+1 @

<
<

< /\nKO,l + ConA™.
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Form,n,k € N, by (1), we have
Kinre < Amax{Kyir—1nrk—1, A" 4 cAn 1)}
< AKpik—1 k-1 + AR 4 A T) (3)
é 'Aka,n + kCIAF (A 4 A,

Since 0 < A < 1, we can find a positive integer g such that 0 < A% < 1. Now, suppose v > 2.
Then, by using condition 3. of a b, (s)-metric and inequalities (2) and (3), we have

Knn < s[Kpms1 + Kpgme2 + -+ Kpgo-3mio—2 + Kinyo—2,mrq, + Kintguntge + Kot gon]
ST A AL AMTO3 Ky 4 sCo[mA™ + (m 4+ DA 4 (m o — 3)AT2]
+5[A"Ky_2,0, + MA™ ("2 4 A%K) Ky
+8[AT Ky + GeAT (A" 4+ A")Ko] + S[A"Kqy 0 + nA" (A% + 1)Ko).

Then,
sA™ s(m+ov—3)A™
Ko (1= sam) (1= ) "ot T T Ay = sam)
S j—
EpyYn [A"Ky—a,q, +mA™ (A" + A%) K 1]
5 s
T AT (A" + A Koa] + T [V'Kg 0+ AT (AT + 1)Ko ).

Thus, from the definition of K, ,, we see that, as m, n — 400, dy (U, uy) — 0and dy (v, v,) — 0
and thus < u; > and < v, > are Cauchy sequences. []

3.1. Coupled Fixed Point Theorems

We now present our main theorems as follows:

Theorem 1. Let (X, dy) be a by(s)-metric space , T: X — X be a one to one mapping, S: X x X — X and
g X — X be mappings such that S(X x X) C g(X), Tg(X) is complete. If there exist real numbers A, y, v
with0 <A <1,0<puv <1 min{Ap Av} < % such that, for all u,v,w,z € X

dy(TS(u,0), TS(w,z)) < Amax{dy(Tgu, Tqw),dy(Tgv, Tgz), udy(Tgu, TS(u,v)), udy(Tgv, TS(v, u),

4
vdy(Tgw, TS(w, z)),vdy(Tgz, TS(z, w)) } @

then the following holds :

1. There exist wy,, wy, in X, such that sequences < Tgu, > and < Tgv, > converge to Tgwy, and Tgw,,
respectively, where the iterative sequences < gu, > and < gv, > are defined by gu, = S(y_1,0,-1)
and gv, = S(vy_1,uy_1) for some arbitrary (ug,vg) € X x X.

2. (wy,,wy,) € COCP{S,g}.

3. If S and g are weakly compatible, then S and g have a unique common coupled fixed point.

Proof. 1. We shall start the proof by showing that the sequences < Tgu, > and < Tgv, > are Cauchy
sequences, where < gu, > and < gv, > are as mentioned in the hypothesis.
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By (4), we have

do(Tguy, Tquy11) = do(TS(uy—1,v4-1), TS(n, vn))

Amax{dy(Tguy—1, Tqun), do(Tgv,—1, TUR), udo(Tguy—1, TS(uy—1,0,-1)),
udy(Tg0y—1, TS(vy—1,1y_1)), vdy(Tguy, TS(tn, 0n)), vdy(Tgvn, TS(vn, uy))}  (B)
Amax{dy(Tgu,—1, Tgun),dy(Tgv,—1, TgU), do(Tguy—1, TQUy),

Ao (Tgvy—1, TgUn), do(TgUn, TSy 1), do(TgOR, TV, +1) }-

IN

IN

Similarly, we get

dv(TgUn/ Tganrl) < /\max{dv(Tgvnflr Tgvn)/ dv(Tgunflr Tgun)/ dv(Tgvnflr Tgvn>/
dv(Tgunq, Tgun)/ dv(TgUn/ Tgvn+1)/ dv(TgMn, Tgun+1)}- (6)

Let K;, = max{dy(Tqun, Tty 1), do(Tg0y, TV,+1) }- By (5) and (6), we get

Ky < Amax{dy(Tgv,_1,Tg0n), do(TQUy—1, TQUn), dy(TgUn, T§Vy11), do(TgUn, TqUp11)}.  (7)

If

max{dy(Tgvy—1, TgVn), do(TgUn—1, TSUn), do(TgVn, TSVn11), do(TQUn, TSUn11)}
= dy(Tgvn, TQUy41) Or dyp(Tguy, TUy11),

then (7) will yield a contradiction. Thus, we have

max{dy(Tgvy—1, Tg0n), do(TgUn—1, TgUn), do(TgVn, T&Vn+1), do(TgUn, TSUn+1)}
= max{dy(Tgv,_1, TqUn), do(TguUy_1, TQUx)},

and then (7) gives
Ky < Amax{dy(Tgv,—1, Tg0n),do(Tgun—1, TUn)} = AKy—q < A*Ky_g < --- < A"Ko. (8

For any m,n € N, we have

dv(Tgum/ Tgun) dv(TS(umfl/ vmfl)/ TS(un,l, Z’nfl)

< Amax{dy(Tguy—1, Tguy—1),do(TQUm—1,TgVy_1),
o (Tum—1, TS(Um—1,0m-1)), #do(TgUm—1, TS(Vm—1, Um-1)),
vdy(Tguy 1, TS(uy_1,04-1)),vdy(Tgvy 1, TS(vy_1,un-1))}

< Amax{dy(Tgup_1, Tquy_1),do(TgUm—1, T¢Vy_1), do(Tgtp—1, TSUm),

do(TgUm—1, TgUm), do(TgUy—1, TQUR), do(TgVy—1, TgVN)}.
Then, by using (8), we get

do(Tgum, Tquy) < Amax{dy(Tgum_1, TQuUy_1),dv(TgVy_1,Tgv,_1)}
+(A™ + AM)Kp ) )
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Similarly, we have

dy(Tgom, Tgvy) < Amax{dy(Tgum_1, Tquy_1),dv(TgUm_1,T¢vy_1)}
+(A™ + A")Ko}. (10)

Let Kin,n = max{dy(Tgum, Tgitn),dv(Tg0m, Tgvy)}. By (9) and (10), we get
Knn < AKp—1n-1+ (A" +A")Ko.

Thus, we see that inequality (1) is satisfied with c; = c; = Ky. Hence, by Lemma 2, < Tgu, >
and < Tgv, > are Cauchy sequences. For v = 1, the same follows from Lemma 1.
Since (Tg(X), d) is complete, we can find wy,, wy, € X such that

nh_r}rgo Tguy, = Tgwy,and nh_r)r;o Tgvy, = Tgwy,.
2. Now,

do(TS(wxy, Wy ), TWxy) < 8[do(TS(wxy, Wyy), TS (tn, vn) + do(TS (U, vn), TS(Up41, Vnt1))
+ o+ do(TS(Uns0—2, Vnto—2), TS(Unto-1, Onto-1) + do(TS(Unto-1,Vnyo-1), T§Wx,)
s[Amax{dy(Tgwx,, TgUn), do(TgWyy, TSVn), pdp(TgWxy, TS(twxy, Wy, )),

udy (Tgwy,y, TS(wyy, Wy, ), vy (TgUn, TS (i, vy)), vdy(TgUn, TS(vn, un))}

IN

(11)
+do(TQuns1, TQUni2) + - - - + do(TQUnyo—1, TUntv) + do(TQUUp 10, T§Wx, )

IN

s[Amax{dy(Tgwx,, TgUn), do(TgWyy, T§Vn), pdo(TgWxy, TS(twxy, Wy, )),
pdy (Tgwyy, TS(wy,, wx, ), vy (Tgun, TgUn+1), vdo (T80, TgVa+1)}
+dy(Tguy i1, TQUnt2) + - - + do(TUpo—1, TSUn1v + do(TSUUnt0, TWy, ).

Note that, since < Tgu, > and < Tgv, > are Cauchy sequences, by definition,
dy(Tgun, TQtiy11) — 0, dy(Tgvn, TgUy4+1) — 0 as n — oo. Thus, from (11), as n — oo, we get

do(TS(wxy, Wy, ), TgWy,) < sAmax{pdy(Tgwy,y, TS(Wxy, wy,)), pdo(TgWyy, TS(wy,, Wwy,)) }-
Similarly, we get
dy(TS(wy,y, Wy, ), Tgwy,) < sAmax{pdy(Tgwx,, TS(Wxy, wy,)), pdo(TgWwy,, TS(wy,, Wy, ) }-
Thus, we have

max{dv<TS(wx0' wyo)' Tgwxo)r dv(TS(wyO, on)' Tgwyo)}
< sApmax{dy(Tgwy,, TS(wxy, Wy, )), do(TgWy,, TS(Wy,, W) }- (12)

Proceeding along the same lines as above, we also have

max{dv(Tgwxo' TS(on' wyo))r dv<Tgwyor Ts(wyo' wxo)>}
< sAvmax{dy(Tgwxy, TS(wx,, wy,)), do(TgWy,, TS(wy,, wx,) }. (13)

Using (12) and (13) along with the condition min{Au, Av} < 1, we get TS(wx,, wy,) = Tgwy,
and TS(wy,, wy,) = Tgwy,. As T is one to one, we have S(wy,, wy,) = §Wx, and S(wy,, Wy,) = gWy,.
Therefore, (wx,, wy,) € COCP{S, g} .
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3. Suppose S and g are weakly compatible. First, we will show that, if (w3, wy ) € COCP{S,g},
then gwy = gwy, and gwy, = gwy,, or in other words the point of coupled coincidence of S and g is
unique. By (5), we have

do(Tgws,, Tgwe,) = do(TS(wly, w], ), TS (s, wy,))
< Amax{dy(Tgwy,, Tgwsx, ), do(Tgwy,, Tgwy, ), pdo(Tgwy,, TS(wy , wy,)),

* *

pdy (Tgwy,, TS(wy,, wy,), vdo(Tgwxy, TS(wx,, Wy, )), vdo (Tgwy,, TS (wy,, wxy)) b
< Amax{dv(Tgw;O, Tgwy,), dv(Tgw;O, Tgwy,)}.

Similarly, we have
do(Tgwy , Tgwy,) < Amax{dy,(Tgwy , Tgwx,),do(Tgwy , Tgwy,)}-

Thus, from the above two inequalities, we get

max{dy(Tgwy , Tgwx,), do(Tgwy , Tgwy,) < Amax{dy(Tgwy , TgwWx,), do(Tgwy,, Tgwy,)}

which implies that Tgwy = Tgwx, and Tgwy, = Tgwy,. Since T is one to one, we get gwy, = gwx,
and gwy, = gwy,, which is the point of coupled coincidence of S and g is unique. Since S and g are
weakly compatible and, since (wy,, wy,) € COCP{S, g}, we have

88Wxy = §5(Wxy, Wy,) = S(gWxy, §Wy,)

and
88Wyy = gs(wyo'wxo> = S(gwyo'gwxo)

which shows that (gwy,, gwy,) € COCP{S, g}. By the uniqueness of the point of coupled coincidence,
we get Wy, = gWy, and ggwy, = gwy, and thus (gwxy,, gwy,) € CCOFP{S,g}. Uniqueness of the
coupled fixed point follows easily from (4). O

Our next result is a generalized version of Theorem 2.1 of Gu [10].

Theorem 2. Let (X,dy), T, S and g be as in Theorem 1 and suppose there exist By, B2, B3 in the interval [0,1),
such that By + Bo + B3 < 1, minimum{Ba, B3} < L and for all u,v,w,z € X

dy(TS(u,v), TS(w,z) + do(TS(v,u), TS(z,w) < B1(do(Tu, Tqw) + dy(Tgv, TQz)) +
B2(do(Tgu, TS(u,v)) + do(Tgv, TS(v,u)) + B3(do(Tgw, TS(w, z)) + du(Tgz, TS(z, w))). (14)

Then, conclusions 1, 2, and 3 of Theorem 1 are true.

Proof. Let K, = dy(Tguy, Tquyi1) + do(Tg0n, TgUuy1) and K;,l,n = do(TQum, Tqu,) +
dy(Tgvm, Tgvy,). From condition (14), we obtain

dy(Tgun, TQUy 1) + do(Tg0n, TV 1) = do(TS(tiy_1,04-1), TS(ttn, vn)) +
do(TS(vn—1,tn—1), TS(Vn, tn))
< Paldo(Tgup—1, Tgun) + do(Tgvn—1, Tg0n)] + P2ldo(TgUn—1, TS(un—1,0n-1))
+dy(TQuy—1, TS(vy—1,un—1))] + B3ldo(TQuUn, TS(ttn, vn)) + do(TgVn, TS(0n, in))]
< (Bt B2)ldo(Tgup—1, Tgun) + do(Tg0u-1, TgVN)]

+B3[do(Tgun, TgUn11) + do(TgVn, TV 11)]-
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Therefore,
dv(Tgunr Tgun+1> + dv(TgUn/ Tgvn+1> < /\l [dv(Tgunflr Tgun) + dv(Tgvnflr Tgvn)]/

where \' = [3114_’52 < 1. Thus, we get
— p3

K, <AK, < <A"K, (15)

For any m,n € N, we have

dv(Tgumz Tgun) + dU(Tgvm/ Tg?ln) = dv(TS(um—lr Um—l)/ TS(”n—ll Un—l) +
dv(TS(Um—lr um—l)/TS(le—ll un—l)

< PBaldo(Tgum—1, Tgun—1) + do(TgVm—1, T§Vn—1)]
+Bo[do(Tgum—1, TS (tm—1,0m-1)) + do(TgVm—1, TS (Vym—1, Um-1))]
+B3[do(Tgutn—1, TS(Un—1,vn-1)) + do(TgVn-1, TS(vy-1, ttn-1))]

< Prdo(Tgum—1, Tgun—1) + do(Tg0m—1, Tg0n—1)] + P2[do(TgUUm—1, TUm)

+do(Tg0m—1, TgUm)| + Baldo(Tgun—1, TUn) + do(Tg0Vy—1, TSOVN)].
Then, by using (15), we get

do(Tgum, Tguy) + do(TgUm, Tgvy) < Paldo(TQum—1,TUy—1) + do(TgVy—1, T§Vy_1)]
+(B2A" + BsA Ko}

That s,

/
m,n

K < AKygm1+ (A" +A")Kg

where A" = B1+ B2+ B3 < 1. Now for m,n,r € N. Thus, we see that inequality (1) is satisfied with
c1 = ¢ = Kg. Hence, by Lemma 2, < Tqu, > and < Tgv, > are Cauchy sequences. For v = 1,
the same follows from Lemma 1.

Since (Tg(X),d) is complete, we can find wy,, wy, € X such that

nh_r}l;() Tgu, = Tgwy,and nh_r)r(}o Tguy = Tgwy,.

Again, from condition 3 in Definition 1, we have

do(TS(wxy, Wy, ), TqWxy)) < s[do(TS(wxy, Wyq), TS (tin, 0n)) + do(TS(ttn, 0), TS (Ups1, 0pg1)) + -+ - +
+do (TS (o2, Vnvo—2), TS(Unto-1,Vnto-1))+
dU(TS(MnJrvfl/ UnJrvfl)/ Tgwa))]

and

dv(TS(wyo'wxo)/ Tgwyo))

IN

[do(TS(wyy, wx, ), TS(Vn, n)) + do(TS(0n, tn), TS(Vng1, ns1)) + -+ +
S (Un+7)72/ un+072)/ TS(UH+U—1/ Uptp-1 ) ) +
S(Vnto—1, Unto—1), TgWx,))]-
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Therefore,

dy (TS (wyy, Wy, ), TgWx,) + do(TS(wyy, Wy, ), TgWy,) < s[do(TS(wy,, wy,), TS(tn, vn)

+do (TS (wyy, Wxy), TS(Vn, tin)

+do(TS(tn, vn), TS(Uny1,0n41)) + -+ + do(TS(Unto—2,Vnr0-2), TS(Unto-1,Vnyo-1))
+do(TS(vn, tin), TS(Vng1, Unt1)) + - - + do(TS(Vnro—2, inr0-2), TS(Vntv—1, hnyo—1))

+do (TS (Un+o-1, Vntov-1), T8Wxy) + do(TS(Vns0-1, Unto—1), T§Wy, )]

< s[B1(do(Tgwxy, TQUu) + do(TgWy,, TV4)) + B2 (do(TgWxy, TS(wxy, wy,)) +

dy(Tgwy,, TS(wy,, Wx,)) + B3(do(TUn, TS(ttn, vy)) + do(TgV, TS(vn, un)))}

+do(Tgun, TQunt1) + - - - + do(TQuun—1, TgUn) + +do(Tg0n, TgVn11) + - - - + do(TgVs—1, TgVx)
+do(TgUn+o-1, T§Wxy) + do(TUn 101, TgWyY,)]-

Asn — oo, we get

do (TS (wxy, wy, ), TgWx,) + do(TS(wyy, wx,), TgWwy,)
< sPado(Tgwxy, TS(wxy, wyy)) + do(Tgwyy, TS(wy,, wx,))]- (16)

Similarly, we can show that

dv(Tgwa, TS(wa,wyO)) + dv(Tgwyol Ts(wyolwxo))
< sBsldo(Tgwxy, TS(wxy, wy,)) + do(Tgwy,, TS (wy,, wx,)] (17)

Using (16) and (17) along with the condition min{B;, B3} < %, we get dy (Tgwy,, TS (wy,, wy,)) +
do(Tgwy,, TS(wy,, wxy)) = 0, ie., TS(wy,, wy,) = Tgwy, and TS(wy,, wy,) = Tgwy,. As T is one to
one, we have S(wy,, wy,) = Wy, and S(wy,, wx,) = gwy,. Therefore, (wy,, wy,) € COCP{S,g} .

If (wy,, wy,) € COCP{S, g}, then, by (14), we have

do(Tgwy,, Tgwx,) +  do(Tgwy, Tgwy,) = do(TS(wy, wy,), TS(wxy, wy,)) + do(TS(wy,, w,), TS(wy,, wx,))
< Bildo(Tgws,, Tgws,) + do(Tgwyy, Tgawy, )] + Baldo(Tgws,, TS (ws,, ;)
+dU(Tgw;‘,0, TS(w;‘,O, w:to)} + Ba[do(Tgwxy, TS(wxy, Wy, ) + do(Tgwy,, TS (wy,, Wy, ))]
< Bildo(Tgwy,, Tgwx,) + do(Tgwy,, Tgwy,)]-

Thus, dz,(Tgw;O,Tgwxo) + dU(Tgw;O,TgwyO) = 0, which implies that Tgwy, = Tgwy, and
Tgwy, = Tgwy,. Since T is one to one, we get gwy, = gwx, and gwy = gwy,, which is the point of
coupled coincidence of S, and g is unique. The remaining part of the proof is the same as in the proof

of Theorem 1. O

The next results can be proved as in Theorems 1 and 2 and so we will not give the proof.

Theorem 3. Theorem 1 holds if we replace condition (4) with the following condition:
There exist B; € [0,1),i € {1,...,6} such that Y'0_; B; < 1, min{B3 + Ba, B5 + Be} < % and for all
u,v,w,z € X,

dy(TS(u,v), TS(w,z)) < B1do(Tgu, Tgw) + B2dy(Tgv, Tgz) + Bady(Tqu, TS(u,v))
+Bady(Tgv, TS(v, u) + Bsdyo(Tgw, TS(w, z)) + Bedo(Tgz, TS(z,w)). (18)

Taking T to be the identity mapping in Theorems 1-3, we have the following:
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Corollary 1. Let (X,dy), S, g, A, w and v be as in Theorem 1 such that, for all u,v,w,z € X, the following holds :

dy(S(u,v),S(w,z) < Amax{d,(gu,gw),d,(gv,gz), udy(gu, S(u,v)), ud,(gv, S(v,u),
vdy(gw, S(w, z)),vdy(gz, S(z, w))}. (19)

Then, COCP{S, g} # ¢. Furthermore, if S and g are weakly compatible, then S and g has a unique
common coupled fixed point. Moreover, for some arbitrary (ug,vg) € X x X, the iterative sequences (< gu, >
, < Qun >) defined by gu, = S(uy_1,v,-1) and v, = S(v,_1,u,_1) converge to the unique common
coupled fixed point of S and g.

Corollary 2. Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist B1, B2, B3 in the interval [0,1), such that By + Ba + B3 < 1, min{pBy, B3} < % and for all
u,v,w,z € X

dy(S(u,v),S(w,z) +dy(S(v,u),S(z,w) < B1(dy(gu, gw) + dy(gv,82)) +
Ba(do(gu, S(1,v)) + do(g0, S(v, 1)) + B3 (do(gw, S(w, 2)) + do(82,5(2,w))). (20)
Corollary 3. Corollary 1 holds if the condition (19) is replaced with the following condition:

There exist B; € [0,1),i € {1,...6} such that Y'5_; B; < 1, min{Bs + Bu,B5 + Be} < 1 and, for all
u,o,w,z € X,

do(S(u,0), S(w, 2)) < Prdo(gu, W) + Pado(go, 82) +
Bado(gu, S(u,0)) + Pado(gv, S(v, u) + Bsdo(gw, S(w, 2)) + Bedo (82, S(2,w)). (21)
Remark 1. Since every b-metric space is a bi(s) metric space, we note that Theorem 1 is a substantial

generalization of Theorem 2.2 of Ramesh and Pitchamani [11]. In fact, we do not require continuity and
sub sequential convergence of the function T.

Remark 2. Note that condition (2.1) of Gu [10] implies (20) and hence Corollary 2 gives an improved version
of Theorem 2.1 of Gu [10].

Remark 3. Condition (3.1) of Hussain et al. [12] implies (18) and hence Theorem 3 is an extended and
generalized version of Theorem 3.1 of [12].

3.2. Application to a System of Integral Equations

In this section, we give an application of Theorem 1 to study the existence and uniqueness of
solution of a system of nonlinear integral equations.

Let X = C[O, A] be the space of all continuous real valued functions defined on [O, A], A > 0.
Our problem is to find (u(t),v(t)) € X x X, t € [0, A] such that, for f : [0,A] x Rx R — R and
G:[0,A] x [0, A] = Rand K € C([0, 4], the following holds:

A
u(t) :/0 Gt ) f(t, u(r), o(r))dr + K(£)
o(t) :/OA G(t, 1) f(t,0(r), u(r))dr + K(b). 22)

Now, suppose F : X x X — X is given by

F(u(t),v(t)) :/ G(t,7)f(t,u(r),o(r))dr + K(t).

0



Axioms 2020, 9, 129 10 of 13

A
F(o(t),u(t)) = /0 G(t,r)f(t,o(r),u(r))dr + K(t).
Then, (22) is equivalent to the coupled fixed point problem F(u(t),v(t)) = u(t), F(v(t), u(t)) = v(t).

Theorem 4. The system of Equation (22) has a unique solution provided the following holds:
(i) G:[0,A] x[0,A] = Rand f:[0,A] x R x R — R are continuous functions.
(i) K e C([0, Al.

(iii) Forall x,y,u,v € Xand t € [0, A], we can find a function g : X — X and real numbers p > 1, A, u,v
with0 <A <1,0 < p,v <1, minimum {Ap, Av} < 35%1 satisfying
(iii —a) :| f(tu(r),0(r)) = f(L,x(r), () [P < APmax{]| g(u(r)) = &(x(r)) |V, [ g(v(r)) = g(y(r)) |V,
p | g(u(r)) = Fu(r), () |, p | g(o(r)) = F(v(r),u(r)) |7,
v ] g(x(r)) = F(x(r),y(r) [7,v | g(y(r)) = F(y(r), x(r)) |P}.

(iii- b)F(g(A( )),8(v(t))) = ( (u(t),v(t)))
(iv) supicio,a) fo | G(t,7) [P dr < o

Moreover, for some arbitrary uo( ), vo(t) in X, the sequence (< gun(t) >, < gv,(t) >) defined by
A
gun(t) = [ Gt 11 (1), 0aa (1) + K (1)
A
§0u(t) = [ Gl ) f(t 001 (1), a2 (1) + K() (23)
converges to the unique solution.
Proof. Defined,: X x X — R such thatforallu,v € X,
do(u,0) = supepo,a) | u(t) —o(t) [*. (24)

Clearly, d, is a by((v + 1)*~!)-metric space.
For some r € [0, A], we have

| F(u(t),o(t)) F(x(t), y(f ) 17

e (t,(r), 0(r)dr + g(t) =[5 G(t,r)f(t,x(r), y(r)dr + (1) |?

Iy |G tr) [Pl f(tu(r),o(r)) = f(t,x(r),y(r)) [P dr

(o' 1 Gt r) P dr)AP[max{ | g(u(r) — g(x(r) |7, | g(0(r)) — g(y(r)) IV,

w1 g(u(r)) = F(u(r),o(r)) P, 1 | 8(o(r)) — F(o(r),u(r)) |V,

v g(x(r) = F(x(r),y(r) P,v | g(y(r)) = F(y(r), x(r)) [}

(o' 1 Gt ) [P dr)AP [max{dy(g(n), 8(x)), do((0), 8(y)), wedo(g(u), F(1,0)), pudo (8(0), F(o, 1),
vdy(8(x), F(x,y)),vdy(8(y), F(y,x))}-

)
t 1) f(

INIA

IN

Thus, using condition (iv), we have

do(F(u,v),F(x,y)) = supsep,a) | F(u(t),o(t)) — F(x(t),y(t)) |7
< Amax{dy(g(u),g(x)),du(g(v),&(y)), pdo(g(u), F(u,0)), pdy(g(v), F(v,u)),
vdy(g(x), F(x,y)),vdo(8(y), F(y, %))}

A\

Thus, all the conditions of Corollary 1 are satisfied and so F has a unique coupled fixed
point (u/,v') € C([0,A] x C([0, A], which is the unique solution of (22) and the sequence
(< gun(t) >, < guu(t) >) defined by (23) converges to the unique solution of (22). [
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Example 1. Let X = CJ0, 1] be the space of all continuous real valued functions defined on [0,1] and define
d3: X X X — Rsuch that, forall u,v € X,

d3(u,0) = supyefoy) | u(t) —o(t) 2. (25)

Clearly, ds is a by(3)-metric. Now, consider the functions f : [0,1] Xx R x R — R given by
ftbu,0) = 2+ Hu+ S0, G:[0,1] x [0,1] — R given by G(t,r) = \/Z(tH) , K € C([0,1] given
by K(t) = t. Then, Equation (22) becomes

1 t 9 8
t+/ \ﬁ —H +%u(r)+%v(r))dr
1 t 9 8
t—l—/ \ﬁ +r —|—%v(r)+%u(r))dr. (26)
Then,
2 9 8 2
o) = ftxy) P = | as(u—x)+5(@-y)]
9 8
< [ Max{g5(u—x), 35 —y)} ?
81
S 100Mﬂx{|u7x|2 |vi ) ‘2}
In addition,

1 145
SUPtel0] ‘/0 | G(t,r) |*dr = ./0 m(t + r)%dr = 1.05.

We see that all the conditions of Theorem 4 are satisfied, with A = 19—0, u=0,v=0,p=_2and g = Ix(Identity
mapping). Hence, Theorem 4 ensures a unique solution of (26). Now, for ug(t) = 1 and vy(t) = 0, we construct
the sequence (< uy(t) >, < v, (t) >} given by

9 8
=t [ VB @ S+ S ar
1 9 8
=t [ YBUED @y S )t S ) @)

Using MATLAB, we see that above sequence converges to {0.6708t> + 0.3354t> + 2.2339t +
0.7677,0.6708t> + 0.3354t% + 2.2339t + 0.7677}, and this is the unique solution of the system of nonlinear
integral Equation (26). The convergence table is given in Table 1 below.
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Table 1. Convergence of sequences < uy () > and < vy, () >.

u,(t) =t+ fol %(t2 + 2—90u,,_1(r) +

vu(t) = t+ [FYBED (24 00 () 4

" S vu_1(r))dr Suy_1(r))dr

1 up(t) =t +0.0167(2t + 1) (20> +9)) v1(t) = t+.0671(2t + 1) (52 +2))
2 us (t) = 0.6708t> + 0.3354t> + 1.3t + 0.5007 vy (t) = 0.6708t> + 0.3354> + 1.29t + 0.5115
3 uz(t) = 0.6708t3 + 0.3354+2 + 1.8210t + 0.5174  v3(t) = 0.6708t> + 0.3354t2 + 1.8208t + 0.5171
4 uy(t) = 0.6708t3 4 0.335412 4 1.9734t + 0.6179  v4(t) = 0.6708t + 0.3354t2 + 1.9734t + 0.6178
5 us(t) = 0.6708t> + 0.3354t% 4 2.0743t + 0.6755  vs5(t) = 0.6708t3 + 0.3354+ + 2.0743t + 0.6755
6 ug(t) = 0.6708t> + 0.3354t% +2.1359t + 0.7111  vg(t) = 0.6708t3 + 0.3354¢> + 2.1359¢ + 0.7111
7 u7(t) = 0.6708t3 4 0.3354t2 + 2.1737t +0.73298 vy (t) = 0.6708t> + 0.3354t> + 2.1737t + 0.73298
8 ug(t) = 0.6708t3 + 0.3354t2 + 2.19699¢ + 0.7464  vg(t) = 0.6708t> + 0.3354t> + 2.19699¢ + 0.7464
9 ug(t) = 0.6708t> + 0.3354t% +2.2113¢ + 0.7547  vg(t) = 0.6708t3 + 0.3354t> + 2.2113t + 0.7547
10 uig(t) = 0.6708t3 + 0.3354+2 +2.2200t +0.7597  v19(t) = 0.6708t> 4 0.3354+ + 2.2200¢ + 0.7597
11 uq1 () = 0.6708t3 + 0.335412 + 22254t +0.7628 17 (t) = 0.6708t> + 0.335412 + 2.2254t + 0.7628
12 u1p(t) = 0.6708t3 + 0.3354t2 + 2.2287t 4+ 0.7647  v1p(t) = 0.6708t> 4 0.3354t% 4 2.2287t + 0.7647
13 u13(t) = 0.6708t3 + 0.3354¢% + 2.2308¢ + 0.7658  vq3(t) = 0.6708t3 4 0.3354¢> 4- 2.2308t + 0.7658
14 u4(t) = 0.6708t3 + 0.3354% +2.23199t + 0.7666  v14(t) = 0.6708t> +0.3354t2 +2.23199¢ + 0.7666
15 u15(t) = 0.6708t3 4 0.3354t> +2.2328t + 0.7671  ©vy5(t) = 0.6708t> + 0.3354t2 + 2.2328t + 0.7671
16 u16(t) = 0.670813 4 0.3354t% +2.2333t + 0.7674  v16(t) = 0.6708t> 4 0.3354t + 2.2333t 4 0.7674
17 u17(t) = 0.6708t3 + 0.3354t2 +2.2336t + 0.7675  vy7(t) = 0.6708t3 + 0.3354t> + 2.2336t + 0.7675
18 u1g(t) = 0.6708t3 + 0.3354t> +2.2338t 4+ 0.7676  vyg(t) = 0.6708t3 + 0.3354t> + 2.2338t + 0.7676
19 u19(t) = 0.6708t3 4 0.3354t2 +2.2339t 4+ 0.7677  v19(t) = 0.6708t% 4 0.3354t2 + 2.2339¢ + 0.7677
20 1po(t) = 0.6708t3 + 0.3354t2 +2.2339t 4+ 0.7677 o9 (t) = 0.6708t% + 0.3354t% 4 2.2339¢ + 0.7677

Remark 4. Condition (iv) of Theorem 4 above is weaker than the corresponding conditions used in similar
theorems of [11,13,14].
Remark 5. In example 1 above, we see that sup;c(o 1) fol | G(t,r) |? dr = 01 15 (t+7)%dr = 1.05 > 1 and
thus condition (v) of Theorem 3.1 of [11], condition (30) of Theorem 3.1 of [13] and condition (iii) of Theorem 3.1
of [14] are not satisfied.
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