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Abstract: Common coupled fixed point theorems for generalized T-contractions are proved for a pair
of mappings S : X × X → X and g : X → X in a bv(s)-metric space, which generalize, extend, and
improve some recent results on coupled fixed points. As an application, we prove an existence and
uniqueness theorem for the solution of a system of nonlinear integral equations under some weaker
conditions and given a convergence criteria for the unique solution, which has been properly verified
by using suitable example.
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1. Introduction

In the last three decades, the definition of a metric space has been altered by many authors to give
new and generalized forms of a metric space. In 1989, Bakhtin [1] introduced one such generalization
in the form of a b-metric space and in the year 2000 Branciari [2] gave another generalization in
the form a rectangular metric space and generalized metric space. Thereafter, using the above two
concepts, many generalizations of a metric space appeared in the form of rectangular b-metric space [3],
hexagonal b-metric space [4], pentagonal b-metric space [5], etc. The latest such generalization was
given by Mitrović and Radenović [6] in which the authors defined a bv(s)-metric space which is
a generalization of all the concepts told above. Some recent fixed point theorems in such generalized
metric spaces can be found in [6–9]. In [10–12], one can find some interesting coupled fixed point
theorems and their applications proved in some generalized forms of a metric space. In the present
note, we have given coupled fixed point results for a pair of generalized T-contraction mappings in
a bv(s)-metric space. Our results are new and it extends, generalize, and improve some of the coupled
fixed point theorems recently dealt with in [10–12].

In recent years, fixed point theory has been successfully applied in establishing the existence of
solution of nonlinear integral equations (see [11–15] ). We have applied one of our results to prove the
existence and convergence of a unique solution of a system of nonlinear integral equations using some
weaker conditions as compared to those existing in literature.

2. Preliminaries

Definition 1. [6] Let X be a nonempty set. Assume that, for all x, y,∈ X and distinct u1, · · · , uv ∈ X−{x, y},
dv : X× X → R satisfies :
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1. dv(x, y) ≥ 0 and dv(x, y) = 0 if and only if x = y,
2. dv(x, y) = dv(y, x),
3. dv(x, y) ≤ s[dv(x, u1) + dv(u1, u2) + · · ·+ dv(uv−1, uv) + dv(uv, y)], for some s ≥ 1.

Then, (X, dv) is a bv(s)-metric space.

Definition 2. [6] In the bv(s)-metric space (X, dv), the sequence < un >

(a) converges to u ∈ X if dv(un, u)→ 0 as n→ ∞;
(b) is a Cauchy sequence if dv(un, um)→ 0 as n, m→ +∞.

Clearly, b1(1)-metric space is the usual metric space, whereas b1(s), b2(1), b2(s), and bv(1)-metric
spaces are, respectively, the b-metric space ([1]), rectangular metric space ([2]), rectangular b-metric
space ([3]), and v-generalized metric space ([2]).

Lemma 1. [6] If (X, dv) is a bv(s)-metric space, then (X, dv) is a b2v(s2)-metric space.

Definition 3. An element (u, v) ∈ X × X is called a coupled coincidence point of S : X × X → X and
g : X → X if g(u) = S(u, v) and g(v) = S(v, u). In this case, we also say that (g(u), g(v)) is the point of
coupled coincidence of S and g. If u = g(u) = S(u, v) and v = g(v) = S(v, u), then we say that (u, v) is
a common coupled fixed point of S and g.

We will denote by COCP{S, g} and CCOFP{S, g} respectively the set of all coupled coincidence
points and the set of all common coupled fixed points of S and g.

Definition 4. S : X× X → X and g : X → X are said to be weakly compatible if and only if S(g(u), g(v)) =
g(S(u, v)) for all (u, v) ∈ COCP{S, g}.

3. Main Results

We will start this section by proving the following lemma which is an extension of Lemma 1.12
of [6] to two sequences:

Lemma 2. Let (X, dv) be a bv(s)-metric space and let < un > and < vn > be two sequences in X such that
un 6= un+1, vn 6= vn+1 (n ≥ 0). Suppose that λ ∈ [0, 1) and c1, c2 are real nonnegative numbers such that

Km,n ≤ λKm−1,n−1 + c1λm + c2λn, for all m, n ∈ N, (1)

where Km,n = max{dv(um, un), dv(vm, vn)} or Km,n = dv(um, un) + dv(vm, vn). Then, < un > and
< vn > are Cauchy sequences.

Proof. From (1), we have

Kn,n+1 ≤ λKn−1,n + c1λn + c2λn+1

≤ · · ·
≤ λnK0,1 + c1nλn + c2nλn+1

≤ λnK0,1 + C0nλn.

(2)
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For m, n, k ∈ N, by (1), we have

Km+k,n+k ≤ λ max{Km+k−1,n+k−1, c1λm+k−1 + c2λn+k−1)}

≤ λKm+k−1,n+k−1 + c1λm+k + c2λn+k)

· · ·
≤ λkKm,n + kC1λk(λm + λn).

(3)

Since 0 < λ < 1, we can find a positive integer qk such that 0 < λqk < 1
s . Now, suppose v ≥ 2.

Then, by using condition 3. of a bv(s)-metric and inequalities (2) and (3), we have

Km,n ≤ s[Km,m+1 + Km+1,m+2 + · · ·+ Km+v−3,m+v−2 + Km+v−2,m+qk + Km+qk ,n+qk + Kn+qk ,n]

≤ s[λm + λm+1 + · · ·+ λm+v−3]K0 + sC0[mλm + (m + 1)λm+1 + · · ·+ (m + v− 3)λm+v−2]

+s[λmKv−2,qk + mλm(λv−2 + λqk )K0]

+s[λqk Km,n + qkλqk (λm + λn)K0] + s[λnKqk ,0 + nλn(λqk + 1)K0].

Then,

Km,n ≤ sλm

(1− sλqk )(1− λ)
K0,1 +

s(m + v− 3)λm

(1− λ)(1− sλqk )

+
s

1− sλqk
[λmKv−2,qk + mλm(λv−2 + λqk )K0,1]

+
s

1− sλqk
[qkλqk (λm + λn)K0,1] +

s
1− sλqk

[λnKqk ,0 + nλn(λqk + 1)K0,1].

Thus, from the definition of Km,n, we see that, as m, n→ +∞, dv(um, un)→ 0 and dv(vm, vn)→ 0
and thus < un > and < vn > are Cauchy sequences.

3.1. Coupled Fixed Point Theorems

We now present our main theorems as follows:

Theorem 1. Let (X, dv) be a bv(s)-metric space , T : X → X be a one to one mapping, S : X × X → X and
g : X → X be mappings such that S(X × X) ⊂ g(X), Tg(X) is complete. If there exist real numbers λ, µ, ν

with 0 ≤ λ < 1, 0 ≤ µ, ν ≤ 1, min{λµ, λν} < 1
s such that, for all u, v, w, z ∈ X

dv(TS(u, v), TS(w, z)) ≤ λ max{dv(Tgu, Tgw), dv(Tgv, Tgz), µdv(Tgu, TS(u, v)), µdv(Tgv, TS(v, u),

νdv(Tgw, TS(w, z)), νdv(Tgz, TS(z, w))}
(4)

then the following holds :

1. There exist wx0 , wy0 in X, such that sequences < Tgun > and < Tgvn > converge to Tgwx0 and Tgwy0

respectively, where the iterative sequences < gun > and < gvn > are defined by gun = S(un−1, vn−1)

and gvn = S(vn−1, un−1) for some arbitrary (u0, v0) ∈ X× X.
2. (wx0 , wy0) ∈ COCP{S, g} .
3. If S and g are weakly compatible, then S and g have a unique common coupled fixed point.

Proof. 1. We shall start the proof by showing that the sequences < Tgun > and < Tgvn > are Cauchy
sequences, where < gun > and < gvn > are as mentioned in the hypothesis.
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By (4), we have

dv(Tgun, Tgun+1) = dv(TS(un−1, vn−1), TS(un, vn))

≤ λ max{dv(Tgun−1, Tgun), dv(Tgvn−1, Tgvn), µdv(Tgun−1, TS(un−1, vn−1)),

µdv(Tgvn−1, TS(vn−1, un−1)), νdv(Tgun, TS(un, vn)), νdv(Tgvn, TS(vn, un))}

≤ λ max{dv(Tgun−1, Tgun), dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun),

dv(Tgvn−1, Tgvn), dv(Tgun, Tgun+1), dv(Tgvn, Tgvn+1)}.

(5)

Similarly, we get

dv(Tgvn, Tgvn+1) ≤ λ max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun), dv(Tgvn−1, Tgvn),

dv(Tgun−1, Tgun), dv(Tgvn, Tgvn+1), dv(Tgun, Tgun+1)}. (6)

Let Kn = max{dv(Tgun, Tgun+1), dv(Tgvn, Tgvn+1)}. By (5) and (6), we get

Kn ≤ λ max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun), dv(Tgvn, Tgvn+1), dv(Tgun, Tgun+1)}. (7)

If

max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun), dv(Tgvn, Tgvn+1), dv(Tgun, Tgun+1)}
= dv(Tgvn, Tgvn+1) or dv(Tgun, Tgun+1),

then (7) will yield a contradiction. Thus, we have

max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun), dv(Tgvn, Tgvn+1), dv(Tgun, Tgun+1)}
= max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun)},

and then (7) gives

Kn ≤ λ max{dv(Tgvn−1, Tgvn), dv(Tgun−1, Tgun)} = λKn−1 � λ2Kn−2 � · · · � λnK0. (8)

For any m, n ∈ N, we have

dv(Tgum, Tgun) = dv(TS(um−1, vm−1), TS(un−1, vn−1)

≤ λ max{dv(Tgum−1, Tgun−1), dv(Tgvm−1, Tgvn−1),

µdv(Tgum−1, TS(um−1, vm−1)), µdv(Tgvm−1, TS(vm−1, um−1)),

νdv(Tgun−1, TS(un−1, vn−1)), νdv(Tgvn−1, TS(vn−1, un−1))}
≤ λ max{dv(Tgum−1, Tgun−1), dv(Tgvm−1, Tgvn−1), dv(Tgum−1, Tgum),

dv(Tgvm−1, Tgvm), dv(Tgun−1, Tgun), dv(Tgvn−1, Tgvn)}.

Then, by using (8), we get

dv(Tgum, Tgun) ≤ λ max{dv(Tgum−1, Tgun−1), dv(Tgvm−1, Tgvn−1)}
+(λm + λn)K0}. (9)



Axioms 2020, 9, 129 5 of 13

Similarly, we have

dv(Tgvm, Tgvn) ≤ λ max{dv(Tgum−1, Tgun−1), dv(Tgvm−1, Tgvn−1)}
+(λm + λn)K0}. (10)

Let Km,n = max{dv(Tgum, Tgun), dv(Tgvm, Tgvn)}. By (9) and (10), we get

Km,n ≤ λKm−1,n−1 + (λm + λn)K0.

Thus, we see that inequality (1) is satisfied with c1 = c2 = K0. Hence, by Lemma 2, < Tgun >

and < Tgvn > are Cauchy sequences. For v = 1, the same follows from Lemma 1.
Since (Tg(X), d) is complete, we can find wx0 , wy0 ∈ X such that

lim
n→∞

Tgun = Tgwx0and lim
n→∞

Tgvn = Tgwy0 .

2. Now,

dv(TS(wx0 , wy0), Tgwx0) ≤ s[dv(TS(wx0 , wy0), TS(un, vn) + dv(TS(un, vn), TS(un+1, vn+1))

+ · · ·+ dv(TS(un+v−2, vn+v−2), TS(un+v−1, vn+v−1) + dv(TS(un+v−1, vn+v−1), Tgwx0)

≤ s[λmax{dv(Tgwx0 , Tgun), dv(Tgwy0 , Tgvn), µdv(Tgwx0 , TS(wx0 , wy0)),

µdv(Tgwy0 , TS(wy0 , wx0), νdv(Tgun, TS(un, vn)), νdv(Tgvn, TS(vn, un))}

+dv(Tgun+1, Tgun+2) + · · ·+ dv(Tgun+v−1, Tgun+v) + dv(Tgun+v, Tgwx0)

≤ s[λmax{dv(Tgwx0 , Tgun), dv(Tgwy0 , Tgvn), µdv(Tgwx0 , TS(wx0 , wy0)),

µdv(Tgwy0 , TS(wy0 , wx0), νdv(Tgun, Tgun+1), νdv(Tgvn, Tgvn+1)}

+dv(Tgun+1, Tgun+2) + · · ·+ dv(Tgun+v−1, Tgun+v + dv(Tgun+v, Tgwx0).

(11)

Note that, since < Tgun > and < Tgvn > are Cauchy sequences, by definition,
dv(Tgun, Tgun+1)→ 0, dv(Tgvn, Tgvn+1)→ 0 as n→ ∞. Thus, from (11), as n→ ∞, we get

dv(TS(wx0 , wy0), Tgwx0) ≤ sλ max{µdv(Tgwx0 , TS(wx0 , wy0)), µdv(Tgwy0 , TS(wy0 , wx0))}.

Similarly, we get

dv(TS(wy0 , wx0), Tgwy0) ≤ sλ max{µdv(Tgwx0 , TS(wx0 , wy0)), µdv(Tgwy0 , TS(wy0 , wx0)}.

Thus, we have

max{dv(TS(wx0 , wy0), Tgwx0), dv(TS(wy0 , wx0), Tgwy0)}
≤ sλµ max{dv(Tgwx0 , TS(wx0 , wy0)), dv(Tgwy0 , TS(wy0 , wx0)}. (12)

Proceeding along the same lines as above, we also have

max{dv(Tgwx0 , TS(wx0 , wy0)), dv(Tgwy0 , TS(wy0 , wx0))}
≤ sλν max{dv(Tgwx0 , TS(wx0 , wy0)), dv(Tgwy0 , TS(wy0 , wx0)}. (13)

Using (12) and (13) along with the condition min{λµ, λν} < 1
s , we get TS(wx0 , wy0) = Tgwx0

and TS(wy0 , wx0) = Tgwy0 . As T is one to one, we have S(wx0 , wy0) = gwx0 and S(wy0 , wx0) = gwy0 .
Therefore, (wx0 , wy0) ∈ COCP{S, g} .
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3. Suppose S and g are weakly compatible. First, we will show that, if (w∗x0
, w∗y0

) ∈ COCP{S, g},
then gw∗x0

= gwx0 and gw∗y0
= gwy0 , or in other words the point of coupled coincidence of S and g is

unique. By (5), we have

dv(Tgw∗x0
, Tgwx0) = dv(TS(w∗x0

, w∗y0
), TS(wx0 , wy0))

≤ λmax{dv(Tgw∗x0
, Tgwx0), dv(Tgw∗y0

, Tgwy0), µdv(Tgw∗x0
, TS(w∗x0

, w∗y0
)),

µdv(Tgw∗y0
, TS(w∗y0

, w∗x0
), νdv(Tgwx0 , TS(wx0 , wy0)), νdv(Tgwy0 , TS(wy0 , wx0))}

≤ λmax{dv(Tgw∗x0
, Tgwx0), dv(Tgw∗y0

, Tgwy0)}.

Similarly, we have

dv(Tgw∗y0
, Tgwy0) ≤ λmax{dv(Tgw∗x0

, Tgwx0), dv(Tgw∗y0
, Tgwy0)}.

Thus, from the above two inequalities, we get

max{dv(Tgw∗x0
, Tgwx0), dv(Tgw∗y0

, Tgwy0) ≤ λmax{dv(Tgw∗x0
, Tgwx0), dv(Tgw∗y0

, Tgwy0)}

which implies that Tgw∗x0
= Tgwx0 and Tgw∗y0

= Tgwy0 . Since T is one to one, we get gw∗x0
= gwx0

and gw∗y0
= gwy0 , which is the point of coupled coincidence of S and g is unique. Since S and g are

weakly compatible and, since (wx0 , wy0) ∈ COCP{S, g}, we have

ggwx0 = gS(wx0 , wy0) = S(gwx0 , gwy0)

and
ggwy0 = gS(wy0 , wx0) = S(gwy0 , gwx0)

which shows that (gwx0 , gwy0) ∈ COCP{S, g}. By the uniqueness of the point of coupled coincidence,
we get ggwx0 = gwx0 and ggwy0 = gwy0 and thus (gwx0 , gwy0) ∈ CCOFP{S, g}. Uniqueness of the
coupled fixed point follows easily from (4).

Our next result is a generalized version of Theorem 2.1 of Gu [10].

Theorem 2. Let (X, dv), T, S and g be as in Theorem 1 and suppose there exist β1, β2, β3 in the interval [0,1),
such that β1 + β2 + β3 < 1, minimum{β2, β3} < 1

s and for all u, v, w, z ∈ X

dv(TS(u, v), TS(w, z) + dv(TS(v, u), TS(z, w) ≤ β1(dv(Tgu, Tgw) + dv(Tgv, Tgz)) +

β2(dv(Tgu, TS(u, v)) + dv(Tgv, TS(v, u)) + β3(dv(Tgw, TS(w, z)) + dv(Tgz, TS(z, w))). (14)

Then, conclusions 1, 2, and 3 of Theorem 1 are true.

Proof. Let K
′
n = dv(Tgun, Tgun+1) + dv(Tgvn, Tgvn+1) and K

′
m,n = dv(Tgum, Tgun) +

dv(Tgvm, Tgvn). From condition (14), we obtain

dv(Tgun, Tgun+1) + dv(Tgvn, Tgvn+1) = dv(TS(un−1, vn−1), TS(un, vn)) +

dv(TS(vn−1, un−1), TS(vn, un))

≤ β1[dv(Tgun−1, Tgun) + dv(Tgvn−1, Tgvn)] + β2[dv(Tgun−1, TS(un−1, vn−1))

+dv(Tgvn−1, TS(vn−1, un−1))] + β3[dv(Tgun, TS(un, vn)) + dv(Tgvn, TS(vn, un))]

≤ (β1 + β2)[dv(Tgun−1, Tgun) + dv(Tgvn−1, Tgvn)]

+β3[dv(Tgun, Tgun+1) + dv(Tgvn, Tgvn+1)].



Axioms 2020, 9, 129 7 of 13

Therefore,

dv(Tgun, Tgun+1) + dv(Tgvn, Tgvn+1) ≤ λ
′
[dv(Tgun−1, Tgun) + dv(Tgvn−1, Tgvn)],

where λ
′
=

β1 + β2

1− β3
< 1. Thus, we get

K
′
n ≤ λ

′
K
′
n−1 ≤ · · · ≤ λ

′n
K
′
0. (15)

For any m, n ∈ N, we have

dv(Tgum, Tgun) + dv(Tgvm, Tgvn) = dv(TS(um−1, vm−1), TS(un−1, vn−1) +

dv(TS(vm−1, um−1), TS(vn−1, un−1)

≤ β1[dv(Tgum−1, Tgun−1) + dv(Tgvm−1, Tgvn−1)]

+β2[dv(Tgum−1, TS(um−1, vm−1)) + dv(Tgvm−1, TS(vm−1, um−1))]

+β3[dv(Tgun−1, TS(un−1, vn−1)) + dv(Tgvn−1, TS(vn−1, un−1))]

≤ β[dv(Tgum−1, Tgun−1) + dv(Tgvm−1, Tgvn−1)] + β2[dv(Tgum−1, Tgum)

+dv(Tgvm−1, Tgvm)] + β3[dv(Tgun−1, Tgun) + dv(Tgvn−1, Tgvn)].

Then, by using (15), we get

dv(Tgum, Tgun) + dv(Tgvm, Tgvn) ≤ β1[dv(Tgum−1, Tgun−1) + dv(Tgvm−1, Tgvn−1)]

+(β2λ
′m

+ β3λ
′n
)K
′
0}.

That is,

K
′
m,n ≤ λK

′
m−1,n−1 + (λm + λn)K

′
0

where λ
′
= β1 + β2 + β3 < 1. Now for m, n, r ∈ N. Thus, we see that inequality (1) is satisfied with

c1 = c2 = K0. Hence, by Lemma 2, < Tgun > and < Tgvn > are Cauchy sequences. For v = 1,
the same follows from Lemma 1.

Since (Tg(X), d) is complete, we can find wx0 , wy0 ∈ X such that

lim
n→∞

Tgun = Tgwx0and lim
n→∞

Tgvn = Tgwy0 .

Again, from condition 3 in Definition 1, we have

dv(TS(wx0 , wy0), Tgwx0)) ≤ s[dv(TS(wx0 , wy0), TS(un, vn)) + dv(TS(un, vn), TS(un+1, vn+1)) + · · ·+
+dv(TS(un+v−2, vn+v−2), TS(un+v−1, vn+v−1))+

dv(TS(un+v−1, vn+v−1), Tgwx0))]

and

dv(TS(wy0 , wx0), Tgwy0)) ≤ s[dv(TS(wy0 , wx0), TS(vn, un)) + dv(TS(vn, un), TS(vn+1, un+1)) + · · ·+
dv(TS(vn+v−2, un+v−2), TS(vn+v−1, un+v−1))+

dv(TS(vn+v−1, un+v−1), Tgwx0))].
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Therefore,

dv(TS(wx0 , wy0), Tgwx0) + dv(TS(wy0 , wx0), Tgwy0) ≤ s[dv(TS(wx0 , wy0), TS(un, vn)

+dv(TS(wy0 , wx0), TS(vn, un)

+dv(TS(un, vn), TS(un+1, vn+1)) + · · ·+ dv(TS(un+v−2, vn+v−2), TS(un+v−1, vn+v−1))

+dv(TS(vn, un), TS(vn+1, un+1)) + · · ·+ dv(TS(vn+v−2, un+v−2), TS(vn+v−1, un+v−1))

+dv(TS(un+v−1, vn+v−1), Tgwx0) + dv(TS(vn+v−1, un+v−1), Tgwy0)]

≤ s[β1(dv(Tgwx0 , Tgun) + dv(Tgwy0 , Tgvn)) + β2(dv(Tgwx0 , TS(wx0 , wy0)) +

dv(Tgwy0 , TS(wy0 , wx0)) + β3(dv(Tgun, TS(un, vn)) + dv(Tgvn, TS(vn, un)))}
+dv(Tgun, Tgun+1) + · · ·+ dv(Tgun−1, Tgun) + +dv(Tgvn, Tgvn+1) + · · ·+ dv(Tgvn−1, Tgvn)

+dv(Tgun+v−1, Tgwx0) + dv(Tgvn+v−1, Tgwy0)].

As n→ ∞, we get

dv(TS(wx0 , wy0), Tgwx0) + dv(TS(wy0 , wx0), Tgwy0)

≤ sβ2[dv(Tgwx0 , TS(wx0 , wy0)) + dv(Tgwy0 , TS(wy0 , wx0))]. (16)

Similarly, we can show that

dv(Tgwx0 , TS(wx0 , wy0)) + dv(Tgwy0 , TS(wy0 , wx0))

≤ sβ3[dv(Tgwx0 , TS(wx0 , wy0)) + dv(Tgwy0 , TS(wy0 , wx0)] (17)

Using (16) and (17) along with the condition min{β2, β3} < 1
s , we get dv(Tgwx0 , TS(wx0 , wy0)) +

dv(Tgwy0 , TS(wy0 , wx0)) = 0, i.e., TS(wx0 , wy0) = Tgwx0 and TS(wy0 , wx0) = Tgwy0 . As T is one to
one, we have S(wx0 , wy0) = gwx0 and S(wy0 , wx0) = gwy0 . Therefore, (wx0 , wy0) ∈ COCP{S, g} .

If (w∗x0
, w∗y0

) ∈ COCP{S, g}, then, by (14), we have

dv(Tgw∗x0
, Tgwx0) + dv(Tgw∗y0

, Tgwy0) = dv(TS(w∗x0
, w∗y0

), TS(wx0 , wy0)) + dv(TS(w∗y0
, w∗x0

), TS(wy0 , wx0))

≤ β1[dv(Tgw∗x0
, Tgwx0) + dv(Tgw∗y0

, Tgwy0)] + β2[dv(Tgw∗x0
, TS(w∗x0

, w∗y0
))

+dv(Tgw∗y0
, TS(w∗y0

, w∗x0
)] + β3[dv(Tgwx0 , TS(wx0 , wy0)) + dv(Tgwy0 , TS(wy0 , wx0))]

≤ β1[dv(Tgw∗x0
, Tgwx0) + dv(Tgw∗y0

, Tgwy0)].

Thus, dv(Tgw∗x0
, Tgwx0) + dv(Tgw∗y0

, Tgwy0) = 0, which implies that Tgw∗x0
= Tgwx0 and

Tgw∗y0
= Tgwy0 . Since T is one to one, we get gw∗x0

= gwx0 and gw∗y0
= gwy0 , which is the point of

coupled coincidence of S, and g is unique. The remaining part of the proof is the same as in the proof
of Theorem 1.

The next results can be proved as in Theorems 1 and 2 and so we will not give the proof.

Theorem 3. Theorem 1 holds if we replace condition (4) with the following condition:
There exist βi ∈ [0, 1), i ∈ {1, . . . , 6} such that ∑6

i=1 βi < 1, min{β3 + β4, β5 + β6} < 1
s and for all

u, v, w, z ∈ X,

dv(TS(u, v), TS(w, z)) ≤ β1dv(Tgu, Tgw) + β2dv(Tgv, Tgz) + β3dv(Tgu, TS(u, v))

+β4dv(Tgv, TS(v, u) + β5dv(Tgw, TS(w, z)) + β6dv(Tgz, TS(z, w)). (18)

Taking T to be the identity mapping in Theorems 1–3, we have the following:
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Corollary 1. Let (X, dv), S, g, λ, µ and ν be as in Theorem 1 such that, for all u, v, w, z ∈ X, the following holds :

dv(S(u, v), S(w, z) ≤ λmax{dv(gu, gw), dv(gv, gz), µdv(gu, S(u, v)), µdv(gv, S(v, u),

νdv(gw, S(w, z)), νdv(gz, S(z, w))}. (19)

Then, COCP{S, g} 6= φ. Furthermore, if S and g are weakly compatible, then S and g has a unique
common coupled fixed point. Moreover, for some arbitrary (u0, v0) ∈ X× X, the iterative sequences (< gun >

,< gvn >) defined by gun = S(un−1, vn−1) and gvn = S(vn−1, un−1) converge to the unique common
coupled fixed point of S and g.

Corollary 2. Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist β1, β2, β3 in the interval [0,1), such that β1 + β2 + β3 < 1, min{β2, β3} < 1

s and for all
u, v, w, z ∈ X

dv(S(u, v), S(w, z) + dv(S(v, u), S(z, w) ≤ β1(dv(gu, gw) + dv(gv, gz)) +

β2(dv(gu, S(u, v)) + dv(gv, S(v, u)) + β3(dv(gw, S(w, z)) + dv(gz, S(z, w))). (20)

Corollary 3. Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist βi ∈ [0, 1), i ∈ {1, . . . 6} such that ∑6

i=1 βi < 1, min{β3 + β4, β5 + β6} < 1
s and, for all

u, v, w, z ∈ X,

dv(S(u, v), S(w, z)) ≤ β1dv(gu, gw) + β2dv(gv, gz) +

β3dv(gu, S(u, v)) + β4dv(gv, S(v, u) + β5dv(gw, S(w, z)) + β6dv(gz, S(z, w)). (21)

Remark 1. Since every b-metric space is a b1(s) metric space, we note that Theorem 1 is a substantial
generalization of Theorem 2.2 of Ramesh and Pitchamani [11]. In fact, we do not require continuity and
sub sequential convergence of the function T.

Remark 2. Note that condition (2.1) of Gu [10] implies (20) and hence Corollary 2 gives an improved version
of Theorem 2.1 of Gu [10].

Remark 3. Condition (3.1) of Hussain et al. [12] implies (18) and hence Theorem 3 is an extended and
generalized version of Theorem 3.1 of [12].

3.2. Application to a System of Integral Equations

In this section, we give an application of Theorem 1 to study the existence and uniqueness of
solution of a system of nonlinear integral equations.

Let X = C[0, A] be the space of all continuous real valued functions defined on [0, A], A > 0.
Our problem is to find (u(t), v(t)) ∈ X × X, t ∈ [0, A] such that, for f : [0, A] × R × R → R and
G : [0, A]× [0, A]→ R and K ∈ C([0, A], the following holds:

u(t) =
∫ A

0
G(t, r) f (t, u(r), v(r))dr + K(t)

v(t) =
∫ A

0
G(t, r) f (t, v(r), u(r))dr + K(t). (22)

Now, suppose F : X× X → X is given by

F(u(t), v(t)) =
∫ A

0
G(t, r) f (t, u(r), v(r))dr + K(t).
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F(v(t), u(t)) =
∫ A

0
G(t, r) f (t, v(r), u(r))dr + K(t).

Then, (22) is equivalent to the coupled fixed point problem F(u(t), v(t)) = u(t), F(v(t), u(t)) = v(t).

Theorem 4. The system of Equation (22) has a unique solution provided the following holds:

(i) G : [0, A]× [0, A]→ R and f : [0, A]× R× R→ R are continuous functions.

(ii) K ∈ C([0, A].

(iii) For all x, y, u, v ∈ X and t ∈ [0, A], we can find a function g : X → X and real numbers p ≥ 1, λ, µ, ν

with 0 ≤ λ < 1, 0 ≤ µ, ν ≤ 1, minimum {λµ, λν} < 1
3s−1 satisfying

(iii− a) :| f (t, u(r), v(r)))− f (t, x(r), y(r))) |p ≤ λpmax{| g(u(r))− g(x(r)) |p, | g(v(r))− g(y(r)) |p,
µ | g(u(r))− F(u(r), v(r)) |p, µ | g(v(r))− F(v(r), u(r)) |p,
ν | g(x(r))− F(x(r), y(r)) |p, ν | g(y(r))− F(y(r), x(r)) |p}.

(iii-b) F(g(u(t)), g(v(t))) = g(F(u(t), v(t))) .
(iv) supt∈[0,A]

∫ A
0 | G(t, r) |p dr ≤ 1

λp−1 .

Moreover, for some arbitrary u0(t), v0(t) in X, the sequence (< gun(t) >,< gvn(t) >) defined by

gun(t) =
∫ A

0
G(t, r) f (t, un−1(r), vn−1(r))dr + K(t)

gvn(t) =
∫ A

0
G(t, r) f (t, vn−1(r), un−1(r))dr + K(t) (23)

converges to the unique solution.

Proof. Define dv : X× X → R such that for all u, v ∈ X,

dv(u, v) = supt∈[0,A] | u(t)− v(t) |s . (24)

Clearly, dv is a bv((v + 1)s−1)-metric space.
For some r ∈ [0, A], we have

| F(u(t), v(t)) − F(x(t), y(t)) |p

= |
∫ A

0 G(t, r) f (t, u(r), v(r))dr + g(t)−
∫ A

0 G(t, r) f (t, x(r), y(r))dr + g(t) |p

≤
∫ A

0 | G(t, r) |p| f (t, u(r), v(r))− f (t, x(r), y(r)) |p dr

≤ (
∫ A

0 | G(t, r) |p dr)λp[max{| g(u(r))− g(x(r)) |p, | g(v(r))− g(y(r)) |p,

µ | g(u(r))− F(u(r), v(r)) |p, µ | g(v(r))− F(v(r), u(r)) |p,

ν | g(x(r))− F(x(r), y(r)) |p, ν | g(y(r))− F(y(r), x(r)) |p}.

≤ (
∫ A

0 | G(t, r) |p dr)λp[max{dv(g(u), g(x)), dv(g(v), g(y)), µdv(g(u), F(u, v)), µdv(g(v), F(v, u)),

νdv(g(x), F(x, y)), νdv(g(y), F(y, x))}.

Thus, using condition (iv), we have

dv(F(u, v), F(x, y)) = supt∈[0,A] | F(u(t), v(t))− F(x(t), y(t)) |p

≤ λ[max{dv(g(u), g(x)), dv(g(v), g(y)), µdv(g(u), F(u, v)), µdv(g(v), F(v, u)),

νdv(g(x), F(x, y)), νdv(g(y), F(y, x))}.

Thus, all the conditions of Corollary 1 are satisfied and so F has a unique coupled fixed
point (u′, v′) ∈ C([0, A] × C([0, A], which is the unique solution of (22) and the sequence
(< gun(t) >,< gvn(t) >) defined by (23) converges to the unique solution of (22).
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Example 1. Let X = C[0, 1] be the space of all continuous real valued functions defined on [0, 1] and define
d3 : X× X → R such that, for all u, v ∈ X,

d3(u, v) = supt∈[0,1] | u(t)− v(t) |2 . (25)

Clearly, d3 is a b2(3)-metric. Now, consider the functions f : [0, 1] × R × R → R given by

f (t, u, v) = t2 + 9
20 u + 8

20 v, G : [0, 1] × [0, 1] → R given by G(t, r) =
√

45(t+r)
10 , K ∈ C([0, 1] given

by K(t) = t. Then, Equation (22) becomes

u(t) = t +
∫ 1

0

√
45(t + r)

10
(t2 +

9
20

u(r) +
8

20
v(r))dr

v(t) = t +
∫ 1

0

√
45(t + r)

10
(t2 +

9
20

v(r) +
8

20
u(r))dr. (26)

Then,

| f (t, u, v)− f (t, x, y) |2 = | 9
20

(u− x) +
8

20
(v− y) |2

≤ | Max{ 9
10

(u− x),
8
10

(v− y)} |2

≤ 81
100

Max{| u− x |2, | v− y) |2}.

In addition,

supt∈[0,1]

∫ 1

0
| G(t, r) |2 dr =

∫ 1

0

45
100

(t + r)2dr = 1.05.

We see that all the conditions of Theorem 4 are satisfied, with λ = 9
10 , µ = 0, ν = 0, p = 2 and g = IX(Identity

mapping). Hence, Theorem 4 ensures a unique solution of (26). Now, for u0(t) = 1 and v0(t) = 0, we construct
the sequence (< un(t) >,< vn(t) >} given by

un(t) = t +
∫ 1

0

√
45(t + r)

10
(t2 +

9
20

un−1(r) +
8

20
vn−1(r))dr

vn(t) = t +
∫ 1

0

√
45(t + r)

10
(t2 +

9
20

vn−1(r) +
8
20

un−1(r))dr. (27)

Using MATLAB, we see that above sequence converges to {0.6708t3 + 0.3354t2 + 2.2339t +
0.7677, 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677}, and this is the unique solution of the system of nonlinear
integral Equation (26). The convergence table is given in Table 1 below.
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Table 1. Convergence of sequences < un(t) > and < vn(t) >.

n un(t) = t +
∫ 1

0

√
45(t+r)

10 (t2 + 9
20 un−1(r) +

8
20 vn−1(r))dr

vn(t) = t +
∫ 1

0

√
45(t+r)

10 (t2 + 9
20 vn−1(r) +

8
20 un−1(r))dr

1 u1(t) = t + 0.0167(2t + 1)(20t2 + 9)) v1(t) = t + .0671(2t + 1)(5t2 + 2))

2 u2(t) = 0.6708t3 + 0.3354t2 + 1.3t + 0.5007 v2(t) = 0.6708t3 + 0.3354t2 + 1.29t + 0.5115

3 u3(t) = 0.6708t3 + 0.3354t2 + 1.8210t + 0.5174 v3(t) = 0.6708t3 + 0.3354t2 + 1.8208t + 0.5171

4 u4(t) = 0.6708t3 + 0.3354t2 + 1.9734t + 0.6179 v4(t) = 0.6708t3 + 0.3354t2 + 1.9734t + 0.6178

5 u5(t) = 0.6708t3 + 0.3354t2 + 2.0743t + 0.6755 v5(t) = 0.6708t3 + 0.3354t2 + 2.0743t + 0.6755

6 u6(t) = 0.6708t3 + 0.3354t2 + 2.1359t + 0.7111 v6(t) = 0.6708t3 + 0.3354t2 + 2.1359t + 0.7111

7 u7(t) = 0.6708t3 + 0.3354t2 + 2.1737t + 0.73298 v7(t) = 0.6708t3 + 0.3354t2 + 2.1737t + 0.73298

8 u8(t) = 0.6708t3 + 0.3354t2 + 2.19699t + 0.7464 v8(t) = 0.6708t3 + 0.3354t2 + 2.19699t + 0.7464

9 u9(t) = 0.6708t3 + 0.3354t2 + 2.2113t + 0.7547 v9(t) = 0.6708t3 + 0.3354t2 + 2.2113t + 0.7547

10 u10(t) = 0.6708t3 + 0.3354t2 + 2.2200t + 0.7597 v10(t) = 0.6708t3 + 0.3354t2 + 2.2200t + 0.7597

11 u11(t) = 0.6708t3 + 0.3354t2 + 2.2254t + 0.7628 v11(t) = 0.6708t3 + 0.3354t2 + 2.2254t + 0.7628

12 u12(t) = 0.6708t3 + 0.3354t2 + 2.2287t + 0.7647 v12(t) = 0.6708t3 + 0.3354t2 + 2.2287t + 0.7647

13 u13(t) = 0.6708t3 + 0.3354t2 + 2.2308t + 0.7658 v13(t) = 0.6708t3 + 0.3354t2 + 2.2308t + 0.7658

14 u14(t) = 0.6708t3 + 0.3354t2 + 2.23199t + 0.7666 v14(t) = 0.6708t3 + 0.3354t2 + 2.23199t+ 0.7666

15 u15(t) = 0.6708t3 + 0.3354t2 + 2.2328t + 0.7671 v15(t) = 0.6708t3 + 0.3354t2 + 2.2328t + 0.7671

16 u16(t) = 0.6708t3 + 0.3354t2 + 2.2333t + 0.7674 v16(t) = 0.6708t3 + 0.3354t2 + 2.2333t + 0.7674

17 u17(t) = 0.6708t3 + 0.3354t2 + 2.2336t + 0.7675 v17(t) = 0.6708t3 + 0.3354t2 + 2.2336t + 0.7675

18 u18(t) = 0.6708t3 + 0.3354t2 + 2.2338t + 0.7676 v18(t) = 0.6708t3 + 0.3354t2 + 2.2338t + 0.7676

19 u19(t) = 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677 v19(t) = 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677

20 u20(t) = 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677 v20(t) = 0.6708t3 + 0.3354t2 + 2.2339t + 0.7677

Remark 4. Condition (iv) of Theorem 4 above is weaker than the corresponding conditions used in similar
theorems of [11,13,14].

Remark 5. In example 1 above, we see that supt∈[0,1]
∫ 1

0 | G(t, r) |2 dr =
∫ 1

0
45

100 (t + r)2dr = 1.05 > 1 and
thus condition (v) of Theorem 3.1 of [11], condition (30) of Theorem 3.1 of [13] and condition (iii) of Theorem 3.1
of [14] are not satisfied.
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