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Abstract: In the future, in a society where robots and humans live together, HRI is an important
field of research. While most human–robot-interaction (HRI) studies focus on appearance and
dialogue, touch-communication has not been the focus of many studies despite the importance of
its role in human–human communication. This paper investigates how and where humans touch
an inorganic non-zoomorphic robot arm. Based on these results, we install touch sensors on the
robot arm and conduct experiments to collect data of users’ impressions towards the robot when
touching it. Our results suggest two main things. First, the touch gestures were collected with
two sensors, and the collected data can be analyzed using machine learning to classify the gestures.
Second, communication between humans and robots using touch can improve the user’s impression
of the robots.

Keywords: HRI; touch gesture; force sensing

1. Introduction
1.1. Background

AI technology and robotics technology are making significant progress. It is said that
within a few decades, people and robots will work together, sharing the same workspace [1,2].
With these changes, robots will have more opportunities to work in close contact with hu-
mans, so there is a need to achieve smooth communication between people and robots [3].
The research field of human–robot-interaction is becoming critical. Human–human commu-
nication relies on visual information such as facial expressions, gaze, and gestures, or audio
information such as words [4,5]. However, with the distance between humans and robots
becoming shorter, we must start thinking about the possibility of people spontaneously
making contact with robots during work [6]. Social roboticists must address the issues of
safety and social acceptance of robots’ social interaction with humans [7]. While haptic
research in robotics is an important field of research, touch, which transmits and induces
affective content, has not received much attention in social robotics so far, particularly when
analyzing how humans touch robots. The sense of touch is paramount both in physical
and social interactions. Previous research suggests that contacts are rich in information.
They can convey different emotions and have demonstrated that haptics effectively com-
municates valence and arousal and emotions of happiness, sadness, anger and fear [4,8].
Communication by contact is therefore essential for smooth interaction between robots and
people. This work aims to improve the HRI by introducing communication by contact. In
this paper, we present the results of our work on touch communication between robots and
humans. We show the overall system under development in Figure 1. The present paper
focuses on the “Sensing touch” and “Classifying touch gestures” blocks.

1.2. Related Works

The research on contact communication of interest can be divided into two main cate-
gories: human–human contact communication and human–robot contact communication.
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Figure 1. The proposed overall touch communication system with the two-step expressive gestures 
estimation. In this paper, we present the touch sensing and the classifying touch gesture blocs. 

1.2. Related Works 
The research on contact communication of interest can be divided into two main cat-

egories: human–human contact communication and human–robot contact communica-
tion. 

Herstein et al. conducted human-to-human contact interaction experiments to under-
stand how much the sense of touch can convey different emotions. In [9], subjects were 
touched from the elbow to the tip of the hand. Each touch conveyed a specified emotion. 
In this experiment, Herstein et al. showed that six emotions, anger, fear, disgust, love, 
gratitude, and sympathy, could be identified by the subjects with a probability of more 
than chance. They conducted a similar experiment where the area of contact was extended 
to the entire body. The results showed that subjects could discriminate eight types of emo-
tions: anger, fear, disgust, love, gratitude, sympathy, happiness, and sadness from the 
tactile sensations and the location of contact with greater than chance probability [10]. 
Research on how a device conveys emotions through simple vibrotactile feedback was 
conducted in [11]. Minamizawa et al. recorded 28 vibration sample sets for four different 
emotions (joy, anger, sadness, relaxation) and replayed the vibrations to test how well 
they could be recognized. Their results show that vibration can be utilized as a medium 
for expression and recognition of the four selected emotions with the accuracy of 46.9–
71.4%, respectively. Their found accuracy is similar to that obtained with other modalities 
such as facial expression, voice and whole body. They are averagely ranged from 56% to 
70%. 

On human–robot communication, Yohanan et al. created an animal-like robot called 
the “Haptic creature”, a sort of small lap pet stuffed animal with as few non-tactile arti-
facts as possible. They proposed a classification of 30 types of touch gestures through ex-
periments using a Haptic creature similar to a small animal [5]. Andreasson et al. con-
ducted an HRI experiment using Nao. In their study, emotions such as love, sympathy, 
gratitude, sadness, happiness, disgust, anger, and fear were transmitted to Nao through 
contact in random order. They found a correlation between emotion and frequency of 
contacts and tried to estimate the emotions [12].  

2. Materials 
2.1. Collecting Expressive Touch Gestures 

It is difficult to estimate human emotions and messages directly from the contact 
force data obtained from the contact itself during hand touch. Previous researches 
suggested dividing it into two phases [13]. First, classifying touch gestures, which means 
how humans touch the robot. Second, interpreting them into messages or emotions [13].  

  

Figure 1. The proposed overall touch communication system with the two-step expressive gestures
estimation. In this paper, we present the touch sensing and the classifying touch gesture blocs.

Herstein et al. conducted human-to-human contact interaction experiments to un-
derstand how much the sense of touch can convey different emotions. In [9], subjects
were touched from the elbow to the tip of the hand. Each touch conveyed a specified
emotion. In this experiment, Herstein et al. showed that six emotions, anger, fear, disgust,
love, gratitude, and sympathy, could be identified by the subjects with a probability of
more than chance. They conducted a similar experiment where the area of contact was
extended to the entire body. The results showed that subjects could discriminate eight types
of emotions: anger, fear, disgust, love, gratitude, sympathy, happiness, and sadness from
the tactile sensations and the location of contact with greater than chance probability [10].
Research on how a device conveys emotions through simple vibrotactile feedback was
conducted in [11]. Minamizawa et al. recorded 28 vibration sample sets for four different
emotions (joy, anger, sadness, relaxation) and replayed the vibrations to test how well they
could be recognized. Their results show that vibration can be utilized as a medium for
expression and recognition of the four selected emotions with the accuracy of 46.9–71.4%,
respectively. Their found accuracy is similar to that obtained with other modalities such as
facial expression, voice and whole body. They are averagely ranged from 56% to 70%.

On human–robot communication, Yohanan et al. created an animal-like robot called
the “Haptic creature”, a sort of small lap pet stuffed animal with as few non-tactile artifacts
as possible. They proposed a classification of 30 types of touch gestures through experi-
ments using a Haptic creature similar to a small animal [5]. Andreasson et al. conducted
an HRI experiment using Nao. In their study, emotions such as love, sympathy, gratitude,
sadness, happiness, disgust, anger, and fear were transmitted to Nao through contact in
random order. They found a correlation between emotion and frequency of contacts and
tried to estimate the emotions [12].

2. Materials
2.1. Collecting Expressive Touch Gestures

It is difficult to estimate human emotions and messages directly from the contact force
data obtained from the contact itself during hand touch. Previous researches suggested
dividing it into two phases [13]. First, classifying touch gestures, which means how humans
touch the robot. Second, interpreting them into messages or emotions [13].

2.2. PAD Emotional State Model

The PAD emotional state model is one of the psychological models to describe and
measure emotional states. Contrarily to the Eckman basic emotions model, PAD uses three
dimensions, pleasure, arousal, and dominance, to represent all emotions [14]. All three
dimensions have values in the range −1 to 1. In this research, the PAD is used to check
the subjects’ emotions. To make it easier for participants to evaluate their own emotions,
the SAM (self-assessment manikin) scale was used [15]. It makes it intuitive and easy to
evaluate each dimension using the visual scale presented in Figure 2.
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measures are affected by changes in the magnetic field and, therefore, cannot be used near 
the robot’s motors. 

Figure 2. SAM (self-assessment manikin) scale. Adapted with permission from Ref. [15]. Copyright
1994 Peter Lang.

2.3. Equipment

We used a 5-DOF robot arm (Figure 3). It is a custom-designed robot with Dynamixel
servomotors (Robotis) in each joint of the robot arm. The robot is solely equipped with en-
coders and not equipped with a sensor to detect human or object contact (unless estimated
through current measurement). To detect the contact location and intensity, sensors must
be installed. To define the most appropriate location of the sensors, we conducted a first
experiment where participants were invited to touch the robot, and we observed how and
where they touched the inorganic non-zoomorphic robot arm.
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In our research, we use two types of tactile sensors: ShokacChipTM and Xela Robotics
Tactile Sensor. ShokacChipTM is a series of multi-axis tactile sensors developed by
Touchence [16]. Three piezoelectric elements are processed and arranged in a three-
dimensional axis to achieve high sensitivity in the three-dimensional axis [11]. Xela Robotics
Tactile Sensor is a series of 3-axis tactile sensor modules developed by Xela Robotics [17].
In this study, we used a 4 × 4 arrangement of sensor cells that can sense the load in the
3-axis directions; these sensors are more versatile than the ShokacChipTM sensors, but
their measures are affected by changes in the magnetic field and, therefore, cannot be used
near the robot’s motors.

2.4. Touch Gestures

We use the 25-touch gestures with the original definition presented in Table 1. It is
based on Yohanan’s touch gestures definitions. We omitted those irrelevant and added
those needed for our specific robot arm. For classification, we labeled “shake” by pushing
with a fingertip (shake 1) and “shake” by grabbing the robot arm with a hand (shake 2)
separately. These touch gestures are performed on the robot arm’s body, and the location
where participants touched the robot were recorded. The sensors were placed adequately
for the second experiment, which is explained in Section 4. Examples of participants
touching the robot can be seen. The participants touched the robot, as can be seen in
Figure 4.

Table 1. Touch gestures dictionary [4].

Touch Definition

Grab Grasp or seize the robot arm suddenly and roughly.

Hold by hands Put the robot arm between your both flat hands firmly

Hold by hands gently Put the robot arm between your both flat hands gently

Massage Rub or knead the robot arm with your hands.

Nuzzle Gently rub or push against the robot arm with your nose.

Pat Gently and quickly touch the robot arm with the flat of your hand.

Pinch Tightly and sharply grip the robot arm between your fingers and thumb.

Poke Jab or prod the robot arm with your finger.

Press Exert a steady force on the robot arm with your flattened fingers or hand.

Rub Move your hand repeatedly back and forth on the fur of the robot arm
with firm pressure.

Tap Strike the robot arm with a quick light blow or blows using one or
more fingers.

Tickle Touch the robot arm with light finger movements.

Tremble Shake against the robot arm with a slight rapid motion.

Grab Grasp or seize the robot arm suddenly and roughly.

Hold by hands Put the robot arm between your both flat hands firmly

Hold by hands gently Put the robot arm between your both flat hands gently

Massage Rub or knead the robot arm with your hands.

Pat Gently and quickly touch the robot arm with the flat of your hand.

Pinch Tightly and sharply grip the robot arm between your fingers and thumb.

Poke Jab or prod the robot arm with your finger.

Press Exert a steady force on the robot arm with your flattened fingers or hand.

Rub Move your hand repeatedly back and forth on the fur of the robot arm
with firm pressure.

Scratch Rub the robot arm with your fingernails.
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Table 1. Cont.

Touch Definition

Shake
Press intermittently the robot arm with your fingers (Shake_1)
or Hold the robot arm with your hand and move it up and
down (Shake_2)

Slap Quickly and sharply strike the robot arm with your open hand.

Squeeze Firmly press the robot arm between yourfingers or both hands.

Stroke Move your hand with gentle pressure over the robot arm,
often repeatedly.
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3. Experiment on How Humans Convey Emotion to Robot Arm
3.1. Method

There are various constraints to consider when installing sensors all over the body of
the robot arm used in this research, such as the influence of the magnetic field of the motor
and the range of motion of the joints. In addition, unlike the Nao and Haptic creature, it was
not known how people would attempt to make contact with the inorganic non-zoomorphic
robot arm, which was not designed in the HRI style. Therefore, before installing the sensors
on the robot arm, we conducted an experiment to observe how and where people attempted
to make contact with the robot arm used in this study. The experiment was conducted on
seven participants based on Andreasson et al.’s experiment [10]. The participants were
asked to express their feelings of love, sympathy, gratitude, sadness, happiness, disgust,
anger, and fear to the robot arm in a random order using free contact and without a time
limit. We used two cameras to capture the subject’s behaviors from different viewpoints
(Figure 5). After the experiment, we visually evaluated from the recorded videos which part
of the body the participants touched and what contact they were making when conveying
each emotion. Each part of the robot arm was classified as a human arm, as shown in
Figure 3b. After communicating each emotion to the robot arm, the participants were
asked to quantify their emotions using the SAM to rate pleasure, arousal and dominance,
from −1 to 1.
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3.2. Results and Discussion
3.2.1. Location

Table 2 shows the percentage of participants who touched each of the areas of the
robot, as shown in Figure 3. A result of 0% means that no participant touched the area,
and 100% means that all participants touched the area. Only sadness is expressed as a
percentage of the total number of participants because some participants could not express
their feelings and did not touch the robot to express this emotion.

Table 2. Contact zones of the robot, as described in Figure 3b, that participants touched to express
their emotions (unit: %).

Body Part
Emotion

Total Love Sympathy Gratitude Happiness Sadness Disgust Anger Fear

Hand 438.1 71.4 42.9 100.0 14.3 66.7 57.1 71.4 14.3
Wrist 176.3 42.9 14.3 28.6 28.6 33.3 0.0 14.3 14.3

Forearm 162 42.9 28.6 28.6 28.6 33.3 0.0 0.0 0.0
Elbow 14.3 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Upper arm 28.6 14.3 14.3 0.0 0.0 0.0 0.0 0.0 0.0
Shoulder 71.5 0.0 14.3 0.0 14.3 0.0 28.6 0.0 14.3

Total 890.8 185.8 114.4 157.2 85.8 133.3 85.7 85.7 42.9

Our results show that the most touched parts of the body, regardless of the emotion,
are the most distal parts of the robot and also the closest to the participant: the hand (438%),
followed by the wrist (176%) and the forearm (162%). The central parts: the elbow and the
upper arm are the least touched, with respectively 14% and 29%. This can be explained as
these parts are the furthest parts from the participants and may require an additional effort
to lean towards the robot.

The results also show that for positive emotions such as love (186%), sympathy (114%),
and gratitude (157%), participants touched the robot more often than for negative emotions,
except sadness (133%).

Andreasson’s research, which used the Nao robot, showed that the most plentiful
interaction of the eight emotions resulted when the subjects touched Nao to convey love. A
similar trend was observed in Table 2, with all parts of the robot touched but the shoulder.
The article also said that the least plentiful interaction of the eight emotions resulted
when the subjects touched Nao to convey disgust. Table 2 shows that the participants
barely touched the robot arm when they conveyed disgust (85.7% in two places: hand and
shoulder only). Our experiment has few participants but this result suggests the possibility
of similar contact communication between robots with entirely different forms, such as
Nao and the robot arm. These results also informed us where to position touch sensors for
our experiments.

3.2.2. Classification of Touch Gestures

Table 3 shows the percentages of occurrences of each touch gesture observed for each
emotion during our experiment. In particular, in the case of love, 57.1% of participants
stroked (Stroke), and 14.3% of them tapped (Tap) the entire body of the robot arm except for
the shoulder. On the other hand, in disgust, anger, and fear, which are negative emotions
toward the partner, the touched points were mainly limited to the hand’s tip. The touch
gestures observed were mainly aggressive, such as pinch, poke, and slap, while disgust
and fear were limited to one or a few touches for all participants. These touch gestures
were not used for the other emotions. They will be the marker for classification between
positive emotions and negative ones. However, touch gestures such as pat, tap, and stroke
are used to communicate multiple emotions such as love, sympathy, gratitude, sadness,
and happiness. This result suggests that it is more difficult to estimate which emotion



Machines 2022, 10, 15 7 of 14

is being conveyed by a single touch gesture, even if the general type of emotion can be
identified as being positive.

Table 3. Percentage: touch gestures participants use in each emotion (unit: %).

Gesture
Emotion

Love Sympathy Gratitude Sadness Happiness Disgust Anger Fear

Hold 0 0 14.3 14.3 0 0 0 0
Massage 0 14.3 0 14.3 14.3 0 0 0
Nuzzle 0 0 14.3 0 0 0 0 0

Pat 28.6 0 14.3 28.6 0 0 0 0
Pinch 0 0 0 0 0 28.6 14.3 14.3
Poke 0 0 0 0 0 28.6 14.3 28.6
Press 0 0 0 0 0 14.3 42.9 0
Rub 0 0 0 0 28.6 0 0 0

Scratch 14.3 0 0 0 0 0 0 0
Shake 14.3 0 57.1 14.3 28.6 0 0 14.3
Slap 0 0 0 0 0 42.9 28.6 0

Squeeze 0 0 0 0 0 0 14.3 0
Stroke 57.1 28.6 14.3 42.9 28.6 0 0 0

Tap 14.3 28.6 14.3 0 28.6 0 0 0
Tickle 28.6 0 0 0 0 0 0 0

No touch 0 0 0 0 0 0 0 28.6
Massage 0 14.3 0 14.3 14.3 0 0 0
Nuzzle 0 0 14.3 0 0 0 0 0

Yohanan surveyed in their experiment which touch gestures participants used when
they conveyed each emotion by contact. In Yohanan’s experiment, they used nine emo-
tions, distressed, aroused, excited, miserable, neutral, pleased, depressed, sleepy, relaxed.
Comparing the result is difficult because the emotions used are different from those in this
research, but pleased shows similarity with happy. When Yohanan’s subjects would convey
“pleased” to the Haptic creature, they would mainly use stroke, hug, hold, rub, pat, cradle,
and tickle. Hug and cradle are not in Table 3 because they cannot be performed on the
robot arm. Stroke, massage, rub were used when participants in our experiment conveyed
happiness, but tickle and pat were not. One of the possible reasons for the difference may
be the robot’s shape and texture; our robot is made of aluminum, while the Haptic creature
in Yohanan’s work is made of faux fur.

Table 4 shows the PAD’s median, average, standard deviation, variance of emotion
that participants evaluated after conveying emotion by touch. Except for “sympathy”,
almost all P, A, D variances are less than 0.10. Sympathy is a complex emotion depending
on the condition of the other, and it may not be easy to feel sympathy with the robot arm.
In the following description, sympathy is not taken into account.

Table 4. PAD of emotion that participants evaluate after touch.

Median Average Standard Deviation Variance

Love
P 0.75 0.71 0.09 0.01
A 0.25 0.14 0.52 0.27
D 0.00 0.07 0.24 0.06

Sympathy
P 0.00 −0.07 0.35 0.12
A −0.25 −0.25 0.41 0.17
D 0.25 0.04 0.47 0.22

Gratitude
P 0.75 0.71 0.17 0.03
A 0.25 0.25 0.32 0.10
D 0.25 0.07 0.43 0.18
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Table 4. Cont.

Median Average Standard Deviation Variance

Sadness
P −0.75 −0.68 0.24 0.06
A −0.50 −0.50 0.29 0.08
D −0.50 −0.50 0.35 0.13

Happiness
P 0.75 0.79 0.17 0.03
A 0.50 0.43 0.37 0.14
D 0.25 0.25 0.32 0.10

Disgust
P −0.75 −0.71 0.30 0.09
A 0.25 0.25 0.29 0.08
D 0.50 0.43 0.35 0.12

Angry
P −0.75 −0.68 0.12 0.01
A 0.75 0.68 0.19 0.04
D 0.50 0.61 0.24 0.06

Fear
P −0.50 −0.61 0.13 0.02
A 0.25 0.14 0.40 0.16
D −0.75 −0.64 0.13 0.02

Comparing the results in Tables 3 and 4, when the participants performed “pinch”,
“poke”, “press” and “slap”, which are rather aggressive touch gestures (Table 3), the
PAD results in Table 4 show low “pleasure” and high “arousal”. “Love” and “happiness”
show very similar PAD values with very high average values for pleasure: 0.71 and
0.79, respectively. However, “massage” and “rub” is not seen with “love” but only with
“happiness”. In addition, “scratch”, similar to “rub”, is seen only in “love”.

4. Experiment Using Tactile Sensors
4.1. Method

After locating the sensors on the robot, we then conducted a second experiment. Each
participant interacted with the robot arm during this experiment, as shown in Figure 2. Two
cameras were used to capture the participants’ movements during the experiment. Fifteen
participants communicated seven emotions (love, gratitude, sadness, happiness, disgust,
anger, and fear) to the robot arm using free contact with no time limit. The only constraint
was that they had to touch the robot on one of the sensors of their choice. The measured
data are a time series of the forces. Each time an emotion was transmitted, the subject
evaluated the transmitted emotion using the SAM scale. We conducted an evaluation
practice before starting the experiment to ensure that the participants understood the SAM
scale. For the touch gestures, the participants were presented with the definitions shown in
Table 1, and the movements were specified by a video. To protect the sensor during the
experiment, we incorporated a system that allows the robot to perform only one type of
action to reject the gesture when the load exceeds the allowable limit.

For the SD method, the adjectives shown in Table 5 were used. Each adjective pair was
divided into seven-point scales, and the participants were asked to evaluate their impres-
sions of the robot. These adjective pairs were selected based on Kanda et al.’s study [18].
These adjectives pairs include factors such as familiarity and approachability with the robot
and adjectives that evaluate effects based on the subject’s pleasure and displeasure.

Table 5. Adjectives pairs used in the SD questionnaire [18].

Adjectives Pairs Used in SD Questionnaire

Gentle - Scary
Pleasant - Unpleasant
Friendly - Unfriendly

Safe - Dangerous
Warm - Cold
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Table 5. Cont.

Adjectives Pairs Used in SD Questionnaire

Cute - Hateful
Casual - Formal

Easy to understand - Difficult to understand
Approachable - Unapproachable

Cheerful - Gloomy
Considerate - Selfish

Funny - Unfunny
Amusing - Obnoxious
Likeable - Dislikeable

Interesting - Boring
Good - Bad

Based on the results of the previous section, 2 ShokaChipTM and 2 Xela robotics tactile
sensors are installed on the robot arm’s hand and forearm (Figure 6). Solidworks were used
to design part of the setting sensors.

Machines 2022, 9, x FOR PEER REVIEW 9 of 15 
 

 

For the SD method, the adjectives shown in Table 5 were used. Each adjective pair 
was divided into seven-point scales, and the participants were asked to evaluate their im-
pressions of the robot. These adjective pairs were selected based on Kanda et al.’s study 
[18]. These adjectives pairs include factors such as familiarity and approachability with 
the robot and adjectives that evaluate effects based on the subject’s pleasure and displeas-
ure. 

Table 5. Adjectives pairs used in the SD questionnaire [18]. 

Adjectives Pairs Used in SD Questionnaire 
Gentle - Scary 

Pleasant - Unpleasant 
Friendly - Unfriendly 

Safe - Dangerous 
Warm - Cold 
Cute - Hateful 

Casual - Formal 
Easy to understand - Difficult to understand 

Approachable - Unapproachable 
Cheerful - Gloomy 

Considerate - Selfish 
Funny - Unfunny 

Amusing - Obnoxious 
Likeable - Dislikeable 

Interesting - Boring 
Good - Bad 

Based on the results of the previous section, 2 ShokaChipTM and 2 Xela robotics tac-
tile sensors are installed on the robot arm’s hand and forearm (Figure 6). Solidworks were 
used to design part of the setting sensors. 

 
Figure 6. Robot arm equipped with the sensors, used to collect touch behaviors. 

Xela robotics tactile sensor 

ShokacChipTM 

View from below 

Figure 6. Robot arm equipped with the sensors, used to collect touch behaviors.

4.2. Classifying Touch Gestures

We used two different types of sensors. Both types of sensors output 3-dimensional
force data over time. From these force profiles, we analyzed and classified touch gestures
quantitatively. Since data for each sensor have their own specificities, we used two different
architectures for the touch gesture classification.

4.2.1. Classifying Touch Gestures with ShokacChipTM Sensors

A 1D CNN was used for the model, as shown in Figure 7. The chosen optimizer is
Adam with a “sparse_categorical_crossentropy” loss function. Data of thirteen participants
accounting for 2505 training data points and 412 test data were randomly selected to be
used. The number of epochs is 20 and the training time is 20 s using GeForce RTX 2080.
The hyper parameters were set using particle swarm optimization. The learning rate is 0.01.
Hyper parameters are given in Table 6.
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Table 6. Hyper parameters of 1-dimension CNN for ShokacChipTM.

Layer Tiype Activation Kernel Size Padding Output Shape Param

Convolution 1D Relu 5 same (None, 180, 32) 992
Max pooling 1D - - - (None, 90, 32) 0
Convolution 1D Relu 3 same (None, 90, 32) 3104
Max pooling 1D - - - (None, 45, 32) 0
Convolution 1D Relu 3 same (None, 22, 32) 3104
Max pooling 1D - - - (None, 45, 32) 0

Global average 1D - - - (None, 32) 0
Dense Relu - - (None, 32) 1056
Dense Softmax - - (None, 16) 495

4.2.2. Classifying Touch Gestures with Xela Robotics Tactile Sensors

Since the data acquired by the Xela robotics tactile sensor can be treated as video, as
shown in Figure 8, we used a 3-D CNN, as shown in Figure 9. We used the same optimizer
and loss function as with the other model. Data of thirteen participants accounting for
2580 training data points and 389 test data were randomly selected. The number of epochs
is 55 and the training time is 108 s using GeForce RTX 2080. The hyper parameters and the
number of epochs were set using particle swarm optimization. The learning rate is 0.01.
Hyper parameters for this model are shown in Table 7.
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Table 7. Hyper parameters of 3-dimension CNN.

Layer Tiype Activation Kernel Size Padding Output Shape Param

Convolution 3D Relu (5, 2, 2) Same (None, 180, 8, 4, 16) 976
Convolution 3D Relu (5, 2, 2) Same (None, 180, 8, 4, 16) 5136
Max pooling 3D - - - (None, 90, 8, 4, 16) 0
Convolution 3D Relu (3, 2, 2) Same (None, 90, 8, 4, 32) 6176
Convolution 3D Relu (3, 2, 2) same (None, 90, 8, 4, 32) 12,320
Max pooling 3D - - - (None, 45, 8, 4, 32) 0
Convolution 3D Relu (3, 2, 2) Same (None, 45, 8, 4, 32) 12,320

Global average 3D - - - (None, 32) 0
Dense Relu - - (None, 32) 1056
Dense Relu - - (None, 32) 1056
Dense Softmax - - (None, 16) 528

4.3. Results of Touch Gestures’ Classification

The confusion matrices for each sensor are shown in Figures 10 and 11.
For the ShokacChip sensor, the overall correct classification rate for the training was

49.5%, which is higher than chance. Looking at each label, tickle and slap are classified
with high probability, followed by pat and shake_1. On the other hand, labels that are close
to the action itself, such as massage and shake_2 that use both hands, hold by hands and
hold by hands gently, and rub and scratch, are misclassified with high probability. For
example, massage and shake _2 are actions in which one hand grasps a set of sensors and
repeatedly increases or decreases the force, so there was no significant difference between
them. In the case of hold by hands and hold by hands gently, the only difference was in the
strength of the gestures, so we believe that the misclassification was caused by the fact that
each subject had different criteria for the weak and strong forces. In the case of strokes and
taps, both gestures are very short, so the differences in their features could not be read well.
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For the Xela sensor, the overall correct classification rate is 75%, which is much higher
than chance. For each label, we can classify stroke without any misclassification, and almost
all other labels except grab, hold by hands gently, hold by hands pair, and tap and slap
can be classified with high accuracy. The misclassification of grab, hold by hands gently,
hold by hands, and tap and slap can be attributed to the fact that each subject had different
criteria for weak and strong forces. In addition, there was a difference between the grab
and the two hold gestures, which were performed with one hand and with both hands.

While our dataset is not very large and adding more data may improve the accuracy,
for the future development of our overall control system, we do not require to recognize
with high certainty the type of touch that has been performed at all times. The obtained
accuracy is sufficient.

4.4. Changing Impressions of Robots through Conveying Emotions by Touch

We conducted a t-test to examine whether there was a significant difference in the
results of the SD questionnaire before and after the experiment. The null hypothesis is that
the experiment does not change the feeling of participants.

The results are shown in Table 8. A positive value of the average shows that partici-
pants’ feelings are towards the left-column adjectives in Table 5, which express positive
feelings. A negative value of the average shows that the participants’ feelings are towards
the right-column adjectives in Table 5, which express negative feelings. The results in
Table 8 show that the score differences for all adjective pairs except for “interesting-boring”
are positive. After participants touched the robot arm, their feelings toward the robot were
more positive.
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Table 8. Result of SD questionnaire (**: p-value < 0.005, *: p-value < 0.05).

Adjective Pairs (+1–−1)
Average SD Method Values

Difference p-Valuebefore
Experiment

after
Experiments

Gentle–Scary 0.0384 0.154 0.12 0.196
Pleasant–Unpleasant 0.212 0.327 0.12 0.236

Friendly–Unfriendly * 0.0961 0.404 0.31 0.01
Safe–Dangerous ** 0.0385 0.442 0.4 0.004

Warm–Cold * −0.0385 0.269 0.31 0.03
Cute–Hateful 0.327 0.442 0.12 0.221

Casual–Formal ** 0.135 0.365 0.5 0
Easy–Difficult (to understand) 0.0192 0.288 0.27 0.055

Approachable–Unapproachable ** 0.0192 0.442 0.42 0.003
Cheerful–Gloomy 0.154 0.212 0.06 0.583

Considerate–Selfish 0.115 0.135 0.02 0.853
Funny–Unfunny 0.365 0.5 0.13 0.157

Amusing–Obnoxious * 0.25 0.481 0.23 0.006
Likeable–Dislikeable 0.442 0.615 0.17 0.112
Interesting–Boring 0.538 0.519 −0.02 0.868

Good–Bad 0.423 0.481 0.06 0.575

The p-value was examined at the significance level (p < 0.05). As Table 8 shows, the null
hypothesis was rejected for six adjective pairs, “friendly–unfriendly”, “safe–dangerous”,
“warm–cold”, “casual–formal”, “approachable–unapproachable”, “amusing–obnoxious”.
It also shows that the impression of participants changed to a more positive one, with
a very low p < 0.005 for three of the adjective pairs, “safe–dangerous”, “approachable–
unapproachable”, “amusing–obnoxious”. In particular, the p-value of the adjective pair
“casual” and “formal” was 0.00, suggesting that participants’ feeling of stiffness toward the
robot was greatly improved, from “formal” to “casual”. In the other two adjective pairs,
participants’ perception of the robot arm changed to that of an approachable and pleasant
presence after the experiment.

Other research using PARO, a therapy robot, suggested that communication with
PARO using touch improved the participants’ mood and pains [19]. While pain was not
investigated in our study, the results show that touching the robot may play a significant
role in improving the impression of the robot even with non-anthropomorphic or zoo-
morphic structures.

5. Conclusions

In this study, we conducted an emotion transfer experiment and a touch gesture
acquisition experiment on a robot arm equipped with a sensor. We then used machine
learning to classify the touch gestures and succeeded in classifying them with a higher
probability than chance. In addition, it was confirmed that the impression of the robot was
improved by the actual touch. In this study, we conducted two experiments. The first one
was to determine where to locate touch sensors on an inorganic non-zoomorphic robot.
The second was to acquire affective touch gestures of participants when touching the robot
equipped with sensors. We then used machine learning to classify the touch gestures and
succeeded in classifying them with a higher probability than chance. It was also confirmed
that the impression of the robot was improved by the actual touch.

Matthias Scheutz performed an experiment by creating a movie of robots touching
humans and showed the participants to investigate the impact of touch on human–robot
trust [6]. The participants’ evaluation of touch is not trustworthy when they are aware of a
defined function of the robots. Their experiment method and results provide contrast to
our study. We have to investigate not only touch from human to robot but also from robot
to human.
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Further work will consist of consolidating our findings. We will conduct a large-scale
experiment using long-term interaction with the robot, and we will add some movements
to the robot in response to touch in order to complete the scheme proposed in Figure 1.
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