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Abstract: In gas turbines used for airplane propulsion, the number of sensors are kept at a minimum
for accurate control and safe operation. Additionally, when data are communicated between the
airplane main computer and the various subsystems, different systems may have different constraints
and requirements regarding what data transmit. Early in the design process, these parameters are
relatively easy to change, compared to a mature product. If the gas turbine diagnostic system is
not considered early in the design process, it may lead to diagnostic functions having to operate
with reduced amount of data. In this paper, a scenario where the diagnostic function cannot obtain
airplane installation effects is considered. The installation effects in question is air intake pressure
loss (pressure recovery), bleed flow and shaft power extraction. A framework is presented where
the unknown installation effects are estimated based on available data through surrogate models,
which is incorporated into the diagnostic framework. The method has been evaluated for a low-bypass
turbofan with two different sensor suites. It has also been evaluated for two different diagnostic
schemes, both determined and underdetermined. Results show that, compared to assuming a best-
guess constant-bleed and shaft power, the proposed method reduce the RMS in health parameter
estimation from 26% up to 80% for the selected health parameters. At the same time, the proposed
method show the same degradation pattern as if the installation effects were known.

Keywords: gas turbine diagnostics; gas path analysis; installation effects; neural networks

1. Introduction

There are multiple principles on how to construct a gas turbine diagnostic system.
It can either be based on a model of the system to be diagnosed or make use of ma-
chine learning algorithms, signal processing, expert knowledge or hybrid approaches [1,2].
For gas turbine diagnostics, the first condition based diagnostic method that came into use
is the model based Gas Path Analysis (GPA) method [3], where a software model of the
gas turbine is used to calculate estimated degradations based on available measurements.
These analyses can either be based on steady state [4] or transient data [5,6]. There are
also methods for handling underdetermined systems [7,8]. More advanced methods re-
lated to GPA make use of multiple operating point analysis [9] where the target is to find
the degradation that best satisfy all operating points. There are also methods developed
where expected degradation relationships are taken into consideration in the analysis [10].
A sequential approach to GPA was explored in [11] where the state of the components
was diagnosed one after another along the gas path. Another physics-based method is the
Kalman Filter (KF) [12,13], where an estimate of the upcoming time-step is calculated based
on previous observations. This method is well suited for sensor diagnostics where multiple
filters can be tailored to a specific sensor [14]. An approach where an Extended Kalman
Filter (EKF) was tuned to an underdetermined gas turbine diagnostic problem has been
explored in [15]. Kalman Filters may also be used for sensor measurement reconstruction
after sensor or actuator faults have been identified [16].
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Data-driven methods look for mathematical relationships and patterns regardless of
their physical implication. There are several different methods that are commonly used for
diagnostics. A common method is Neural Networks (NN) [17] where a network is created
by different layers of neurons. Each neuron contain an activation function and the threshold
for these functions are determined when a network is trained to replicate a set of data. NN
may be constructed in a number of ways depending on the application. To mention a few,
the simplest type is the Multilayer Perceptron (MLP), which is constructed with an input
and output layer connected by one or more hidden layers. This type of networks are quite
common and are used both for general gas turbine diagnostics [18,19] as well as identifying
specific faults or tasks. Examples include optimizing washing cycles of an industrial
gas turbine [20], identifying an afterburner liner burn through [21] and diagnostics of a
marine diesel engine [22] where the NN was trained to exhibit the behavior of a healthy
engine, which then was compared to operational data. Another type of network is the Auto
Associative Neural Network, (AANN) which utilizes a bottleneck layer. It is commonly
used for noise filtering and outlier removal [23,24]. A fault detection method using an
Extreme Learning Machine (ELM) showed promising results compared to many other
data-driven methods [25]. Other types of networks may use feedback loops, such as the
Nonlinear Auto-Regressive Exogenous model (NARX) which operates on time-series data.
A method incorporating this for fault detection on a single spool power generation gas
turbine was presented in [26] where the suitability for performing fault detection at various
operating conditions was highlighted.

Another data-driven method is Bayesian Networks (BN) that makes use of statistical
methods to estimate the most probable cause of an observation. This method can either be
used for diagnostics [27,28] or be incorporated into decision-making systems [29]. A thor-
ough investigation of the applicability of using BN for diagnostics on a stationary gas
turbine used for power generation is presented in [30,31].

There are also countless ways to combine physics-based and data-driven methods
by fusing them in different ways. To mention a few, one could either combine different
methods to enhance the fault estimation accuracy [32], or incorporate a decision support
system [33], or have a data-driven tuning algorithm to continuously estimate correction
factors for the physical estimation [34]. In [35], a diagnostic framework is presented
where AANN are used for sensor data filtering, physics-based GPA is performed to extract
degradation patterns and a MLP is used for estimating bleed valve leakage.

Each method has its advantages and disadvantages [36] and may be more or less
suitable for solving the problem at hand. Common for all numerical methods is that the
quality of the data going in dictates the quality of the results coming out. This relates
both to the level of noise and uncertainty of the data, as well as the specific measurements
available for diagnostics [37]. The importance of handling uncertainties in measurements
is highlighted in [38]. A fundamental principle is that, regardless of method, a coupling
between the available measurements and the fault or degradation to be estimated must be
present [39]. This is known as the identifiability problem. This implies that not knowing
parameters, coupled to the fault or degradations, may influence the overall accuracy in
a negative way independent of the selected diagnostic method. In the open literature on
gas turbine diagnostics, there seems to be a shortcoming in taking the airplane installation
effects into account. The effects are mainly the air inlet pressure loss (hereby denoted
pressure recovery), bleed air extraction and shaft power extraction [40]. These parameters
are sometimes mentioned, but seldom considered, and they are mainly assumed to be
known entities [41].

If erroneous airplane installation effects are introduced into a diagnostic analysis,
the result will be negatively influenced. For instance, a too high-pressure recovery may
be interpreted as a fan degradation while too low bleed flow extraction will look like a
restriction of the compressor flow path. In this paper, a framework for estimating unknown
installation effects in the presence of gradual degradation is presented. The pressure
recovery is estimated from a database which is constructed and continuously updated
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during gas turbine operation. The bleed flow and shaft power is estimated by training
neural networks to extract the effects during an assumed degradation pattern. When a
better degradation pattern estimation is available, these networks are retrained to improve
the accuracy. Through these estimations, the major part of negative effect on diagnostic
results can be mitigated.

The novelty of the work consist of two major parts:

1. Creation of an installation effect estimation framework for GPA diagnostics. The im-
portance of knowing the installation effects, which is often neglected in diagnostic
analyses, is highlighted and discussed.

2. Performance evaluation of an underdetermined solver based on the pseudo-inverse
of the Jacobian matrix. This type of solver is sometimes mentioned in the open litera-
ture [10,42], but no publications has been found where it is actually being evaluated.

The paper is structured in the following way~: In Section 2, the performance code
and test data used for the study are presented. From Section 2.6, the methodology of
estimating the installation effects, as well as the complete diagnostic framework, is shown
in detail. In Section 3, the results are presented. First, a sensitivity analysis to highlight
the importance of the installation effects and explain the physical relationships in play is
presented. After that, the installation estimation framework effectiveness for diagnostics is
presented. Section 4 contains conclusions drawn from the study.

2. Methodology

In this section, the methodology of the installation effect estimation methods is pre-
sented as well as the resources used for the study. Sections 2.1 and 2.2 describe the gas
turbine performance code and solvers. Sections 2.3 and 2.4 present the measurements
and health parameters and how they map together. Section 2.5 describes the test data,
Section 2.6 presents the estimation methodologies and Section 2.7 shows the overarching
structure when performing diagnostics with the estimated installation effects.

2.1. Gas Turbine Performance Modelling

All simulations are performed with the in-house gas turbine performance code
EVA [43,44]. The program is physics based and makes use of performance maps for
the characteristics of the rotating components. It is a generalized performance program
that solves the system of non-linear equations by assuming conservation of mass and
energy under the assumption of ideal gas as well as Gibbs free energy. The performance of
each component in the gas turbine is calculated from the upstream discharge conditions
and user requirements. The user needs to specify a set of state and target parameters.
The target parameters also need numerical values as input. The program solves the system
of non-linear equations iteratively by updating the state parameters until the desired target
values are achieved. Being an in-house code, full access to all parameters of the gas turbine
is granted and the user can freely select the variables going in to the system of equations,
as long as a sound mathematical solution can be obtained.

The gas turbine model used for the work is a two-spool low-bypass turbofan in the
thrust class of an F414-GE-400, designed and manufactured by GE Aviation, Cincinnati,
OH, USA. It is modelled from performance data found in [45] and engineering judgment.
A principle sketch of the model and its station numbering can be seen in Figure 1. The bleed
flow extraction takes place at station 3 after the high-pressure compressor (HPC) and the
shaft power (Horse Power Extraction, HPX) is extracted from the high-pressure spool.
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2.2. Solver Description and Gas Path Analysis (GPA)

There are different solver principles in EVA depending on the problem at hand.
The default is for solving square system of equations, hereby denoted as determined,
where the number of target variables, M, and state variables, N, is equal. The solver is based
on the Jacobian matrix containing the first-order partial derivatives of the target relative to
the state parameters. In general, the target parameters are set as measurable quantities, such
as gas path measurements, thrust, etc., while the state variables are parameters that may be
adjusted to affect the target parameters, such as component map beta values, bypass ratio,
health parameters, etc. State and target variable vectors are shown in Equations (1) and (2).
From these parameters, the Jacobian matrix J can be derived as in Equation (3).

x =


x1
x1
...

xN

 (1)

z =


z1
z1
...

zM

 (2)

J =


∂z1
∂x1

· · · ∂z1
∂xN

...
. . .

...
∂zM
∂x1

· · · ∂zM
∂xN

 (3)

where x represents the state parameter vector of size N and z represents the target pa-
rameter vector of size M. When solving determined problems, a quasi-Newton method
proposed by Broyden [46,47] is used where the Jacobian is updated according to analytically
approximations. Thereby, the full Jacobian does not need to be recalculated each iteration,
thus reducing the computational cost.

When calculating the operating condition of a healthy gas turbine, only the bare
necessary parameters goes into the state and target parameter vectors. The part of the
Jacobian containing these derivatives is hereby denoted the base Jacobian. When solving
Gas Path Analysis (GPA) problems, additional parameters are added. Health parameters,
representing degradations, are added to the state vector and relevant measurements are
added to the target vector. The size of the Jacobian increases and this variant is hereafter
denoted as the full Jacobian. The part containing the health parameters are called the health
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Jacobian. To estimate the change in health parameters, the system of equations represented
by the full Jacobian is solved.

When performing GPA, the same solver principle as described above applies. The main
difference is, as mentioned, that the state and target variables related to GPA is added to
the vectors x and z. The system of equations is then solved for all target and state variables
and from there, the health parameter values can be extracted. Commonly, this process
is mathematically described by mapping the deltas in measurements to deltas in health
parameters through a Health Coefficient Matrix (HCM). This is shown in Equation (4).
In practice, the HCM is the inverse of the health Jacobian.

∆x = HCM·∆z (4)

The formulation in Equation (4) only consider a linear relationship valid close to the
current operating conditions. Since gas turbine operational behavior is highly nonlinear,
this will lead to large errors if not considered. To overcome this, an iterative approach is
used where each linear result is used as the starting point for a new linear solution with an
updated HCM. The principle is shown in Figure 2.

Machines 2022, 10, x FOR PEER REVIEW 5 of 25 
 

 

health Jacobian. To estimate the change in health parameters, the system of equations rep-
resented by the full Jacobian is solved. 

When performing GPA, the same solver principle as described above applies. The 
main difference is, as mentioned, that the state and target variables related to GPA is 
added to the vectors �̅�𝑥 and 𝑧𝑧̅. The system of equations is then solved for all target and 
state variables and from there, the health parameter values can be extracted. Commonly, 
this process is mathematically described by mapping the deltas in measurements to deltas 
in health parameters through a Health Coefficient Matrix (HCM). This is shown in Equa-
tion (4). In practice, the HCM is the inverse of the health Jacobian. 

Δ�̅�𝑥 = 𝐻𝐻𝐻𝐻𝐻𝐻 ∙ Δ𝑧𝑧̅ (4) 

The formulation in Equation (4) only consider a linear relationship valid close to the 
current operating conditions. Since gas turbine operational behavior is highly nonlinear, 
this will lead to large errors if not considered. To overcome this, an iterative approach is 
used where each linear result is used as the starting point for a new linear solution with 
an updated HCM. The principle is shown in Figure 2. 

 
Figure 2. Iterative approach for solving non-linear GPA. 

When running the solver for underdetermined systems, where M < N, the Jacobian 
matrix is not square and thus it cannot be inverted, effectively prohibiting it to be solved 
with the Broyden solver. Instead, a pseudo-inverse is calculated according to Equation (5). 
The pseudo-inverse Jacobian is then used for calculating the stepping direction to reach 
the final solution. 

𝐽𝐽# = 𝐽𝐽𝑇𝑇(𝐽𝐽𝐽𝐽𝑇𝑇)−1 (5) 

Since there are infinite number of solutions to an underdetermined problem, the final 
solution is dependent on the initial condition when using gradient based solvers, such as 
the pseudo-inverse method. To ensure the solver will always converge to the same solu-
tion for a given set of measurements, the solution from only using the base Jacobian is 
used as the initial condition for the pseudo-inverse solver. Once converged, the health 
Jacobian is added to the base Jacobian to create the full Jacobian and the undetermined 
system is then solved. 

Another concern with underdetermined solvers in non-linear problems is that the 
final solution is also depending on the step size during the iterations. If large steps are 
taken to achieve a fast convergence, overshoots may occur, leading to a different solution 
than with a smaller step size. During the first iterations, when the distance between the 
actual and converged solution is at its greatest, the potential impact due to step size is 

Figure 2. Iterative approach for solving non-linear GPA.

When running the solver for underdetermined systems, where M < N, the Jacobian
matrix is not square and thus it cannot be inverted, effectively prohibiting it to be solved
with the Broyden solver. Instead, a pseudo-inverse is calculated according to Equation (5).
The pseudo-inverse Jacobian is then used for calculating the stepping direction to reach the
final solution.

J# = JT
(

J JT
)−1

(5)

Since there are infinite number of solutions to an underdetermined problem, the final
solution is dependent on the initial condition when using gradient based solvers, such as
the pseudo-inverse method. To ensure the solver will always converge to the same solution
for a given set of measurements, the solution from only using the base Jacobian is used as
the initial condition for the pseudo-inverse solver. Once converged, the health Jacobian
is added to the base Jacobian to create the full Jacobian and the undetermined system is
then solved.

Another concern with underdetermined solvers in non-linear problems is that the final
solution is also depending on the step size during the iterations. If large steps are taken to
achieve a fast convergence, overshoots may occur, leading to a different solution than with
a smaller step size. During the first iterations, when the distance between the actual and
converged solution is at its greatest, the potential impact due to step size is most critical.
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To mitigate this, a small initial step size is used which is gradually increased as the solution
reaches the converged state.

2.3. Measurements and Health Parameters

The measurements used for diagnostics are split into three categories, the first for
ambient measurements, the second for on-board gas path measurements and the third for
airplane measurements. The respective measurements can be seen in Tables 1–3 with the
related measurement uncertainties. The health parameters sought after by the diagnostic
algorithm can be seen in Table 4.

Table 1. Ambient sensors.

Ambient Sensors Name Unit σ in [%]

Static pressure PS0 kPa 0.25
Total pressure P0 kPa 0.25

Total temperature T0 K 0.4

Table 2. Gas turbine sensors.

Gas Path Sensors Name Unit σ in [%]

Fan speed N1 rpm 0.05
Core speed N2 rpm 0.05

Fan discharge temperature T21 K 0.4
LPT discharge temperature T5 K 0.4

Fan discharge pressure P21 kPa 0.25
LPC discharge pressure P3 kPa 0.25
LPT discharge pressure P5 kPa 0.25

Core fuel flow Wf kg/s 2.0

Table 3. Airplane sensors and derived parameters.

Airplane Sensors and Derived
Parameters Name Unit σ in [%]

Customer bleed temperature T3 K 0.4
Customer bleed flow Wbl kg/s 5.0

Shaft power extraction PW2 kW 3.0
Inlet pressure recovery ε - 0.2

Table 4. Health parameters.

Health Parameters Name Unit

Fan efficiency delta ∆ηFan -
Fan flow capacity delta ∆WFan -

HPC efficiency delta ∆ηHPC -
HPC flow capacity delta ∆WHPC -

HPT efficiency delta ∆ηHPT -
HPT flow capacity delta ∆WHPT -

LPT efficiency delta ∆ηLPT -
LPT flow capacity delta ∆WLPT -

The gas turbine measurements are chosen according to the typical instrumentation found
on a GE-F414-class engine [48] while the airplane measurements are chosen based on expec-
tations of what might be found, either directly or indirectly from other measurements, in a
well instrumented airplane system. Two different measurement setups are used in this study.
One setup where all ambient and gas turbine sensors are present, denoted limited sensor suite,
and another setup when also T3 from Table 3 is included, denoted full sensor suite.

The health parameters are deltas in efficiency and flow capacity for all rotating com-
ponents. The definition of the health parameters is according to Equations (6) and (7).
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This means a baseline gas turbine without any degradations will have a delta in efficiency
∆η of 0 and a delta in flow capacity ∆W of 1.

η f ault = ηmap + ∆η (6)

W f ault = Wmap·∆W (7)

2.4. Matching Scheme

Since there are fewer measurements available for diagnostics than health parameters,
a choice has to be made on how to handle the issue for the determined matching scheme.
Either some health parameters are withdrawn from the analysis or a priori relations between
the health parameters are incorporated. For this study, the latter option is selected to
give a more representative view when comparing the results to the underdetermined
diagnostic system.

To determine a baseline matching scheme, i.e., a system that is mathematically solvable
and robust in the presence of measurement noise, a modified version of the framework pre-
sented in [49] is adopted. This ensures a functional setup is provided regarding numerical
stability and convergence. From the framework in [49], a matching scheme is obtained by
discarding both measurements and health parameters if they have a too high correlation to
any other parameter until a determined system is achieved. In this paper, there are two
differences from this method. The first is that no health parameters are discarded due to
correlation to other health parameters. This does not impact the numerical robustness,
even though it may be hard to distinguish two or more highly correlated health parame-
ter in the diagnostic evaluation. The second difference is that for each health parameter
discarded due to insufficient number of measurements, a new estimation of that specific
health parameter is introduced. Depending on the case, Equations (8)–(11) apply:

• If a turbine efficiency is discarded, set:

∆ηHPT = ∆ηLPT ·α1 (8)

• If a turbine flow capacity is discarded, set:

∆WHPT = ∆WLPT ·α2 (9)

• If a fan or compressor efficiency is discarded, set:

∆ηFan = ∆ηHPC·α3 (10)

• If a fan or compressor flow capacity is discarded, set:

∆WFan = ∆WHPC·α4 (11)

The variables α1, α2, α3, and α4 represent the interrelationship of degradation between
the respective components. For this work, it is assumed that these values are unknown and
a value need to be selected. Picking an incorrect value will lead to an erroneous estimated
degradation pattern. It will be shown later that having an erroneous degradation pattern is
more challenging for the installation effect routines. Therefore, to challenge the installation
effect routines more, a value of one is chosen for the variables α1 to α4, even though it is an
incorrect value.

Whenever Equations (8)–(11) are used, it is hereafter denoted as equal hurt. For the
case of the underdetermined problems, all available direct measurements are used in
combination with all health parameters. The various matching schemes are presented in
table format in Appendix A. Note that the assumptions in Equations (8)–(11) are just one
of many possible setup. Another method could be to set the change in flow capacity as a
function of the change in efficiency for each turbine.
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2.5. Test Data

The data used for the analysis are limited to synthesized data using the performance
model. The gas turbine operating condition is set according to the flight envelope depicted
in Figure 3. The shaded areas represent all possible operating conditions and the nominal
ambient condition marker represent the most likely operation conditions. Each test data
point is randomly selected with a Gaussian distribution in Mach and altitude, while the fan
speed is uniformly distributed with the min and max limits determined by the Mach number.
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The effect on diagnostic accuracy due to erroneous airplane installation effects has
been simulated. The nominal and erroneous values are found in Table 5. Note that the
levels of the different installation effects do not represent a specific airplane system but
should rather be viewed as estimated (but still realistic) values. These data go into the
sensitivity analysis presented in Section 3.1.

Table 5. Installation effect nominal and erroneous values.

Installation Effect Nominal Value Erroneous Value Unit

Inlet pressure recovery 0.99 0.98 -
Customer bleed flow extraction 2.5 1.5 % of W3

Shaft power extraction 70 50 kW

A gradual degradation pattern has been simulated according to Table 6. The degrada-
tion levels are taken from [50] and a linear degradation from healthy to a fully degraded
state over 5000 cycles is assumed. Note that since the gas turbine configuration differs to
the one used in ProDIMES, from where the degradation pattern is taken, the degradation of
the fan in Table 6 relates to the degradation of the LPC in ProDIMES, since they are the most
geometrically similar components. The relative degradation pattern (where 0 indicates a
healthy condition) can also be seen in Figure 4.

Table 6. Gradual degradation pattern.

Fan HPC HPT LPT
∆η ∆W ∆η ∆W ∆η ∆W ∆η ∆W

−1.5 −2.5 −5 −10 −1.5 1 −0.25 0.25
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2.6. Installation Effect Estimation

Before the installation effects are estimated, a choice must be made whether they
should be estimated independent of each other or in a sequence. For this study, the se-
quential option was selected based on the results from the installation effect sensitivity
analysis, which is described in Section 3.1 later in this paper. From that analysis it can be
concluded that the pressure recovery effect on the fan efficiency is not influenced by either
the bleed flow or shaft power extraction. Therefore, the pressure recovery effect can be
isolated, making it a suitable candidate to be estimated first. In a second step the bleed flow
is estimated since it has a higher influence on the health parameters when compared to the
shaft power. In other words, an unknown shaft power extraction will influence the bleed
flow estimation less than the other way around.

2.6.1. Pressure Recovery Estimation

In the case of pressure recovery, first-order effects are a function of the geometrical
shape of the air intakes and ducts, Mach number, corrected air flow and angle of attack
(AoA) and sideslip (AoSS). Second-order effects may include Reynold number effects.
Since the air intake mass flow is not measured, a common approach is to use corrected
fan speed instead [51]. Because no pressure measurement is available in front of the fan,
it is not possible to directly determine the pressure recovery from measurements. Instead,
the fan discharge pressure is utilized, where the estimated fan pressure ratio is deducted to
get an indirect measurement of the pressure P2. When the fan health status is unknown,
this pose an uncertainty.

To perform the pressure recovery estimation, GPA is used. The matching scheme is
built up by using the installation effects, i.e., pressure recovery, bleed-flow and shaft power,
as state variables and the pressures P21, P3 and P5 as target variables. All health parameters
adopt the values from the previous cycle. The rationale for selecting the pressures as target
values for the pressure recovery can be seen in Figure 5. The bars show the sensitivity in
measurements as a function of changes in installation effects. Larger values mean a strong
coupling between the measurement and installation effect.
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Figure 5. Sensitivity of measurements at different degradation patterns.

During operation, data from each cycle are collected, from which the pressure recovery
is estimated. Once a predefined number of pressure recovery data points has been gathered
(in this work set to 40), a scattered database, from which the pressure recovery can be
interpolated, is created through a Delaunay triangulation [52]. For the pressure recovery
estimation, it is assumed that the pressure recovery is a function of Mach number and
corrected fan speed. An example of a pressure recovery scattered data grid can be seen
in Figure 6. Each grid node correspond to a pressure recovery value. Once the grid is
created with the predefined set of data points, the pressure recovery can be calculated by
interpolating from the nearest nodes. If an operating condition outside the grid occurs,
a new value is estimated through the GPA process and added to the database, effectively
increasing the total size of the grid.
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To reduce the effect of measurement noise, a smoothing of the estimated values in
the Delaunay grid is performed. As a first step, the length between the connected nodes
is calculated. If a length is below a predefined threshold, the nodes are replaced with a
new node in the center of the two nodes holding the average value of the two original
nodes. This process is continued until all node lengths are above the threshold. After this,
an interpolation to the center points of the triangular elements is performed. These new
data then replace all internal data points in the grid, reducing the effect of noise but at a
small cost of smoothed-out curvatures in the grid.
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2.6.2. Bleed Flow and Shaft Power Estimation

Bleed flow and shaft power are highly dependent on the airplane subsystem operating
conditions. Bleed flow is commonly extracted to drive the environmental control system
(ECS), responsible for pressurizing and heating the cabin as well as cooling electronic
equipment. Mechanical shaft power drives the hydraulic system and generators through a
gearbox. The power consumption may vary significantly if certain equipment, such as a
radar or jamming equipment, is either on or off.

Both the installation effects and the current health status of the gas turbine affect the
measurements. Therefore, it is not possible to estimate the installation effects only by analy-
sis of synthesis, since this requires the health parameters to be known. Trying to extract both
the installation effects and health parameters this way will lead to a continuously increasing
fault. Therefore, each estimation of the installation effect is performed only through the
available measurements and known operating conditions. To do this, a feedforward neural
network (NN) is trained to estimate the bleed flow and shaft power, respectively. The setup
for estimating the bleed flow with the full sensor suite can be seen in Figure 7. In the case of
the limited sensor suite, the T3 input node is removed. When the shaft power is considered,
the network also use the estimated bleed flow as an additional input.
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A Multi-Layer Perceptron (MLP) network was selected since it is expected to perform
fairly well for the type of data fitting problem. It make use of sigmoid transfer functions
and it was trained with a Levenberg–Marquardt backpropagation algorithm. All available
measurements was selected as input to the networks. Even though some measurements
are hardly influenced by certain installation effects, as seen in Figure 5, including more
measurements provides more interrelationships between measurements, thereby enabling
a better noise filtration by the networks. The number of nodes selected for the hidden layer
was based on previous experience for this type of network. There are most likely other
NN designs that can perform better than the selected design, but optimization of the NN
selection process is out of scope for this study.

The data used for training the networks come from simulations where a predefined
degradation pattern is assumed. Initial training is here chosen as a uniform degradation
of −3% for all health parameters. This approach means that the networks are tailored
to a specific degradation pattern and, if it is correctly assumed, the outputs estimated
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will have a high accuracy. If however the assumed degradation pattern deviate from the
actual, the assumed installation effects will also deviate. To overcome this, yet another
assumption is made:

• It is assumed that the average bleed flow and shaft power are constant over time.

It is worth noticing that this assumption may not be exactly correct since mechanical
constructions, such as valves, pressure vessels, etc., tend to leak more when they age.
This could potentially cause an old airplane to consume more bleed air than a new. If actual
values of increased leakage is known it could be included in the assumption to further
enhance it. In the proposed work, no additional leakage due to ageing is considered.

Through the assumption, correction factors for the bleed flow and shaft power can be
established by looking at the change in the moving average over time. To get the correction
factors, an average value over a window size of 10 cycles was taken from the network
outputs. The average data were then used in a linear regression intersecting origo to get the
derivative dy

dx . Multiplied with the current cycle, C, the correction factor, CF, is calculated
according to Equation (12). The final estimated installation effect, IEEst, is then calculated
by adding the correction factor to the network output, IENN , according to Equation (13).

CF =
dy
dx

·C (12)

IEEst = IENN + CF (13)

Note that this method implies a constant change in health parameter degradation over
the cycles. If the data for the correction factor are taken at instances where the change in
degradation between them is not constant, the cycle positions need to be transformed to
values representing a constant degradation.

When the correction factors for either the bleed flow or the shaft power exceed a
predefined threshold, in the present work set to 1% and 50 kW for the bleed flow and
shaft power, respectively, a recalibration or limitation of both networks is triggered. If the
estimated health parameters indicate a degradation pattern other than the pattern used for
training the networks, new networks are retrained with the current degradation pattern.
If there are only minor changes in degradation pattern, instead of retraining, a limiter
is applied to the network output where the minimum and maximum of the previously
estimated installation effects are used as the limits. This is completed to dampen the large
fluctuations that may arise when the correction factor may continuously grow to values
larger than the network estimations.

2.7. Diagnostic Framework

When performing diagnostics with the estimated installation effects, the process
is according to Figure 8. For each of the 5000 cycles, the following steps are executed.
Note that these steps are also numbered in Figure 8.

1. The measurements are filtered an outliers are removed. Since this study is performed
on simulated data, this process is already taken care of in the data creation process.

2. The pressure recovery is estimated according to the process described in Section 2.6.1.
3. The bleed flow and shaft power is estimated according to the process described in

Section 2.6.2.
4. GPA diagnostics is performed using the estimated installation effects and for all

combinations of solvers and matching schemes. The GPA process and solvers are
described in Section 2.2 and the matching schemes in Section 2.4.

5. A check is performed if the bleed flow and shaft power estimations are still valid by
evaluating the correction factors from Equation (12). If any correction factor exceeds
the threshold specified in Section 2.6.2, an event is triggered. If the current degradation
pattern from step 4 differs from the one used for training the bleed and shaft power
NN, they are retrained with the current degradation pattern. If not, the min- and
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maximum value of the correction factor is limited to the lowest and highest values
obtained up to this cycle.
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3. Results and Discussion

In this section, a sensitivity analysis and the effectiveness of the proposed diagnostic
framework is presented. In Section 3.1, the effect on diagnostic accuracy in the presence of
erroneous installation effects is thoroughly covered. Section 3.2 present the performance of
the proposed method for the two different solvers and matching schemes. Comparisons to
best constant guess and exact installation effects are also included.

3.1. Installation Effect Sensitivity Analysis

A sensitivity analysis was performed to assess the effect of erroneous airplane installa-
tion effects on a healthy gas turbine. It was performed by varying the installation effects
according to Table 5 at a cruise operating condition. Measurement noise was according to
Tables 1–3. In Figure 9, the effect on the fan and compressor health parameters can be seen.
The installation effects are grouped on the y-axis of the chart while the different solvers
and matching schemes are represented by the various markers. The location of the marker
show the average deviation from the nominal value while the bars represent the maximum
level of scatter due to the implanted measurement noise.

From Figure 9, it is obvious that the pressure recovery has a major impact on the
fan health parameters. Having an erroneous pressure recovery is directly proportional to
performing the analysis at a biased fan pressure ratio. Here, the gas turbine model believes
that the fan pressure ratio is higher than it is, leading to a higher component map β-value.
The corresponding mass flow from the component map is subsequently lower due to the
higher pressure ratio at a constant speed, while the actual mass flow, as dictated by the
HPT flow capacity, remains unchanged. To account for the lower estimated mass flow from
the component map, the delta in flow capacity is increased.

The increase in efficiency is also an effect of the erroneous increase in the pressure
ratio. This cause the corresponding temperature for an isentropic compression to increase,
thus reducing the delta between the actual and isentropic discharge temperature, which is
interpreted as an increased isentropic efficiency.
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Figure 9. Fan and compressor sensitivity to erroneous installation effects.

An interesting feature related to the effect from the pressure recovery is that the
effect on the flow capacity health parameter is highly dependent on the component map
operating point. The reason for the corresponding flow capacity amplifying the predicted
fault (1% error in pressure recovery leading to >1% fault in flow capacity) is the correlation
between the pressure ratio and corrected mass flow at a constant speed line. If second-order
effects, such as potential influence from a slightly wrong HPT capacity due to the erroneous
pressure recovery, are neglected and the angle α in Figure 10 is 45◦, the ratio between
pressure ratio and corrected mass flow is 1:1. Such an operating point is seen at location
A in the figure. A lower angle gives an amplification of the estimated health parameter,
as in location B, and a higher angle a reduced influence from the pressure recovery, as in
location C. This means that the health parameter estimation is less sensitive to errors in
pressure recovery at high power settings, where the speed-lines are more vertical, than at
part-power settings. Another effect worth keeping in mind is the uncertainty of erroneous
pressure recovery also become higher at small fan pressure ratios. This is because the ratio
of the magnitude of the fault compared to the fan pressure ratio is higher than at high
pressure ratios.
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From Figure 9, it is also clear that the customer bleed flow extraction is of importance
when estimating the fan flow capacity. This is an effect of the mismatch between the actual
and estimated mass flow going through the fan and compressor. Since the erroneous bleed
flow indicates a smaller mass flow fraction extracted than it actually is, the mass flow
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through the fan and compressor is estimated to a higher value. To match the downstream
HPT capacity, the delta in flow capacity is decreased. On a first-order basis, the magnitude
of the decrease in flow capacity is a function of the bypass ratio according to Equation (14).
The term ∆W3error is the magnitude of the erroneous bleed flow estimation in percent and
BPR is the bypass ratio. HOT denotes high order terms neglected in this simplification.
It then becomes clear that high-bypass turbofans are less sensitive to erroneous customer
bleed flow extraction when estimating the fan performance.

∆WFan = f
(

∆W3error

BPR

)
+ HOT (14)

Regarding the HPC flow capacity, the only installation effect having a significant
impact on it is the customer bleed flow extraction. The effect is the same as discussed
for the fan and the magnitude can be described by Equation (15), considering that all
mass flow from the HPC will enter the HPT. The effect on the delta in HPC efficiency is
slightly more scattered and is dependent on the numerical solver principle and sensors
available. It can be seen that if a full sensor suite is applied, i.e., including the HPC
discharge temperature T3 in the analysis, the effect on the efficiency is negligible. This is
due to having a complete knowledge of the pressure and temperature ratio over the HPC,
which are the main parameters for the isentropic efficiency. Removing T3 from the analysis,
as in the limited sensor suite, causes some variation in the results. The effect from pressure
recovery on the HPC is relatively small and can be neglected, but an erroneous bleed flow
level has a noticeable impact on HPC performance predictions.

∆WHPC = f (∆W3error) + HOT (15)

For both the determined and underdetermined solver, a negative delta in HPC effi-
ciency is estimated due to erroneous bleed flow. This is due to a slightly overestimated
value of T3. To understand this effect, the effect of the HPT and LPT, as seen in Figure 11,
needs to be taken into account. Since the modelled bleed flow is lower than the actual value,
the mass flow going through the fan is reduced while the temperature ratio, and thus the
change in enthalpy, remains constant. The reduced mass flow cause the power of the LP
shaft to be underestimated, thereby reducing the work produced by the LPT, leading to a
lower temperature ratio over the LPT. Since T5 is known, it manifests as an underestimation
of the turbine intermittent temperature T47. As a result, the combustion outlet temperature
T4 is also reduced to keep the HPT power in balance with the HPC, causing the fuel flow
to be reduced. For the turbines, the reduction in shaft power is seen as a reduction in
the temperature ratio and a corresponding drop in isentropic efficiency, while the HPC
efficiency is also reduced due to increased T3 and reduced mass flow.

Machines 2022, 10, x FOR PEER REVIEW 16 of 25 
 

 

ing to a lower temperature ratio over the LPT. Since T5 is known, it manifests as an un-
derestimation of the turbine intermittent temperature T47. As a result, the combustion 
outlet temperature T4 is also reduced to keep the HPT power in balance with the HPC, 
causing the fuel flow to be reduced. For the turbines, the reduction in shaft power is seen 
as a reduction in the temperature ratio and a corresponding drop in isentropic efficiency, 
while the HPC efficiency is also reduced due to increased T3 and reduced mass flow. 

 
Figure 11. Turbine sensitivity to erroneous installation effects. 

The effect of erroneous shaft power extraction vary significantly depending on the 
solver and sensor suite. For instance, if a full sensor suite is used, the HPC degradation is 
correctly identified and the fault instead ends up on the turbine health estimation. Since a 
lower shaft power is assumed, compared to the actual shaft power extracted from the HP 
shaft, and the temperature ratio and mass flow over the HPC is known, the power con-
sumed by the HPC is correctly estimated. The power delivered by the HPT directly fol-
lows the energy balance in accordance with Equation (16). The variable 𝐵𝐵𝑊𝑊 denotes shaft 
power while the prefix c, t and x stands for compressor, turbine and extraction (external 
shaft power extraction). 𝜂𝜂𝑆𝑆ℎ𝑓𝑓𝑓𝑓𝑓𝑓 is the mechanical efficiency of the shaft. The notation im-
plies a positive value of the turbine power and negative for the compressor and extraction. 

(𝐵𝐵𝑊𝑊𝐻𝐻 + 𝐵𝐵𝑊𝑊𝑋𝑋) + �𝐵𝐵𝑊𝑊𝑇𝑇 ∙ 𝜂𝜂𝑆𝑆ℎ𝑓𝑓𝑓𝑓𝑓𝑓� = 0 (16) 

From Equation (16), it is seen that the turbine power will be matched to the compres-
sor and the reduced shaft power extraction 𝐵𝐵𝑊𝑊𝑋𝑋 leads to a reduced turbine power. Since 
the LPT outlet temperature T5 is matched and the LP shaft power is in essence unaffected 
by the erroneous shaft power extraction, the intermittent turbine temperature T47 remains 
correct. To balance the system, the fuel flow is increased, thus increasing the HPT inlet 
temperature and HPT temperature ratio, leading to the increase in HPT isentropic effi-
ciency. The LPT isentropic efficiency is also increased for the determined solver as a con-
sequence of the assumed turbine equal hurt. The deviation in HPT corrected mass flow 
come as a secondary effect due to the change in fuel flow. The magnitude of these uncer-
tainties is, however, very small. In the limited sensor suite, the principle is the same but 
the error tends to be smeared over the turbines and the HPC instead of just the turbines. 

As a general difference in behavior between the two sensor suites, it is clear that the 
full sensor suite pushes the effect of the erroneous installation effects toward the turbines, 
unless a compressing component is directly affected. Between the two different solvers, it 
is apparent that the underdetermined solver experience a lot more scattered results, an 
effect of the theoretically infinite number of mathematical solutions. The scatter seems to 
be mostly focused on the turbines, since those are poorly instrumented and, therefore, 
have a higher degree of freedom in the estimated health parameters. 

Figure 11. Turbine sensitivity to erroneous installation effects.



Machines 2022, 10, 36 16 of 25

The effect of erroneous shaft power extraction vary significantly depending on the
solver and sensor suite. For instance, if a full sensor suite is used, the HPC degradation is
correctly identified and the fault instead ends up on the turbine health estimation. Since a
lower shaft power is assumed, compared to the actual shaft power extracted from the
HP shaft, and the temperature ratio and mass flow over the HPC is known, the power
consumed by the HPC is correctly estimated. The power delivered by the HPT directly
follows the energy balance in accordance with Equation (16). The variable PW denotes shaft
power while the prefix c, t and x stands for compressor, turbine and extraction (external
shaft power extraction). ηSha f t is the mechanical efficiency of the shaft. The notation implies
a positive value of the turbine power and negative for the compressor and extraction.

(PWC + PWX) +
(

PWT ·ηSha f t

)
= 0 (16)

From Equation (16), it is seen that the turbine power will be matched to the compressor
and the reduced shaft power extraction PWX leads to a reduced turbine power. Since the
LPT outlet temperature T5 is matched and the LP shaft power is in essence unaffected by
the erroneous shaft power extraction, the intermittent turbine temperature T47 remains
correct. To balance the system, the fuel flow is increased, thus increasing the HPT inlet
temperature and HPT temperature ratio, leading to the increase in HPT isentropic efficiency.
The LPT isentropic efficiency is also increased for the determined solver as a consequence
of the assumed turbine equal hurt. The deviation in HPT corrected mass flow come as a
secondary effect due to the change in fuel flow. The magnitude of these uncertainties is,
however, very small. In the limited sensor suite, the principle is the same but the error
tends to be smeared over the turbines and the HPC instead of just the turbines.

As a general difference in behavior between the two sensor suites, it is clear that the
full sensor suite pushes the effect of the erroneous installation effects toward the turbines,
unless a compressing component is directly affected. Between the two different solvers, it is
apparent that the underdetermined solver experience a lot more scattered results, an effect
of the theoretically infinite number of mathematical solutions. The scatter seems to be
mostly focused on the turbines, since those are poorly instrumented and, therefore, have a
higher degree of freedom in the estimated health parameters.

3.2. Assessment of Proposed Method

To assess the effectiveness of the diagnostic framework, as proposed in Figure 8, it was
applied to a dataset with a linear increase in degradation over 5000 cycles. In Figures 12
and 13, probability density functions (PDF) of the uncertainties of the estimated installation
effects can be seen. Both figures show results from the determined matching scheme with
the full sensor suite. Figure 12 is without measurement noise and Figure 13 is with noise.
The absolute deviation shown in the histogram use the definition for the pressure recovery
and bleed flow according to Equation (17) and the shaft power according to Equation
(18). ∆Abs denotes the absolute deviation, while IEEst and IEActual represent estimated and
actual installation effect values. The dashed lines show the average estimation error.

∆Abs = (IEEst − IEActual)·100 (17)

∆Abs = IEEst − IEActual (18)

At first glance, the noise-free results in Figure 12 suggest that the best estimation is
achieved for the pressure recovery. This is an expected result since the unknown variables
in the estimation are mainly the fan health. All other unknowns have either none or only
a secondary effect on the pressure recovery estimation, thereby reducing the number of
potential uncertainties. Thereafter comes the bleed flow with slightly more spread-out
results, since there are more dependencies to the various health estimations. The least
accurate estimation is for the shaft power. This is because of the relatively small influence
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an erroneous shaft power has on the measurements. Additionally, the NN estimating the
shaft power use the bleed flow estimation as input.
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Comparing the noise-inclusive result in Figure 13 with the noise-free in Figure 12,
a significant increase in uncertainty in pressure recovery is noted. This is a drawback of the
method chosen where the errors from the pressure recovery database creation influence all
subsequent estimations. This effect could be reduced either by increased smoothing the
database, at the risk of smearing out potential curvatures, or continuously updating the
database to get a sample size large enough for the noise to be filtered out. Both the bleed
flow and shaft power estimations show fairly similar results as the noise-free case when it
comes to the minimum and maximum deviations but with a slightly larger spread in the
results for the noise-inclusive cases. A summary of the mean and standard deviation of
the absolute deviation for the installation effects for both the noise-free and noise-inclusive
results can be seen in Tables 7 and 8.
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Table 7. Estimated installation effect deviation, without measurement noise.

Matching Scheme Sensor Suite Pressure Recovery Bleed Flow Shaft Power

Mean σ Mean σ Mean σ

Determined
Full −0.0199 0.127 −0.0736 0.248 1.91 39.8

Limited −0.0209 0.127 −0.0738 0.181 −0.217 25.5

Underdetermined
Full −0.021 0.127 −0.0697 0.206 1.31 35.1

Limited −0.0209 0.127 −0.0804 0.304 −0.156 63.3

Table 8. Estimated installation effect deviation, with measurement noise.

Matching Scheme Sensor Suite Pressure Recovery Bleed Flow Shaft Power

Mean σ Mean σ Mean σ

Determined
Full 0.144 0.624 −0.104 0.391 0.155 32.0

Limited −0.0103 0.695 −0.0856 0.404 0.942 34.2

Underdetermined
Full 0.0239 0.706 −0.126 0.776 0.35 36.7

Limited −0.652 0.688 −0.165 1.08 0.809 35.6

From Table 7, it is clear that the pressure recovery estimation accuracy is unaffected
by the matching scheme as well as the sensor suite selection. This seems reasonable
having in mind that the fan instrumentation remain unchanged for all combinations.
The mean error is very small and the standard deviation also show relatively limited scatter.
This observation dictates that the deviations between the matching schemes and sensor suite
regarding the pressure recovery seen in Table 8 is only a product of the measurement noise,
indicating that the pressure recovery estimation routine suffers from lack of robustness.

For the bleed flow estimation, some differences between the setups takes place.
Without noise, the mean error is about the same for all cases but the standard devia-
tion varies. For the noise-inclusive results, the scatter is in general higher but it is clear that
the determined matching scheme yields better results than the underdetermined method.
Since this behavior is not seen without noise, it could either be a random effect by the noise
or an effect of the neural networks having to deal with both the noise and a wider solution
space in the training data.

The shaft power estimation shows a pattern with lower mean error and a higher
scatter for the limited sensor suite compared to the full sensor suite for the noise-free
cases. However, noise inclusive cases indicate the opposite. It is noted that the scatter of
the noise-free-determined matching scheme with limited sensor suite does not, however,
follow this trend. The reason for this will be highlighted later in this section. The mean
error for the noise-free cases indicates that it is a disadvantage to include the measurement
T3 in the estimation, which makes sense given the sensitivity shown in Figure 5. Includ-
ing measurement noise, however, shows the opposite. This is an effect of better noise
filtering from the network, since more measurements means more interrelationships to be
used to separate noise from physical changes in the measurements.

As mentioned above, the standard deviation of the estimated shaft power for the
determined matching scheme with the limited sensor suite does not follow the general
trend. This can be traced to the correction factor described in Equation (12). In Figure 14,
all correction factors for the noise-free results can be seen. A high correction factor implies
that the network is performing estimations at conditions far away from the data it was
trained on, thereby indicating a reduced accuracy.
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An interesting feature from Figure 14 is the correction factor for the shaft power. It is
seen that the correction factor for the determined solver with limited sensor suite is very
close to zero during the complete set of cycles. Therefore, the threshold for limiting the
network output was never triggered and toward the end of the cycles, several unphysical
outliers showing negative power extraction occurred.

A low correction factor could be a sign of an estimated degradation pattern close to
the actual pattern but, as will be shown later, it is not the case here. However, training
the network on a degradation pattern different to the actual does not guarantee that the
estimations will diverge. For this specific case the issue could have been identified and
handled since the error in bleed flow estimation, which is trained on the same data, steadily
increases. Worth noticing in the shaft power estimation is that even though the correction
factor is low the scatter, and thereby the RMS value of the estimated shaft power, steadily
increased with the cycles. For this particular case, RMS would have been a better estimator
for when limiters should be applied to the estimation.

In Tables 9 and 10, the actual as well as the estimated degradation patterns can be seen
without and with measurement noise. For the compressing components the results are
fairly good for all cases, apart from the compressor efficiency when the limited sensor suite
is used. This is because the compressor discharge temperature T3 is highly correlated to the
compressor efficiency. Without it, the compressor degradation will be smeared out over the
compressor and turbines. The impact from not considering a T3 measurement is also shown
in the poor HPT flow capacity estimation. Therefore, the combustor inlet temperature is
off, leading to an erroneous fuel flow, thereby affecting the HPT flow capacity.

Table 9. Actual and estimated degradation patterns, without measurement noise. * Efficiency equal
hurt assumed. ** Flow capacity equal hurt assumed.

∆ηFan ∆WFan ∆ηHPC ∆WHPC ∆ηHPT ∆WHPT ∆ηLPT ∆WLPT

Actual −1.50 −2.50 −5.00 −10.0 −1.50 1.00 −0.250 0.250

Determined
Full −1.47 −2.51 −4.98 −10.0 −0.836 * 1.04 −0.836 * −0.363

Limited −1.47 −2.42 −7.95 −9.91 0.846 * 1.43 ** 0.846 * 1.43 **

Underdetermined
Full −1.47 −2.48 −4.98 −9.99 −1.24 1.02 0.762 1.40

Limited −1.47 −2.54 −2.17 −10.1 −4.12 0.669 0.323 0.982
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Table 10. Actual and estimated degradation patterns, with measurement noise. * Efficiency equal
hurt assumed. ** Flow capacity equal hurt assumed.

∆ηFan ∆WFan ∆ηHPC ∆WHPC ∆ηHPT ∆WHPT ∆ηLPT ∆WLPT

Actual −1.50 −2.50 −5.00 −10.0 −1.50 1.00 −0.250 0.250

Determined
Full −1.76 −2.84 −4.77 −10.0 −0.984 * 0.90 −0.984 * −0.599

Limited −1.60 −2.59 −7.62 −9.99 0.783 * 1.32 ** 0.783 * 1.32 **

Underdetermined
Full −1.65 −2.69 −4.77 −10.0 −2.02 0.907 0.733 1.32

Limited −1.53 −2.64 −2.30 −10.1 −4.27 0.561 0.373 1.01

To evaluate the performance of the proposed model, simulations representing best
and worst-case estimations has been performed. In the best case, the exact values of all
installation effects are assumed while constant values for the bleed flow and shaft power
are assumed for the worst-case scenario. In the worst-case scenario, constant-bleed flow
and shaft power is assumed. The values adopted are the average over the total number of
cycles, implying the user know the overall operational profile of the installation effects but
not the actual value at a given instance. Additionally, two different estimation methods for
the pressure recovery has been used for the worst case. One where the pressure recovery
is estimated by the proposed model and one where the pressure recovery is assumed to
be unknown and estimated in accordance with MIL-E-5007 [53]. The results from the
noise-free cases for the determined solver and full sensor suite can be seen in Table 11.

Table 11. Actual and estimated degradation patterns, without measurement noise for various
installation effect estimation methods. * Efficiency equal hurt assumed. + Pressure recovery according
to proposed model. ++ Pressure recovery according to MIL-E-5007.

∆ηFan ∆WFan ∆ηHPC ∆WHPC ∆ηHPT ∆WHPT ∆ηLPT ∆WLPT

Actual −1.50 −2.50 −5.00 −10.0 −1.50 1.00 −0.250 0.250
Proposed model −1.47 −2.51 −4.98 −10.0 −0.836 * 1.04 −0.836 * −0.363

Exact effects −1.54 −2.49 −4.77 −9.95 −1.09 * 0.871 −1.09 * −0.778
Constant effects + −1.65 −2.64 −4.97 −9.87 −1.01 * 0.992 −1.01 * −0.663
Constant effects ++ −2.63 −3.99 −4.97 −9.87 −1.01 * 0.992 −1.01 * −0.663

From Table 11, it can be concluded that there are only minor differences between the
proposed model and both the best and worst-case scenarios when it comes to the estimated
degradation pattern. The fan degradation estimation is however slightly worse for the
worst-case scenario when the proposed pressure recovery model is used. This is an effect of
the poor bleed flow estimation, causing a slightly erroneous health estimation in the phase
where the pressure recovery scattered interpolation grid is constructed. Those errors then
become permanent since the pressure recovery model is used throughout the cycles.

It is clear from Table 11 that the effect of erroneous pressure recovery only has an
impact on the fan degradation. When comparing the two worst-case results, the MIL-E-5007
pressure recovery estimation is always higher than the actual value. It is manifested through
a higher magnitude of the efficiency degradation and, to balance the equations, the mass
flow degradation is also estimated at a higher value. This is expected according to the
sensitivity analysis shown in Figure 9. All other health parameter estimations downstream
are identical between the two worst-case scenarios.

For the compressor, the largest deviation is for the efficiency where it differs ap-
proximately 0.2%. Interestingly, the model prediction is slightly better than the best case.
This comes from the small underestimation in the average predicted bleed flow of approx.
−0.07%, as can be seen in Table 7. From the sensitivity analysis in Figure 9, it is also clear
that a lower bleed flow estimation cause a lower compressor efficiency and flow capacity
health parameter estimation, just like the result shows. Note that since the result from the
proposed model incorporates installation effects estimations from neural networks that has
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been trained on data where noise was added, the proposed model results could potentially
differ slightly when rerun. It is, therefore, not possible to conclude that the model always
will perform better than the best case only based on one case.

The differences in turbine health parameters are mainly an effect of the erroneous
equal hurt assumption, resulting in the health estimations being smeared out over the
turbines. Since the erroneous assumption of uniform equal hurt for the turbine efficiency
prohibits an exactly correct health parameter estimation, no method will get it correct.
Based on the numerical values between the methods, all cases seem to be performing
roughly similarly.

The fact that all cases in Table 11 show such similar result, except for the fan health
parameters estimation when using the MIL-E-5007 pressure recovery estimation, is expected
since the average value of all installation effects are correct, thereby causing the degradation
pattern to be similar. If the average estimation of any installation effect are to be incorrect,
the fault in degradation pattern will be seen with a magnitude proportional to the results
seen in the sensitivity analyses in Figures 9 and 11.

The major deviations between the methods is seen in the scatter of the health parameter
estimations. In Table 12, the RMS values for each health parameters are presented. Note the
scaling factor for making the table more readable. Just like in Table 11, only the results for
the determined solver with the full sensor suite is shown.

Table 12. Actual and estimated RMS value of health parameters, without measurement noise for
various installation effect estimation methods. * Efficiency equal hurt assumed. + Pressure recovery
according to proposed model. ++ Pressure recovery according to MIL-E-5007.

RMS × 103 ∆ηFan ∆WFan ∆ηHPC ∆WHPC ∆ηHPT ∆WHPT ∆ηLPT ∆WLPT

Proposed model 1.42 2.48 0.124 2.51 2.28 * 0.479 2.28 * 2.65
Exact effects 0.140 0.0658 0.124 0.347 0.0547 * 0.0281 0.0547 * 0.184

Constant effects + 1.92 9.48 0.173 12.9 9.03 * 1.09 9.03 * 3.80
Constant effects ++ 7.76 13.5 0.173 12.9 9.04 * 1.09 9.04 * 3.82

From Table 12, it is clear that the proposed model significantly reduces the scatter
compared with the constant installation effects estimations, except for the compressor
efficiency where all methods show similar results. It is also clear that better installation
effect estimations can reduce the scatter even further. Compared to the constant installation
effect estimation (with the proposed pressure recovery model), the proposed model is able
to reduce the RMS value by 26% for ∆ηFan up to 80% for ∆WHPC.

4. Conclusions

In this paper, a framework for estimating airplane installation effects to mitigate the
negative impact on GPA diagnostic results is presented. The installation effect estimation
framework is reasonably accurate when excluding measurement noise but suffers from
poor robustness to measurement noise in the case of the pressure recovery estimation.
The methodology of using a correction factor to account for unknown degradation patterns
shows good performance, but could benefit from improved tuning related to limitations
in shaft power estimation. The proposed method shows the same degradation pattern
as when all installation effects are known. Furthermore, compared to assuming the most
accurate, but constant, installation effects, the proposed method manages to reduce the
scatter in health parameter estimation from 26% (for the fan efficiency) to 80% (for the HPC
flow capacity).
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Nomenclature
AANN Auto Associative Neural Network
AoA Angle of Attack
AoSS Angle of Sideslip
BN Bayesian Network
BPR Bypass Ratio
ECS Environmental Control System
EKF Extended Kalman Filter
ELM Extreme Learning Machine
EVA Environmental Assessment
GE General Electric
GPA Gas Path Analysis
HCM Health Coefficient Matrix
HOT High Order Term
HP High Pressure
HPC High-Pressure Compressor
HPT High-Pressure Turbine
HPX Horse Power Extraction (and Shaft Power Extraction)
KF Kalman Filter
LP Low Pressure
LPT Low-Pressure Compressor
MLP Multilayer Perceptron
NARX Nonlinear Auto-Regressive Exogenous model
NN Neural Network
RMS Root Mean Square

Appendix A

In this appendix, the various diagnostic matching schemes used throughout the paper
is presented. Note that the fan speed is not included. This is because it is used to control
the fuel flow and therefore not included in the diagnostic matching scheme.

Table A1. Determined solver, full sensor suite.

Target Variables State Variables

N2 ∆ηFan
T21 ∆WFan
T3 ∆ηHPC
T5 ∆WHPC
P21 ∆ηHPT = ∆ηLPT
P3 ∆WHPT
P5 ∆WLPT

Table A2. Determined solver, limited sensor suite.

Target Variables State Variables

N2 ∆ηFan
T21 ∆WFan
T5 ∆ηHPC
P21 ∆WHPC
P3 ∆ηHPT = ∆ηLPT
P5 ∆WHPT = ∆WLPT
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Table A3. Underdetermined solver, full sensor suite.

Target Variables State Variables

N2 ∆ηFan
T21 ∆WFan
T3 ∆ηHPC
T5 ∆WHPC
P21 ∆ηHPT
P3 ∆WHPT
P5 ∆ηLPT

∆WLPT

Table A4. Underdetermined solver, limited sensor suite.

Target Variables State Variables

N2 ∆ηFan
T21 ∆WFan
T5 ∆ηHPC
P21 ∆WHPC
P3 ∆ηHPT
P5 ∆WHPT

∆ηLPT
∆WLPT
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