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Abstract: SLAM (Simultaneous Localization and Mapping) based on lidar is an important method for
UGV (Unmanned Ground Vehicle) localization in real time under GNSS (Global Navigation Satellite
System)-denied situations. However, dynamic objects in real-world scenarios affect odometry in
SLAM and reduce localization accuracy. We propose a novel lidar SLAM algorithm based on LOAM
(Lidar Odometry and Mapping), which is popular in this field. First, we applied elevation maps to
label the ground point cloud. Then we extracted convex hulls in point clouds based on scanlines
as materials for dynamic object clustering. We replaced these dynamic objects with background
point cloud to avoid accuracy reduction. Finally, we extracted feature points from ground points and
non-ground points, respectively, and matched these feature points frame-to-frame to estimate ground
robot motion. We evaluated the proposed algorithm in dynamic industrial park roads, and it kept
UGV maximum relative position error less than 3% and average relative position error less than 2%.

Keywords: SLAM; dynamic scene; lidar; odometry

1. Introduction

With the advancement of technology, intelligent robots have gradually entered peo-
ple’s lives. Normal work of intelligent robots is inseparable from their positioning. Usually,
the positioning problem of a robot is solved by the GNSS positioning system [1,2]. How-
ever, in scenarios such as weak satellite signals or signals indoors, the GNSS system alone
cannot achieve high-precision positioning. In 2020, the China Association for Science and
Technology pointed out that achieving high-precision positioning and navigation when
satellite signals are unavailable has become an urgent engineering and technical prob-
lem to be solved. To complete positioning in an environment where a satellite signal is
rejected is usually to use sensors such as the wheel speedometer and inertial navigation
to calculate the position of the robot by using its motion information [3]. However, the
wheel speedometer has high requirements for the model accuracy of the robot, and robot
mileage estimation based on the wheel speedometer cannot guarantee high accuracy due
to possible road surface unevenness and slippage during the robot’s movement. Although
inertial navigation is not affected by the model or the environment, drift of data is amplified
in the process of quadratic integration and cannot be corrected independently. Based on
the reasons above, the multi-sensor fusion positioning method has gradually entered the
field of vision. Commonly used sensors include monocular, stereo, RGB-D cameras, lidar,
millimeter-wave radar, UWB (ultra-wideband) [4], etc. Using these sensors, multi-sensor
positioning systems such as VO (visual odometry), VIO (visual inertial odometry) and
LIO (lidar inertial odometry) have been developed. Because of adoption of multi-sensor
fusion methods supplemented by various filtering algorithms, data errors of the sensors
themselves are eliminated and positioning accuracy is greatly improved.

SLAM is a means of using a variety of sensors to achieve high-precision, real-time
positioning and mapping for robot navigation [5]. At first, SLAM was mainly used in
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the positioning of small indoor robots. The indoor environment could be mapped with
2D single-line lidar and analyzed with post-processing. Today, SLAM is able to perform
3D analyses of the surrounding environment, and implementation methods are mainly
divided into visual SLAM and lidar SLAM [6]. Visual SLAM, which is undergoing rapid
development, relies on the advancement of image-processing technology, with mature
visual feature points and descriptor extraction methods as well as many vision-based deep
neural networks. Among them, the ORB (oriented FAST and rotated BRIEF)-SLAM3 [7]
algorithm, which is suitable for monocular, binocular and RGB-D cameras for back-end
mileage estimation using cluster adjustment, has become the master of visual SLAM algo-
rithms and has been widely used for reference by other visual SLAM algorithms. In terms
of using natural language processing, Rosinol et al. summarized previous experience and
established the Kimera [8] open-source SLAM library based on the DBoW2 [9] word bag
library. McCormac combined semantic information and convolutional neural networks
to propose the SemanticFusion [10] algorithm, which performed well on the NYUv2 [11]
dataset and maintained a running speed of 25 Hz. Because lidar SLAM has experienced the
process of developing from 2D to 3D, Google open-sourced Cartographer [12], an algorithm
based on graph optimization for 2D/3D, in 2016. This algorithm does not include PCL,
g2o, etc., which are huge code bases and have simple architecture suitable for lightweight
and low-cost robots such as home robots. Zhang et al. proposed the LOAM [13] algorithm,
in which only single-line lidar was used to realize the mapping of the 3D environment,
in 2014. It is still widely admired today and maintains the third position on the rank of
dataset KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) [14].
Its framework is used by many researchers as a basis for building algorithms. For example,
Lego-LOAM [15] is suitable for lightweight robots, I-LOAM [16] provides loop-closure
detection and echo-accuracy information and SA-LOAM [17] provides semantic informa-
tion. Ding et al. proposed the Deepmapping [18] algorithm using deep neural networks
combined with traditional algorithms, which made mapping more accurate but sacrificed
real-time performance of the algorithm.

Although the SLAM algorithm has been successfully applied in clear situations and
simple scenes, odometer estimation accuracy is reduced in complex scenes with many
dynamic objects. Mainstream odometer estimation method is based on feature point
matching within static world assumption [19]; feature points extracted from dynamic
objects are treated as static feature points. These dynamic points influence the matching
result. Removing the influence of dynamic objects has become the goal of current SLAM
algorithm development [20,21].

The most popular method of removing influence caused by dynamic objects is identi-
fying and marking dynamic objects and removing feature points on marked parts [22–24].
There are mainly two methods to identify dynamic objects: traditional methods based on
geometric information and neural network methods based on semantic information. These
methods have different degrees of improvement for lidar SLAM.

In 2020, Yangzi Cong et al. used UGV as an experimental platform, first filtering out the
ground point cloud, then roughly segmenting suspected dynamic objects using traditional
clustering methods, using Kalman filter to identify and track suspected point clouds and
using probabilistic map assistance to complete tracking and mapping [25]. Compared
with Lego-LOAM, which is applied to similar unmanned platforms but does not remove
dynamic objects, the result of Yang’s method was better. However, compared with the
algorithm that uses semantic information for dynamic object processing, effect of dynamic
object recognition was worse, and positioning accuracy was also lower. In 2021, Feiya Li
et al. proposed a method to establish an initial vehicle model based on shape characteristics
of the vehicle, and constructed and removed sparse points based on the boundary line
formed by residual points [26]. Identification and tracking of vehicles were completed
through calculation of confidence level of the vehicle model and adaptive threshold, which
provided a new idea for dealing with dynamic objects. In 2019, on the basis of Suma,
Xieyuanli Chen et al. used the RangeNet++ network to semantically label point clouds and
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proposed the Suma++ algorithm [27]. For each row of point cloud semantic segmentation,
the same semantics were searched and filled in the whole. A dynamic information removal
module was added to the Suma framework, and map information was used to identify
the dynamic point cloud of this frame. At the same time, semantic constraints were added
to the ICP(Iterative Closet Point) algorithm to improve robustness of the algorithm with
singular values. However, the algorithm could not identify dynamic objects in the first
observation, and required two frames of information for comparison. In 2021, Shitong Du
et al. fused semantic information to propose S-ALOAM [28], labeling dynamic objects in
the preprocessing stage and removing dynamic objects and singularities. Feature extraction
was performed on point clusters with the same semantic label according to geometric rules.
The odometer node roughly estimated the motion matrix and performed transformation
correction. At the mapping node, dynamic objects were eliminated again, with semantic
constraints, to complete laser point cloud mapping. However, it took a lot of time to
recognize through semantic tags, which affected the real-time performance of the algorithm.
In summary, processing dynamic objects can improve positioning accuracy of the SLAM
algorithm and improve the mapping effect. However, whether it is the traditional method
or the method using the neural network, it is difficult to maintain a fast running speed
while ensuring a high recognition rate of dynamic objects. It is necessary to propose a new
SLAM algorithm that can not only ensure the recognition rate of dynamic objects to ensure
positioning accuracy, but also ensure running speed of the algorithm to ensure real-time
performance of the algorithm.

2. Materials and Methods

In order to solve the problem of accuracy of odometer motion estimation decrease due
to the large number of pedestrians and vehicles in the city, and at the same time to ensure
real-time performance of the algorithm, this paper proposes a lidar SLAM algorithm in
dynamic scenes. It realizes the labeling of ground point cloud data, removes the point
cloud of dynamic objects and repairs the removed blank area according to the adjacent
point cloud. Inertial navigation data was introduced to eliminate motion distortion of
original point cloud data and, at the same time, considering the difference in feature types
of the point cloud in ground and non-ground areas, classification features were extracted
and features were matched according to category in the odometer estimation stage. In
the motion estimation stage, a weight factor was introduced to reduce the influence of
possible noise feature points, and motion trajectory estimation results were re-corrected in
the mapping stage to improve accuracy of the algorithm.

The main flow of the algorithm was as Figure 1:

Figure 1. Algorithm flow.
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In this paper, the inertial navigation coordinate system of the starting position of robot
motion was selected as the world coordinate system. In the solution process, the lidar
coordinate system was set as the {L} coordinate system, the inertial navigation coordinate
system was set as the {B} coordinate system and the world coordinate system was set as the
{W} coordinate system. When movement started, L

BT = L
W T .

2.1. Distortion Removal

The lidar point cloud acquisition process took a long time for each frame and the point
cloud was distorted due to movement of the robot itself during the acquisition process.
Using inertial navigation data helped correct for nonlinear distortions that occurred during
acquisition. Since acquisition frequency of inertial navigation was much higher than that
of lidar, a circular buffer was used to store inertial navigation data, and data of the two
sensors were matched according to the timestamp. There were no inertial navigation data
at the corresponding time of some lidar points, and the motion state of these lidar points
was obtained by linear interpolation of the inertial navigation motion state according to
acquisition time of these lidar points. Acquisition time ti could be calculated from number
of lidar lines l and horizontal angles αi.

ti = t0 + (l − 1)tb +
αi − α0

∆α

((
lbottom − ltop

)
tb + tc

)
(1)

where lbottom represents the number of the bottommost line of lidar, ltop represents the number
of the topmost line of lidar, t0 represents the starting timestamp of this frame, tb and tc
represent time parameters of lidar and ∆α represents horizontal angle resolution of lidar.

The number of lidar lines and horizontal angles of lidar points could be calculated
from point coordinate [xi yi zi], the topmost vertical angle βtop and the bottommost vertical
angle βbottom. l = −

(
arctan zi√

(xi
2+yi

2)
− βbottom

)
· lbottom−ltop

βtop−βbottom
+ lbottom

αi = arctan yi
xi

(2)

The state of motion was calculated through integration of acceleration and angular
acceleration provided by inertial navigation data. Assuming that the robot moved at a
uniform speed during the point cloud acquisition process, motion distortion W∆P in {W}
was calculated according to the difference between the estimated state W P i in {W} at current
moment ti as well as the uniform motion estimation result, which was calculated from the
beginning of the frame t0 to the current moment with estimated state W P0 in {W} and speed
at the beginning of this frame Wv0 in {W}.

W∆P = W P i −
(

W P0 +
Wv0 × (ti − t0)

)
(3)

The nonlinear motion distortion was eliminated through subtraction of the respective
distortion from the lidar point.

2.2. Ground Labeling

The ground point cloud was identified to separate objects from the background, which
facilitated feature extraction. Lidar points were divided into different grids

(
xgrid, ygrid

)
according to the X and Y coordinates, lidar scanning range Rmax and grid resolution ∆x,
∆y. The point cloud was projected to the XOY plane of the world coordinate system, where
function ‘floor’ means rounding down of the input.xgrid = f loor

(
x+Rmax

∆x

)
ygrid = f loor

(
y+Rmax

∆y

) (4)
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For each grid cell
(

xgrid, ygrid

)
, it was necessary to calculate average height Zmean of

all lidar points’ height Zk in the grid and height difference Zdi f f between the highest point
Zmax and the lowest point Zmin, then establish an elevation map mean (mean map) and an
elevation map min-max (difference map).{

Zmean = 1
size(cell(xgrid ,ygrid))

· ∑
kεcell

Zk

Zdi f f = Zmax − Zmin
(5)

where function size(·) calculates the total number of lidar points.
For each grid in the mean map, it was necessary to calculate gradient in the four

neighborhoods and select the maximum gradient as the gradient of the grid. The gradient
and Zdi f f of every grid were compared with the threshold Tgrad and Tdi f f . A grid where
both parameters were greater than threshold was identified as an object; where both were
less, it was identified as a ground grid. Other grids were pended.

Through the breadth-first search (BFS) algorithm, the four neighborhoods of the
ground grid were searched for clustering and multiple ground planes were obtained after
clustering. The plane with the largest area among the multiple planes was identified as the
ground. The average height difference between other planes and the ground was calculated
and difference was compared with the threshold Tplane. A grid with a height difference
from the ground that was less than the threshold was identified as ground and a grid with
a height difference from the ground that was greater than the threshold was identified as
‘other planes.’

The undetermined grid was traversed and voxelized. First, the undetermined grid
was divided into small grids with smaller resolutions: ∆xlocal and ∆ylocal . Vertical bars were
established within each small grid according to the highest point Zmax and the lowest point
Zmin of the small grid; the vertical bars were divided into voxels using voxel resolution
∆zvoxel . Voxels that contained points were retained and those that did not contain points
were removed. Voxels were clustered and the group of voxels with the lowest height was
taken as the ground part of the grid. In comparison of these low-voxel groups with the
determined ground grid, the voxel group where mean heights were within the range of
Theight above or below ground height Zglobal could be identified as ground voxel groups,
and points contained in the voxel groups were identified for the ground point cloud.

2.3. Dynamics Removal

According to number of lines l, horizontal angle αi and coordinates, the point cloud
was projected into the range image according to Equation (6).

xgraph = f loor
(

αi−α0
∆α

)
ygraph = l

r
(

xgraph, ygraph

)
=
√
(x2 + y2 + z2)

(6)

Since the intensity of some lidar points was lower than the receiving threshold, some
information could not be received, resulting in missing point clouds. Each missing point
cloud was classified and filled in and its range given value; when the range difference
between the two boundary points or the sequence number difference was small enough,
the linear interpolation value of boundary range was used as a range to fill in missing point
positions. After filling was completed, Equation (6) was used to calculate its three-dimensional
coordinates inversely. Then the backward difference ri

′ = ri − ri−1 was used to calculate the
first derivative of the range of point i, where ri−1, ri were, respectively, the range of points
i− 1 and i. Forward difference ri

′′ = ri+1 + ri−1 − 2× ri was used to calculate the second
derivative of the range of point i, where ri+1 is the range of points i + 1.

The first derivative of range image was traversed from upper left to lower right; the
coordinates of the pixel in image whose first derivative was less than the negative value
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Tde were recorded. Next, the second derivative of range image was traversed from this
pixel in the row to find the point cloud segment whose second derivative was continuously
positive and whose length was greater than or equal to dth so as to extract an arc-shaped
convex hull (shown in Figure 2) in the point cloud of dynamic objects (generally including
pedestrians and vehicles).

Figure 2. Convex hull. Some convex hulls that meet segment conditions are segmented from the raw
point cloud.

Depth difference between the two ends of the point cloud convex hull was calculated
to judge whether this difference was less than or equal to dp. The angle γ was calculated
between the two end points and the outer point of the adjacent segment, as shown in
Figure 3.

Figure 3. Angle γ, where A, B, r1 and r2 represent the end point, the adjacent point and their range,
respectively. O represents lidar; ∆α represents horizontal angle resolution of lidar.

This angle could more stably represent the degree of depth variation of adjacent laser
spots, and the angle of the segmented point cloud should have been less than or equal to
the threshold value Tγ. The calculation method is as in Equation (7).

γ = arctan
r2·sin∆α

r1 − r2·cos∆α
(7)

The point cloud segment that satisfied the above conditions was taken as segment
S(i,1), which represents the first segment of scanline li. Considering that the length of the
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point cloud segment representing a pedestrian’s leg was short and the point cloud of this
kind of segment often appeared in the last several lines, dth was reduced for segmenting by
the line to adapt to this feature. Pseudocode for this process is shown in Algorithm 1.

Algorithm 1: Segment
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Segments were clustered for dynamic object recognition. The complete point cloud of a
dynamic object needed to be composed of multiple segments across the scanlines, so it was
necessary to follow the sequence of the scanlines and check S(i,1), S(i,2) . . . S(i,n). Segments
were clustered according to two criteria. The first criterion was centroid Euclidean distance
difference dc < Tdc, which ensured that the distance between the two segments was close
enough and isolated segments could not form a dynamic object point cloud. The centroid
Pc was calculated from the points Pj =

(
xj, yj, zj

)
∈ R within the segment.

Pc =
∑n

j=1 Pj

n
(8)

where n represents number of points within the segment. The second criterion was principal
component analysis result of the segment point cloud. Create covariance matrix for all
the points contained in the segment, the eigenvector M = [µ1, µ2, µ3]

T and the eigenvalue
λ = [λ1, λ2, λ3]

T were calculated, with the eigenvalue and the eigenvector corresponding
in turn. For principal component analysis results of the two adjacent segments S(i,a) and
S(i,b), Equation (9) needed to be satisfied:

∣∣∣λa − λb
∣∣∣ < Sr

∑3
j=1

λa
j +λb

j
2 ·

〈
µa

j ,µb
j

〉
∣∣∣µa

j

∣∣∣·∣∣∣µb
j

∣∣∣ < Sb
(9)

Point cloud segments that met the criteria were clustered to obtain the complete point
cloud of dynamic objects. The pseudocode of this algorithm is shown in Algorithm 2.
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Algorithm 2: Cluster
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the dynamic object, range was modified to 0 in the range image to eliminate dynamic 
point clouds. 

After the dynamic point cloud was eliminated, there was a vacancy in the corre-
sponding position. These missing points were repaired to improve feature point extrac-
tion and mapping. First, the second derivative 𝑟( , ) , 𝑟( , )  and the first derivative 𝑟( , ), 𝑟( , ) were taken; the first derivative of the endpoint of the vacant segment 𝑟( , )
、𝑟( , ) was calculated. Then, according to the first derivative and the range of the outer 
endpoints on both sides 𝑟( , ), 𝑟( , ), the range of the inner endpoints 𝑟( , ), 𝑟( , ) of the 
vacant segment was calculated. Next, the first derivative and range with the same second 
derivative toward the inner vacant segment were calculated according to the sequence. 
The repair of the vacant segment started from both sides and closed in the middle to com-
plete the repair. 𝑟( , ) = 𝑟( , ) + 𝑟( , ), 𝑟( , ) = 𝑟( , ) + 𝑟( , )𝑟( , ) = 𝑟( , ) − 𝑟( , ), 𝑟( , ) = 𝑟( , ) − 𝑟( , )⋮   (10) 

After clustering was completed, the object point cloud could be identified; those with
a number of crossing lines larger than the number of segment points were identified as
pedestrians and those with a number of crossing lines smaller than the number of segment
points were identified as vehicles. According to the serial number of the point cloud of
the dynamic object, range was modified to 0 in the range image to eliminate dynamic
point clouds.

After the dynamic point cloud was eliminated, there was a vacancy in the correspond-
ing position. These missing points were repaired to improve feature point extraction and
mapping. First, the second derivative r′′

(i,j−1), r′′
(i,k) and the first derivative r′(i,j−1), r′(i,k+1)

were taken; the first derivative of the endpoint of the vacant segment r′(i,j), r′(i,k) was calcu-
lated. Then, according to the first derivative and the range of the outer endpoints on both
sides r(i,j−1), r(i,k+1), the range of the inner endpoints r(i,j), r(i,k) of the vacant segment was
calculated. Next, the first derivative and range with the same second derivative toward the
inner vacant segment were calculated according to the sequence. The repair of the vacant
segment started from both sides and closed in the middle to complete the repair.

r′(i,j) = r′(i,j−1) + r′′
(i,j−1), r(i,j) = r′(i,j) + r(i,j−1)

r(i,k) = r(i,k+1) − r′(i,k+1), r′(i,k) = r′(i,k+1) − r′′
(i,k)

...

(10)

Figure 4 shows the process result of the pedestrian point cloud, in which red points rep-
resent the pedestrian point cloud and yellow points are the point cloud of the repaired part.
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Figure 4. Pedestrian recognition and repairing. (a) Pedestrian points labeled with red. (b) Points
without pedestrians, filled in with yellow.

2.4. Odometry and Mapping

The odometry and mapping process mainly included three parts: feature extraction,
odometry and mapping. The LOAM algorithm extracted feature points by calculating
curvature and divided the feature points into two types: planar points and edge points.
It then matched feature points according to classification. On this basis, we applied
ground information for feature extraction. First, the feature extraction strategy was selected
according to whether it belonged to the ground. For non-ground areas, in order to ensure
uniform distribution of feature points, each scanline was divided into multiple parts
according to number of points. The curvature of points in each part was compared with
the threshold; those larger than the threshold of edge points were selected as edge points,
and those smaller than the threshold of planar points were selected as planar points. The
number of edge points and planar points that could be extracted from each part could not
exceed the threshold. For the ground area, the planar points were still extracted uniformly,
but considering that the ground was relatively flat, extraction density decreased. Because
the edge points of the ground were mostly rough ground, the extraction did not consider
uniform distribution and only selected several edge points with the largest curvature. In
this way, four types of point were extracted: ground edge points, ground planar points,
non-ground edge points and non-ground planar points. In odometry and mapping, feature
points of each classification were only matched with points of the same classification.

3. Experimental Section

We used a certain type of 8W4AUGV (eight wheel, four arm unmanned ground
vehicle, shown in Figure 5) as an experimental platform to conduct experiments on a road
in an industrial park. The ground recognition rate, dynamic object recognition rate and
localization accuracy of the algorithm were tested by experiments.

Figure 5. An 8 wheel, 4 arm unmanned ground vehicle.
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3.1. Experimental Setup
3.1.1. Experimental Environment

This algorithm mainly solved the problem of dynamic scene localization and mapping,
so a scene with more dynamic objects was selected. Selecting a main road with many
pedestrians in the industrial park verified recognition effect of the algorithm on dynamic
objects. The main way of driving for unmanned vehicles is proceeding straight and turning.
Therefore, a main road section with a length of about 150 m was selected for the straight
driving test, and a bent section with a length of about 50 m was selected for the turning
test. The experiment was carried out during the work and rest period of the park, when
there were many pedestrians on both sides of the road. The unmanned vehicle traveled
at a speed of 20 km/h, and motion distortion was more obvious while we ensured the
safety of the experiment. There were green belts, street trees and workshops on both sides
of the road. Those green belts and street trees affected the ground recognition algorithm
and tested the efficiency of the ground recognition algorithm. The workshop simulated
buildings around the actual application scene of unmanned vehicles.

3.1.2. Experimental Equipment

We used the VLP-16 to collect the point cloud by 360◦, horizontally scanning at
16 various vertical angles in the range (−15◦, 15◦), which worked in the frequency of 10 Hz;
about 20,000 points were collected in each frame. Inertial and ground truth data came
from WIS-3000: an integrated navigation unit that integrates inertial navigation data and
RTK-GNSS (Real Time Kinematic Global Navigation Satellite System) data. WIS-3000 could
ensure output accuracy of latitude, longitude and altitude information at the centimeter
level. Its output frequency was 50 Hz. The experimental equipment is as Figure 6.

Figure 6. Experimental equipment.

The hardware configuration was Intel Core i5-9300H and GTX-1660Ti, the develop-
ment environment was the Ubuntu18.04 system and ROS system architecture was used
for development.

3.2. Ground Recognition Rate

In order to compute recognition rate and running speed of the ground recognition
module of this algorithm, 100 typical frames of point cloud data were chosen from the
experimental data and our ground recognition algorithm was executed on them. Those
100 frames of point data were manually marked as ground point or non-ground point
in advance. The number of ground points recognized by our algorithm running on the
data was counted and compared with the actual value to judge recognition effect. The
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selected point cloud was about 17,000 points per frame. Sensitivity RTP and specificity RFP
were calculated using the number of ground points correctly identified (TP), non-ground
points correctly identified (FN), ground points not correctly identified (TN) and non-ground
points not correctly identified (FP) for quantitative analysis.{

RTP = TP/(TP + FN)
RFP = FP/(FP + TN)

(11)

According to Equation (9), the higher the sensitivity, the better the recognition effect;
the lower the specificity, the better the recognition effect. According to statistics, our
algorithm had a sensitivity of 93.7% for ground recognition, a specificity of 1.3% and a
running speed of 9.41 ms in this dataset. Ground recognition results are shown in Figure 7.

Figure 7. Ground recognition. Red points represent the ground point; green points represent the rest.

3.3. Dynamic Object Recognition Rate

In order to quantitatively describe the efficiency of the recognition algorithm for
dynamic objects and the repair algorithm to reconstruct the environmental point cloud,
100 frames of point clouds were taken from the experimental data and the algorithm was
executed on that data. We evaluated our recognition algorithm by counting successfully
marked point clouds in every frame and computing average recognition rate. The point
cloud marked as dynamic objects, with rate of coinciding with actual dynamic points
marked manually more than 75%, was recognized successfully marked. According to
statistics, the recognition rate of this algorithm for dynamic objects is 72.5%.

The evaluation norm for the repair algorithm was the geometric error between the
repaired point cloud and the corresponding actual objects, as shown in the Figure 8.

Figure 8. Repaired point cloud. (a) Point cloud. (b) Actual object. The yellow dots in (a) represent the
repaired background point cloud after removal of dynamic objects. (b) represents the actual background of
the frame data. The yellow point restores the spherical flowerbed in the green belt, and the geometric error,
calculated through comparison of the circle equation of the real object and the point cloud, is about 4.3%.
Taking into account the selection of the plane where the circle is located, the accuracy of the measuring
tool and other factors, it was considered that the repair algorithm could restore the object accurately.
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Similar objects with clear geometric features, such as road signs, curbs and the ground,
were also included. The results show that the repair algorithm can restore the environment
accurately and retain the characteristics of the static environment.

3.4. Localization Accuracy
3.4.1. Evaluation Criteria

The relative pose error could be calculated from the absolute pose error. The absolute
pose error represents the difference between the estimation pose change W

L Tk of lidar in the
world coordinate system calculated with the algorithm during the point cloud collection
process of the kth frame and the pose change W

G Tk given by the GNSS as the ground
truth value.  X =

√(W
L xk −W

G xk
)2

+
(W

L yk −W
G yk

)2
+
(W

L zk −W
G zk

)2

R =
√(W

L θ k −W
G θ k

)2
+
(W

L ωk −W
G ωk

)2
+
(W

L ϕk −W
G ϕk

)2
(12)

where X represents absolute position error in kth frame, R represents absolute attitude error
in kth frame, W

L Tk =
[W

L xk, W
L yk, W

L zk, W
L θ k, W

L ωk, W
L ϕk

]T and
W
L Tk =

[W
G xk, W

G yk, W
G zk, W

G θ k, W
G ωk, W

G ϕk
]T . The relative position error represents the ra-

tio of the absolute error of the algorithm’s estimated value of lidar’s pose change in the
world coordinate system to the true value and true pose change during the kth frame point
cloud collection process. Relative attitude error represents the ratio of absolute attitude
change and position absolute error in deg/m:

∆X = X√
(W

G xk)
2
+(W

G yk)
2
+(W

G zk)
2

∆R = R√
(W

G xk)
2
+(W

G yk)
2
+(W

G zk)
2

(13)

where ∆X represents relative position error and ∆R represents relative attitude error. There
is an average relative pose error for the entire motion process:{

∆Xmean =
∑i∈[1,n] ∆Xi

n

∆Rmean =
∑i∈[1,n] ∆Ri

n

(14)

where n represents the number of frames of all point cloud sets in the whole movement
process, ∆Xi represents the relative position error of the ith frame and ∆Ri represents
the relative attitude error of the ith frame. The cumulative position error represented
the absolute error between the final unmanned vehicle position and the ground truth
value, which was calculated by Equation (10), and the final position was involved in
the calculation. As to the running speed of algorithm, we counted the time used by the
algorithm to run each stage of the ground recognition stage, the dynamic object recognition
stage and the overall algorithm, respectively. The test data set consisted of 100 frames of
point cloud data with obvious features extracted from each scene, and average running
speed of the 100 frames of data was taken as the result.

3.4.2. Data Analysis

A map of the actual scene is shown in Figure 9a,b.
According to the aforementioned criteria, the statistical results of the experimental

data are as Tables 1–3:
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Figure 9. Mapping of actual scene. (a) Map of straight road. (b) Map of bent road.

Table 1. Absolute and relative position error.

Type Scene Total (m) Average
(%) Max (%) Length (m)

Our algorithm straight 1.25 1.03 1.67 149.3
bend 0.62 1.95 2.87 50.2

LOAM
straight 2.12 2.09 2.85 149.3

bend 1.35 4.11 5.03 50.2

Table 2. Relative attitude error.

Type Scene Average (10−3

deg/m)
Max (10−3

deg/m) Length (m)

Our algorithm straight 2.9 4.3 149.3
bend 3.5 5.1 50.2

LOAM
straight 3.1 6.5 149.3

bend 4.3 8.0 50.2

Table 3. Running time.

Type Scene Ground Label (ms) Dynamic Recognition (ms) Total (ms)

Our algorithm straight 9.32 15.43 89.31
bend 10.34 16.22 97.66

LOAM
straight / / 90.12

bend / / 93.25

Statistical results show that the algorithm can achieve high-precision positioning and
mapping functions while ensuring real-time performance. Compared with LOAM, our
algorithm reduced average relative position errors by 50.7% on straight roads and 52.6% on
bent roads. Our algorithm also reduced average relative attitude errors by 6.5% on straight
roads and 18.6% on bent roads.

4. Conclusions and Future Work

Aiming at the problems of low positioning accuracy and poor mapping effect of lidar
SLAM in dynamic scenes, the authors of this paper carried out a series of research on laser
point cloud ground recognition, dynamic object recognition and elimination, localization
and mapping, then established a laser point cloud suitable for dynamic scenes. Lidar SLAM
algorithm improved the performance of SLAM algorithm in practical applications.

In this paper, a light and fast lidar SLAM algorithm is proposed. Compared with
classical LOAM, our algorithm reduced relative position error and relative attitude error
obviously (51.6% and 12.5% in the average of straight and bent roads, respectively) within
the same running time in a dynamic scene. The algorithm uses a lightweight and embedded
object recognition method in the front end to efficiently process the original point cloud so
that the processed point cloud features are obvious, which ensures positioning accuracy
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and facilitates subsequent processing of mapping. A dynamic object recognition algorithm
is proposed based on the point cloud harness: using the derivative to represent the point
cloud feature. The second derivative should be explicitly used to grow the repaired point
cloud from both sides. According to the processing results of the dynamic point cloud,
it can be concluded that the algorithm can effectively identify the dynamic point cloud
and restore background points occluded by dynamic objects according to the surrounding
environment. A processing method of extracting feature points for ground and non-ground
classification is proposed. Not only are feature points extracted separately according to
categories, but methods for selecting feature points for ground and non-ground categories
are different. The proposed algorithm should make feature point extraction more accurate
and feature point matching more efficient.

This paper has the following room for improvement: First, the recognition scheme
for dynamic objects still needs to be improved. Optimizing the recognition of dynamic
objects that are not representative but still appear at different distances and resolutions
remains a challenge. It is possible to consider the fusion of millimeter-wave radar to
assist in dynamic object recognition and tracking as well as conduct experiments in more
dynamic scenarios. Second, the structure of the current algorithm is simple enough to fully
meet real-time requirements. The parameters of the process algorithm can be modified,
the number of iterations can be increased and the algorithm accuracy can be improved.
Other optimization methods can also be introduced in the back end to further improve the
accuracy of the algorithm.
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