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Abstract: Energy harvesting has become a popular topic in recent years. A number of studies
have been conducted in the field of vibration energy harvesting system (VEHS). However, few
studies have concentrated on viscoelastic energy harvesters driven by bounded noise excitation. In
this paper, the stochastic response of a viscoelastic energy harvester subjected to bounded noise is
discussed. Approximate solutions of the system were derived by utilizing the method of multiple
scales, and the expressions of the mean square voltage (MSV) and mean output power (MOP) were
obtained. The relation between the detuning frequency and first-order steady moment was first
revealed. The effectiveness of the approach was verified by a good agreement between theoretical
results and numerical results. Furthermore, the variations in the detuning frequency can result
in the stochastic jump phenomenon, and stochastic bifurcation is induced with the changes in the
viscoelastic parameter and detuning frequency. Finally, the impacts of system parameters on the MSV
and the MOP were also analyzed.

Keywords: energy harvesting; viscoelastic term; multiple scales method; bounded noise; stochastic
bifurcation

1. Introduction

Vibration accompanied with the production of energy is a common phenomenon in
nature involving human motion, bridge vibration, airfoil vibration, etc. For the sake of
powering remote sensors sustainably [1,2], the vibration energy harvesting system (VEHS)
has drawn much attention in recent years [3–6]. Meanwhile, the stochastic dynamical
behavior of the VEHS with random excitation was investigated by utilizing different meth-
ods. For energy harvesters subjected to Gaussian white noise (GWN), Daqaq [7] indicated
that the time constant ratio of a nonlinear energy harvester has an important effect on
the harvesting performance by using the Fokker–Plank–Kolmogorov equation method.
Mokem et al. [8] applied a stochastic averaging method to investigate the probabilistic
responses of the sandwiched buckled beam, and analyzed the impacts of noise intensity on
MSV. Jiang and Chen [9] adopted an equivalent linearization technique to obtain the equiv-
alent linear system. Jin et al. [10] studied the stochastic responses of the nonlinear vibration
energy harvester via employing an equivalent nonlinearization technique. Xu et al. [11]
adopted stochastic averaging of an energy envelope to derive the analytical solutions of yjr
mean-square voltage and mean output power of the nonlinear energy harvester.

However, GWN is too ideal to exist in actual environmental excitations. Colored
noise has a wider application in a real environment. For colored noise, modified stochas-
tic averaging, the multiple scales method and other methods have been confirmed to be
better research techniques [12–18]. For example, Barton et al. [13] studied a nonlinear
energy harvester by applying the stochastic averaging method. Osório and Daqaq [14]
used the expansion of Jacobi–Anger to investigate the performance of the piezoelectric
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VEHS influenced by sinusoidal frequency variation. Bobryk et al. [15] conducted a study
on the piezoelectric energy harvester regarding the mechanical oscillator, and found that
colored noise plays a dramatic impact on energy harvesting. Liu et al. [16] presented the
quasi-conservative stochastic averaging method to analyze the responses of a nonlinear
energy harvester subject to colored noise. Zhang et al. [17] explored the stochastic responses
of tri-stable energy harvesters by using the stochastic averaging of an energy envelope.
Zhang et al. [19] analyzed the stochastic responses of a tri-stable energy harvester under
harmonic excitation by using the method of Chebyshev polynomial approximation and
showed that changes in the nonlinear coefficient have an influence on the output volt-
age. Mei et al. applied the perturbation method to study a tri-stable energy harvester
in rotational motion to improve the harvesting performance and demonstrated that, at
different rotational speeds, the existence of coefficient Kc has different effects on the per-
formance [20]. Zhang et al. [21] investigated a tri-stable energy harvester subjected to
dual-frequency harmonic excitations via the harmonic balance method and showed that
the harvesting performance increases with vibration resonance. In addition, based on the
method of multiple scales, Huang et al. [18] analyzed the response process of a nonlinear
multi-stable VEHS under narrow-band stochastic parametric excitations and discussed the
stochastic bifurcation phenomenon. Jin and Zhang [22] explored the effects of time delay
and feedback gain on the energy harvesting performance and demonstrated that negative
feedback gain has a positive influence on the mean output power.

Recently, viscoelastic materials have been of great concern because of their application
in various domains involving chemistry, physics, engineering, etc. [23–25] Nevertheless,
influences of the viscoelastic term on the VEHS have not been discussed in the above
articles. Different from conventional elastic materials, viscoelastic materials can not only
show the attributes of spring, such as elasticity, but can also dissipate energy, such as
damping [26]. Accompanied with the noise existing in nature, the dynamic behavior of
viscoelastic systems with random excitation was investigated. Xu et al. [27] explored a
viscoelastic system under narrow-band noise by using the multiple scales method. Fan
and Shen [28] extended the multiple scales method and applied the approach to explore
the dynamics of a nonlinear system with viscoelastic force. Zhu and Cai [29] analyzed
stochastic responses of a viscoelastic system driven by broadband noise through a quasi-
conservative stochastic averaging approach. Zhao et al. [30] considered the viscoelastic
system under both additive GWN and multiplicative stochastic excitation, and discussed
the stochastic P-bifurcation caused by parameters. Gu et al. [31] developed an approximate
analytical procedure to explore the dynamic behavior of nonlinear viscoelastic systems
under bounded noise excitation. Guo et al. [32] proposed a stochastic averaging approach
to derive the steady expressions of amplitude for a nonlinear viscoelastic energy harvester
and analyzed the effects of system parameters on the MOP.

As far as we are aware, few authors have paid attention to the dynamics of the
viscoelastic VEHS under bounded noise. In this paper, we considered a nonlinear energy
harvester with an integral viscoelastic term and bounded noise excitation, and utilized
the multi-scale method to obtain the expressions of the mean voltage and mean output
power. The effects of the viscoelastic parameter and noise intensity on system responses
are discussed.

The framework of this paper is as follows. In Section 2, the analytical expressions of a
viscoelastic energy harvester are derived by the multiple scales method. In Section 3, re-
sponses of the system are discussed, involving the stochastic jump phenomenon, stochastic
bifurcation of the first-order steady-state moment and the influences of parameters on MSV
and MOP. Meanwhile, the effectiveness of the theoretical method is verified via agreements
between the theoretical results and the Monte Carlo simulation results. Section 4 provides
concluding remarks.
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2. Solving Procedure and Analytical Solutions

A model that symbolizes the dynamics of a family of piezoelectric VEHSs was investi-
gated. The model can be seen as a base-excited viscoelastic-spring–damper system coupled
to a capacitive energy harvesting circuit [7,33], as shown in Figure 1.

(a) (b)

Figure 1. (a) A simplified diagram of a VEHS coupled with (b) a capacitive energy harvesting circuit.

The electromechanically coupling equations of motion with viscoelastic force are
the following:

M ¨̄X(τ) + k̄1H(β̄, τ, X̄(τ)) + k̄2
˙̄X(τ) + δ̄1X̄(τ) + δ̄2X̄3(τ)− ζ̄V̄(τ) = −M ¨̄Xb(τ),

Cp
˙̄V(τ) +

V̄(τ)

R
= −λ̄ ˙̄X(τ),

(1)

in which, X̄ is the displacement and the dot is a derivative about time τ. ˙̄X and ¨̄Xb
denote the velocity and the base acceleration of the mass M, respectively. V̄ is the electric
voltage measured across the equivalent resistive load R. Cp is the effective capacitance
of the piezoelectric element. k̄1, β, k̄2, δ̄1, δ̄2, ζ̄ and λ̄ represent the viscoelastic coefficient,
the viscoelastic parameter, the damping force coefficient, the linear stiffness coefficient,
the nonlinear stiffness coefficient, the linear electromechanical coupling coefficient and the
piezoelectric coupling coefficient in the electrical circuit, respectively. H is the viscoelastic
term taking the form of [34]

H(β̄, τ, X̄(τ)) =
∫ τ

0

1
β̄

exp(−τ − q
β̄

)X̄(q)dq. (2)

− ¨̄Xb is considered as a bounded stochastic process that is governed by
ξ(τ) = F̂cos[Ωτ + γ̄W(τ)]. Here, W(τ) is the standard Winner process. F̂ denotes the de-
terministic amplitude of the bounded noise with the frequency Ω and the noise intensity γ̄.

Firstly, we introduce the non-dimensional parameters

t = ωτ, x =
X̄
lc

, xb =
X̄b
lc

, k̂1 =
k̄1

δ̄1
, ω =

√
δ̄1

M
, k̂2 =

k̄2√
Mδ̄1

,

δ̂2 =
δ̄2l2

c
δ̄1

, V =
CpV̄
ζ̄lc

, ζ̂ =
ζ̄2

δ̄1Cp
, µ =

1
ωRCp

, λ =
λ̄

ζ̄
.

(3)

Then, applying the transform in the viscoelastic force and bounded noise, we obtain
the following equations:
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H(β̄, τ,
X̄(τ)

lc
) =

∫ τ

0

1
β̄

exp(−τ − q
β̄

)
X̄(q)

lc
dq =

∫ t

0

1
β̄

exp[− 1
β̄
(

t
ω
)− s

ω
]x(s)d(

s
ω
)

=
∫ t

0

1
β̄ω

exp(− t− s
β̄ω

)x(s)ds , H(β, t, x(t)),

γ̄W(τ) = γ̄W(
t
ω
) =

γ̄√
ω

W(t) , γW(t),

(4)

where β = β̄ω and γ = γ̄/
√

ω.
Subsequently, the dimensionless formula of motion can be written as

ẍ + k̂1H(β, t, x) + k̂2 ẋ + x + δ̂2x3 − ζ̂V = F̂ cos[
Ωt
ω

+ γW(t)],

V̇ + µV = −λẋ,
(5)

where lc, ω and µ denote the length scale, the natural frequency of the system and the di-
mensionless time constant ratio, respectively, and the others correspond to the dimensional
form of Equation (1).

Following the method of multiple scales, a small parameter ε will be introduced to
acquire the parameters: εα = k̂1, εk2 = k̂2, εδ2 = δ̂2, εθ = ζ̂ and εF = F̂. Then, Equation (5)
can be transformed into the following form:

ẍ + εαH(β, t, x) + εk2 ẋ + x + εδ2x3 − εθV = εF cos[
Ωt
ω

+ γW(t)],

V̇ + µV = −λẋ.
(6)

Moreover, we introduce the time scales as T0 = t and T1 = εt and expand the solutions
x and V of system (6), i.e.,

x(t) = x0(T0, T1) + εx1(T0, T1) + O(ε2),

V(t) = V0(T0, T1) + εV1(T0, T1) + O(ε2).
(7)

For convenience, with the introduction of partial derivative operators D0 = ∂/∂T0 and
D1 = ∂/∂T1, we can transform the ordinary derivative into a partial derivative expansion:

d
dt

= D0 + εD1 + O
(

ε2
)

d2

dt2 = D2
0 + 2εD0D1 + O

(
ε2
) . (8)

Substituting Equations (7) and (8) into Equation (6), and collecting the terms according
to the uniform order of ε, we immediately obtain the formulas at first order as

D2
0x0 + x0 = 0,

D0V0 + µV0 = −λD0x0,
(9)

and at second order as

D2
0x1 + x1 = −2D0D1x0 − αH(β, T0, x0)− k2D0x0 − δ2x3

0 + θV0 + F cos[
Ωt
ω

+ γW(t)],

D0V1 + µV1 = −D1V0 − λD1x0 − λD0x1,
(10)

The general solutions of Equation (9) can be derived as

x0(T0, T1) = A0(T1)eiT0 + A0(T1)e−iT0 ,

V0(T0, T1) = B0(T1)eiT0 + B0(T1)e−iT0 ,
(11)
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where A0 is the amplitude and Ā0 is the complex conjugate of A0. Substituting Equa-
tion (11) into the second expression of Equation (9), we find that the amplitude B0(T1) can
be expressed as

B0(T1) = −
iλ

µ + i
A0(T1). (12)

The viscoelastic force is

H(β, T0, x0) =
1
β

∫ T0

0
exp(−T0 − s

β
)x0(s)ds

=
1− iβ
1 + β2 A0(T1) exp(iT0)−

1− iβ
1 + β2 A0(T1) exp(−T0

β
) + cc,

(13)

where cc represents the conjugate force.
Substituting Equations (11)–(13) into the first expression of Equation (10) and vanish-

ing the secular terms, we have

−2iA′0 −
1− iβ
1 + β2 αA0 −

iλθ

µ + i
A0 − ik2 A0 − 3δ2 A2

0 Ā0 +
F
2

exp
[

i
(

ΩT0

ω
− T0 + γW(T1)

)]
= 0, (14)

where A′0 is the derivative with respect to T1.
For the sake of analyzing the primary resonance, the detuning frequency σ is intro-

duced to measure the excitation frequency Ω as

Ω = ω(1 + εσ). (15)

According to Equations (14) and (15), we obtain

−2iA′0 −
1− iβ
1 + β2 αA0 −

iλθ

µ + i
A0 − ik2 A0 − 3δ2 A2

0 Ā0 +
F
2

exp[i(σT1 + γW(T1))] = 0. (16)

To calculate the function A0, we assume that

A0(T1) =
a(T1)

2
exp[iφ(T1)]. (17)

Substituting Equation (17) into Equation (16) and simplifying the equations to obtain the
expressions of the real and imaginary parts, one obtains the following differential equations:

D1a =
αβ

2(1 + β2)
a− λθµ

2(µ2 + 1)
a− k2a

2
+

F
2

sin η,

D1η = σ− α

2(1 + β2)
− λθ

2(µ2 + 1)
− 3δ2a2

8
+

F
2a

cos η + γW ′(T1),
(18)

where η(T1) = σT1 + γW(t)− φ(T1).
Combining Equations (11), (12), (17) and (18), the first-order approximate solutions of

Equation (6) will be derived as follows:

x(t) = a(εt) cos(t + φ(εt)) + O(ε), (19)

V(t) =
λ√

µ2 + 1
a(εt) cos(t + φ(εt) + arctan µ) + O(ε). (20)

Steady-State Solution

When γ = 0, the noise becomes a harmonic excitation. According to the conditions
D1a = 0, D1η = 0, the steady-state solutions a = a0, η = η0 can be obtained as follows:
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[
αβ

2(1 + β)2 −
λθµ

2(µ2 + 1)
− k2

2

]
a0 +

F
2

sin η0 = 0,[
σ− α

2(1 + β2)
− λθ

2(µ2 + 1)

]
a0 −

3δ2

8
a3

0 +
F
2

cos η0 = 0.
(21)

When γ 6= 0, the solutions of Equation (18) have the hypothesis of the following form:

a = a0 + a1,

η = η0 + η1,
(22)

where a0, η0 are satisfying Equation (21) and a1, η1 are the small perturbation terms.
First-order Taylor expansion is performed on the equations, substituting Equation (22)
into Equation (18). Vanishing the high-order small items, we obtain the linearization of
Equation (18) at (a0, η0) as

da1 = (M11a1 + M12η1)dT1,

dη1 = (M21a1 + M22η1)dT1 + γdW(T1),
(23)

where
M11 =

αβ

2(1 + β2)
− λθµ

2(µ2 + 1)
− k2

2
,

M12 =−
[

σ− α

2(1 + β2)

]
a0 +

λθ

2(µ2 + 1)
a0 +

3δ2

8
a3

0,

M21 =
σ

a0
− α

2(1 + β2)a0
− λθ

2(µ2 + 1)a0
− 9δ2

8
a0,

M22 =
αβ

2(1 + β2)
− λθµ

2(µ2 + 1)
− k2

2
.

Considering the steady-state situation and applying the method of moment, we have

dE(a1)

dT1
=

dE(η1)

dT1
=

dE(a2
1)

dT1
=

dE(a1η1)

dT1
=

dE(η2
1)

dT1
= 0.

According to Equation (23), we obtain that the second-order moments can be solved
by the following equations:

dE
(
a2

1
)

dT1
= 2M11E

(
a2

1

)
+ 2M12E(a1η1) = 0,

dE(a1η1)

dT1
= M21E

(
a2

1

)
+ (M11 + M22)E(a1η1) + M12E

(
η2

1

)
= 0,

dE
(
η2

1
)

dT1
= 2M21E(a1η1) + 2M22E

(
η2

1

)
+ γ2 = 0,

(24)

where E(•) represents the mathematical expectation.
The first-order steady-state moments are derived as

E(a1) = 0, E(η1) = 0, E(a) = a0, E(η) = η0. (25)

By applying Cramer’s rule, the second-order moments can be derived as
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E
(

a2
1

)
=
−2γ2M2

12
det

,

E
(

η2
1

)
=
−M12γ2 + 2M11M21E

(
a2

1
)

2M12M22
,

E
(

a2
)
= a2

0 + E
(

a2
1

)
,

E
(

η2
)
= η2

0 + E
(

η2
1

)
,

(26)

where det = 4
[
M2

11M22 + M11M2
22 −M11M12M21 −M12M21M22

]
. Then, according to

Equation (20), we obtain the expressions of the mean and mean square voltage as

E(V) =
λ√

µ2 + 1
E(a),

E(V2) =
λ2

µ2 + 1
E(a2).

(27)

Since the output power can be expressed as P = µθV2, the mean output power is
calculated as

E(P) = µθE(V2). (28)

3. Response Analysis of System
3.1. Numerical Simulation Results

This subsection verifies the effectiveness of the devised method by using the Monte
Carlo approach. Some system parameters in Equation (6) are fixed as ε = 0.1, ω2 = 1.5,
k2 = 1.0, F = 5.0, α = 2.0, β = 2.0, λ = 0.50, δ2 = 1.0, µ = 1.50, unless otherwise
mentioned. The other parameters will be specified in subsequent analyses. Based on the
Hurwitz criterion, Figure 2 reveals the distribution of the first-order steady moment E(a)
with the parameters θ = 0.5, λ = 0.50, δ2 = 1.0, µ = 1.50, γ = 0.10. From Figure 2,
the solutions with a blue mark are stable and the solutions with a red mark are non-stable.
Figure 3 shows the comparison of numerical and theoretical results, which proves the
validity of the approach of multiple scales in this paper with the parameters θ = 0.50,
γ = 0.10.

Figure 2. The variations in the mean amplitude E(a) with the detuning frequency σ. The blue star
corresponds to the steady solutions and the red star corresponds to the non-steady solutions.
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(a) (b)

Figure 3. The variations in the mean amplitude (a) and the mean-square amplitude (b) with different
detuning frequency σ. −: analytical results of (6); •: Monte Carlo results of (6).

3.2. Stochastic Jump and Stochastic Bifurcation

The variations in the system regarding different detuning frequencies in time history
are presented in Figure 4. One can see from Figure 4 that, as the detuning frequency σ
increases, the displacement x, velocity ẋ and voltage V increase slowly and then decrease
rapidly in σ ∈ (2.0, 2.5). This result also indicates the phenomenon of the stochastic jump.

From Figures 2 and 3, we know that the number of the first-order steady-state moment
E(a) can change from one to three with an increase in the detuning frequency. By consid-
ering the viscoelastic parameter β and the detuning frequency σ, we fix the parameters
γ = 0.10, θ = 0.50 and show the variation diagram in the σ − β parameter plane. One
can see from Figure 5a that the E(a) can transform one steady solution into two steady
solutions from area I to area II. If σ < 2.25, E(a) has always one steady-state solution. When
σ > 2.25, the number of solutions may change. The results show that β and σ can induce
stochastic bifurcation. Figure 5b shows the variations in E(a) with different β and σ.

(a) (b)

(c) (d)

Figure 4. The response process of (a) displacement, (b) velocity and (c) voltage. (d) Phase diagram of
velocity and voltage (γ = 0.02).
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(a) (b)

Figure 5. Bifurcation diagrams of the steady-state E(a) with different σ and β. (a): variations of E(a)
in two dimensional plane. (b): variations of E(a) in three dimension space.

3.3. Impacts of System Parameters on the Mean Square Voltage and the Mean Output Power

In this subsection, we focus on the impacts of noise intensity γ, linear electrome-
chanical coupling coefficient θ, piezoelectric coupling coefficient λ and nonlinear stiffness
coefficient δ2 on the MSV and MOP. Figure 6 describes the relevance between the MSV and
the noise intensity. With the increase in γ and λ, the MSV keeps increasing. However, the
MSV decreases when θ and δ2 increase.

In Figure 7, the MOP keeps increasing as the noise intensity γ, linear electromechan-
ical coupling coefficient θ, piezoelectric coupling coefficient λ and time constant ratio µ
increase. The results indicate that the above parameters have a positive impact on the mean
output power.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. The variations in the mean square voltage with different noise intensities γ, electromechani-
cal coupling coefficient θ, piezoelectric coupling term λ and nonlinear stiffness coefficient δ2 (β = 2.0).
(a,b): γ and θ, where λ = 0.5 and δ2 = 1.0. (c,d): γ and λ, where θ = 0.5 and δ2 = 1.0. (e,f): γ and δ2,
where θ = 0.5 and λ = 0.5.

(a) (b)

(c) (d)

Figure 7. The variations in the mean output power with different (a) electromechanical coupling
coefficient θ, (b) time constant ratio µ, (c) noise intensities γ and (d) piezoelectric coupling term λ.

4. Conclusions

This paper conducted a response analysis of an energy harvester with a viscoelastic
element driven by bounded noise excitation. We simultaneously considered the effects of
viscoelasticity and bounded noise on the system, and derived the analytical expressions of
the steady-state response of the VEHS by using the multiple scales method.

First, the effectiveness of the method was verified by a good agreement between the
analytical results and numerical results. Additionally, the stochastic jump phenomenon
occurs in the range (2.0, 2.5) of the detuning frequency. The bifurcation diagram was given
in the σ− β parameter plane. The results demonstrated that the viscoelastic parameter
and detuning frequency can induce stochastic bifurcation. The theoretical analysis in this
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paper showed that, for the same detuning frequency, there are possibly multiple stable
steady-state average locomotions, which results in multiple solutions in the resonant region.
Finally, the influences of parameters γ, θ, λ, µ and δ2 on the mean square voltage (MSV)
and the mean output power (MOP) were analyzed. Through this paper, the following
conclusions are obtained. The MSV decreases as θ and δ2 increase. However, the MSV
increases as the noise intensity and piezoelectric coupling coefficient increase. The MOP
increases as γ, θ, µ and λ increase.
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