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Abstract: Dynamic substructuring allows us to predict the dynamic behavior of mechanical systems
built by linking together several subsystems, whose dynamic behavior is known. The classical formu-
lation, originally conceived for invariant systems, was extended by the authors to include mechanical
systems made by invariant subsystems that may be coupled in different configurations. A mechanism
is a typical example of a mechanical system built by coupling together invariant subsystems; during
its motion, it can take several configurations that significantly affect its vibrational behavior. There-
fore, the configuration-dependent substructuring approach can provide meaningful insights into the
dynamic behavior of the mechanism. In this paper, the proposed approach is exploited to evaluate
the vibrational behavior of a three-point linkage, a widely used mechanism to connect agricultural
tractors to operating machines, considering a significant range of operative configurations. The
proposed substructuring approach is able to predict the frequency response functions, the natural
frequencies and the mode shapes of the mechanism in a wide range of configurations.

Keywords: configuration-dependent substructuring; dynamics of linkages; three-points linkage;
vibrations

1. Introduction

Dynamic substructuring allows us to predict the dynamic behavior of mechanical
systems built by coupling together several subsystems, whose dynamic behavior is known.
The classical formulation [1] deals with invariant systems. Applications on configuration-
dependent systems are presented in [2,3] without exploiting dynamic substructuring.
Dynamic substructuring was extended in recent years to include mechanical systems
made by invariant subsystems that may assume different configurations during motion.
Specifically, the problem of frictional sliding contact and of rolling contact are respectively
considered in [4,5], while friction-induced vibrations are tackled in [6,7]. More generally,
configuration-dependent substructuring can deal with mechanical systems composed
of subsystems in relative motion with respect to each other, such as mechanisms and
linkages as outlined in [8]. In fact, a linkage is a typical example of a mechanical system
built by coupling together invariant subsystems; during its motion it can take several
configurations that significantly affect its vibrational behavior. A classical approach to deal
with the dynamics of mechanisms with deformable links is provided by the framework
of multibody systems dynamics [9,10]. The multibody approaches are typically able to
perform the kinematic and dynamic analysis of each link in the time domain by considering
at the same time rigid body motion and vibrations. This is particularly useful in simulations
aimed to verify the behavior of the mechanism under specified loads. However, a frequency
domain analysis of such transient responses might not provide significant results for other
design purposes mainly because the input forces might not properly excite the mechanism.
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On the contrary, configuration-dependent substructuring can be directly formulated
in the frequency domain. On one side, this allows the description of a complex link, that
would be difficult to model properly, in terms of an experimentally determined Frequency
Response Function. So far, multibody approaches do not allow the use of experimentally
identified components. On the other side, the vibrational behavior of the mechanism
can be analyzed at every position using the configuration-dependent frequency response
function from which configuration-dependent natural frequencies and vibration modes
can be identified. This quasi-static information set is very important for design purposes
since it highlights most of the potential dynamic problems that can occur during the
mechanism’s operation.

Since the proposed approach is quasi-static and a linearization of the system is per-
formed on each configuration, the effects of friction and of nonlinearities in general, are not
accounted. Friction contact problems can be accounted in the subsructuring framework
as shown in [6,7]. However, in this case, the problem must be solved in the time domain
and no experimentally derived models can be used. For these reasons, the configuration-
dependent substructuring approach cannot be seen as an alternative to multibody analysis
but rather as a technique providing different and complementary information.

The original contribution of this paper lies in envisaging the application of substructur-
ing techniques, typically devised for structures, to mechanisms and linkages. Specifically, as
a proof of concept, configuration-dependent substructuring is applied on a three-point link-
age, a widely used mechanism to connect agricultural tractors to operating machines [11].
The vibrational behavior of this system is evaluated throughout a significant range of
operative configurations. Frequency response functions, natural frequencies and mode
shapes of the mechanism are predicted for each analyzed configuration.

2. Substructure Coupling in the Frequency Domain

A dynamic system made up of n coupled subsystems is considered. Each subsystem r
can be described using the mass, stiffness and damping matrices M(r), K(r) and C(r), from
which the dynamic stiffness matrix can be computed as Z(r)(ω) = K(r) −ω2M(r) + iωC(r).

For a given linear and invariant subsystem r, the equation of motion can be expressed
in the frequency domain as:

Z(r)(ω)u(r)(ω) = f (r)(ω) + g(r)(ω) (1)

where:

Z(r): dynamic stiffness matrix of subsystem r;

u(r): vector of displacements of subsystem r;

f (r): vector of external forces acting on subsystem r;

g(r): vector of connecting forces with other subsystems (internal constraints).

By writing the equation of motion of the n subsystems in a block diagonal format, it is
obtained, after leaving out the frequency dependence:

Zu = f + g (2)

with

Z =


Z(1)

. . .

Z(n)

, u =


u(1)

...

u(n)

, f =


f (1)

...

f (n)

, g =


g(1)

...

g(n)


To couple together the n subsystems, compatibility and equilibrium conditions must

be enforced. Compatibility at the interface DoFs means that any pair of corresponding
DoFs u(r)

l and u(s)
m , i.e., DoF l on subsystem r and DoF m on subsystem s must share the

same displacement, that is u(r)
l − u(s)

m = 0.
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Generally, this condition can be written as:

Bu = 0 (3)

where each row of B refers to a pair of corresponding DoFs.
Equilibrium implies that internal constraint forces must be balanced. They arise when

two subsystems are connected together at a pair of corresponding DoFs. Therefore, the
sum of internal constraint forces must be zero for any pair of corresponding DoFs, i.e.,
g(r)l + g(s)m = 0.

Moreover, if DoF k on subsystem q is not a coupling DoF, g(q)k = 0.
Generally, the equilibrium conditions can be written as:

LT g = 0 (4)

where L is a localization matrix.
The system of Equations (2)–(4) provides the so-called three-field formulation, defining

the coupling between any number of subsystems:
Zu = f + g
Bu = 0
LT g = 0

(5)

In the dual assembly [1,12], all DoFs are retained, i.e., each coupling DoF among two
substructures appears twice. The equilibrium condition g(r)l + g(s)m = 0 at a pair of coupling

DoFs is ensured by selecting g(r)l = −λ and g(s)m = λ. Therefore, the connecting forces can
be written in the form:

g = −BTλ (6)

where the Lagrance multipliers λ represent the intensities of connecting forces.
The equilibrium condition (4) can be rewritten as:

LT g = −LTBTλ = 0 ∀λ (7)

The Equation (7) is always satisfied, thus the three-field formulation (5) reduces to:{
Zu + BTλ = f

Bu = 0
(8)

To eliminate λ, the following steps can be performed. The first of Equation (8) becomes:

u = −Z−1BTλ + Z−1 f (9)

Equation (9) can be substituted in the second of Equation (8) giving:

BZ−1BTλ = BZ−1 f ⇒ λ =
(

BZ−1BT
)−1

BZ−1 f (10)

By substituting λ in the first of Equation (8), one finally gets:

Zu + BT
(

BZ−1BT
)−1

BZ−1 f = f

⇒ u =

(
Z−1 − Z−1BT

(
BZ−1BT

)−1
BZ−1

)
f (11)
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Since H(r) = [Z(r)]−1 is the Frequency Response Function (FRF) matrix of the r-th
subsystem, it can be written:

Z−1 = H =


H(1)

. . .

H(n)

 (12)

Therefore, Equation (11) becomes:

u =

(
H−HBT

(
BHBT

)−1
BH
)

f (13)

The FRF matrix of the coupled system Hc satisfies a relation of the kind u = Hc f , thus:

Hc = H−HBT
(

BHBT
)−1

BH (14)

Because of dual assembly, Hc contains twice the rows and columns corresponding
to the coupling DoFs. Consequently, one row and one column for each coupling DoF can
be eliminated.

2.1. Configuration Dependent Interface

When a relative motion exists between two coupled bodies, systems built from time-
invariant component subsystems subjected to configuration-dependent coupling conditions
can be considered.

In this case, configuration-dependent compatibility and equilibrium conditions are
found. For a given configuration χ, compatibility can be expressed as:

BC(χ)u(χ) = 0 (15)

where each row of BC(χ) refers to a pair of corresponding DoFs at configuration χ.
The equilibrium condition g(r)l (χ) + g(s)m (χ) = 0 at a pair of corresponding DoFs is

again ensured by selecting g(r)l (χ) = −λ(χ) and g(s)m (χ) = λ(χ). Therefore, the connecting
forces can be written in the form:

g(χ) = −BE
T(χ)λ(χ) (16)

where λ(χ) are configuration-dependent Lagrange multipliers corresponding to connecting
force intensities. Moreover, BE(χ) is generally different from the matrix BC(χ) used to
enforce the compatibility condition, because BE(χ) should also account for possible friction
forces arising at the interface. If friction forces are neglected:

BC(χ) = BE(χ) = B(χ) (17)

2.2. Configuration Dependent Frequency Response Function

The frequency response function of the coupled system is configuration-dependent and
can be computed as follows. Equation (8) can be rewritten by considering a configuration-
dependent interface: {

Zu(χ) + BT(χ)λ(χ) = f

B(χ)u(χ) = 0
(18)
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For each configuration, the same procedure outlined in Equations (9)–(13) can be
followed to eliminate λ(χ) from the first of Equation (18). Finally, the FRF matrix of the
coupled system with configuration-dependent interface is obtained as:

Hc(χ) = H−HBT(χ)
(

B(χ)HBT(χ)
)−1

B(χ)H (19)

3. Mechanisms Description in the Substructuring Framework

Mechanisms are composed by bodies connected together by kinematic constraints.
In the substructuring framework, each link can be considered as an invariant subsystem,
while kinematic constraints can be expressed as configuration-dependent compatibility
conditions. By considering for instance two bodies connected by a revolute joint (Figure 1),
the compatibility conditions can be written as:

X

Y xr

yr

ar

as

xsysux,r

uy,r

ux,suy,s

Figure 1. Two bodies r and s connected by a revolute joint in the plane orthogonal to the revolute
joint axis: local (xryr and xsys) and global (XY) reference frames.


ux,r cos(αr)− uy,r sin(αr)− ux,s cos(αs) + uy,s sin(αs) = 0

ux,r sin(αr) + uy,r cos(αr)− ux,s sin(αs)− uy,s cos(αs) = 0

uz,r − uz,s = 0;

(20)

where αr and αs are the angles between two corresponding axes of the local and global
reference frame, and u are the displacements in the local reference frames. In matrix form:

cos(αr) − sin(αr) 0 − cos(αs) sin(αs) 0
sin(αr) cos(αr) 0 − sin(αs) − cos(αs) 0

0 0 1 0 0 −1




ux,r
uy,r
uz,r
ux,s
uy,s
uz,s


= 0 (21)

Therefore, the portion B̃ of the matrix B, that enforces the compatibility between two
bodies connected by a revolute joint, depends on the angles αr and αs between the local
and global reference frames. It can be expressed as:

B̃(αr, αs) =

cos(αr) − sin(αr) 0 − cos(αs) sin(αs) 0
sin(αr) cos(αr) 0 − sin(αs) − cos(αs) 0

0 0 1 0 0 −1

 (22)

It accounts for the dependence on the system configuration.
In frequency-based substructuring, the dynamics of each link can be expressed using

the FRF matrix. The FRF matrix can be either measured experimentally or evaluated using
a numerical model. It must be defined on all the degrees-of-freedom (DoFs) necessary to
define the kinematic constraints with the other links.
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Note that, with respect to the classical multi-body approach, frequency-based sub-
structuring allows not only to use experimental models of components, but provides results
in the frequency domain as well.

4. Application

The configuration-dependent substructuring is exploited to evaluate the configuration-
dependent dynamics of a 1 DoF planar mechanism, the three-points linkage (Figure 2), that
is typically used to connect operating machines to agricultural tractors.

5

1

1

2

4

4

3

3

P2
P3

P1

V1

E1

E2
V2

a3

a1

a4

a2

a5

M

X

Z

Figure 2. Three points linkage. (Left) 3D scheme. (Right) kinematic scheme.

It is in fact a Watt six bar linkage. The schematic in Figure 2 shows a typical rear
three-point linkage and highlights its main components: 1© lower links; 2© upper link;
3© input cranks; 4© lift rods; 5© implement. The implement is part of the operating machine

and is considered as a rigid body, whilst all the other bodies are assumed to be deformable.
In Figure 2, the boundary nodes of the different components are highlighted; Pi and Ei
indicate the boundary nodes connecting the three-point linkage to the tractor and the
operating machine, respectively; Vi are the boundary nodes connecting the components of
the linkage to each other; M is the center of gravity of the operating machine. It is based on
a four-bar linkage composed of the lower links, the implement and the upper link, whose
configurations are controlled by the kinematic chain composed by the input cranks and the
lift rods. Note that the mechanism is planar, since all trajectories are parallel to the plane
XZ under the assumption of rigid links. However, when considering deformable links,
vibrations can also occur along the Y direction. The main dimensions of the linkage, the
inertial properties of the attached operating machine and the material properties are listed
in Table 1. All the elements of the linkage are represented in scale in Figure 2.

Table 1. Principal dimensions of the three-points linkage and inertial properties of the operating
machine.

Quantity Value

P1 (0.000, 0.000) m Position of point P1
P2 (−0.334, 0.403) m Position of point P2
P3 (−0.064, 0.385) m Position of point P3

P3V2 0.203 m Length of the input crank
V2V1 0.534 m Lenght of the lift rods
P1E1 0.810 m Lenght of the lower link
P1V1 0.366 m Distance between P1 and V1
P2E2 0.420 m Lenght of the upper link
E1E2 0.438 m Lenght of the implement
E1 M 1.020 m Distance between E1 and M
E2 M 1.095 m Distance between E2 and M

Mom 800 kg Mass of the operating machine
Iom 200 kg·m2 Moment of inertia of the operating machine

E 210 GPa Young’s modulus
ρ 7800 kg/m3 Density
ν 0.3 Poisson’s ratio
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Since the three-points linkage is a 1 DoF mechanism, its configuration is defined by
a single input coordinate, i.e., the angular position of the input cranks. Figure 3 shows
three configurations of the linkage obtained for different angular position α3 of the input
cranks, i.e., 90, 140 and 180 degrees. The angular positions αi of all the other links can be
obtained as the outcome of the position analysis of the mechanism as shown in Figure 4 for
α3 varying from 90 to 180 degrees.

Figure 3. Three configurations of the linkage. (Left) α3 = 90◦. (Middle) α3 = 140◦. (Right) α3 = 180◦.

90 100 110 120 130 140 150 160 170 180
−135

−90

−45

0

45

90

135

180

225

α3 [◦]

α
i
[◦

]

Figure 4. Angular position of the mechanism’s links. α1 ( ); α2 ( ); α4 ( ); α5 ( ).

5. Results

For each joint, the angular positions of the connected links are used to express the
compatibility condition, according to Equation (22). Furthermore, a rigid transformation is
used to express constraint about the motion of the implement. All constraint equations are
gathered in a overall compatibility matrix B.

Each component of the three-points linkage is modeled using a commercial FE soft-
ware and a Craig-Bampton modal reduction [13] is performed retaining only the physical
connecting DoFs with other components together with an appropriate number of fixed in-
terface modes (See Table 2). Therefore for each subsystem, the mass, damping and stiffness
reduced order matrices are used to obtain the FRF matrix.

Table 2. Number of physical and modal DoFs retained for each subsystem.

Link Physical DoFs Modal DoFs

1 lower links 9 20
2 upper link 6 20
3 input cranks 6 20
4 lift rods 6 20
5 implement 3 0
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Finally, Equation (19) can be used to obtain the configuration-dependent FRFs, evalu-
ated for α3 spanning the angular range 90–180 degrees with an angular step of 2 degrees.

Figure 5 show the configuration-dependent drive point FRFs of the end point of the
lower link (Node E1) along the z direction in the frequency band 0–200 Hz. It can be noticed
that the first natural frequency increases from 2.9 to 6.4 Hz, the second natural frequency
decreases from 105.9 to 57.8 Hz and the third natural frequency lies in the interval from
152.8 to 191.0 Hz.

0 20 40 60 80 100 120 140 160 180 200

10−10

10−8

10−6

10−4

Frequency [Hz]

A
m

pl
itu

de
[m
/N

]

Figure 5. Configuration dependent drive point FRF of node E1 in the y direction. ( ) α3 = 90◦;
( ) α3 = 180◦; ( ) α3 = 140◦.

For each configuration, the first three natural frequencies and the mode shapes of
the whole mechanism in the plane XZ are identified. Figure 6 shows the configuration-
dependent natural frequencies of the identified vibration modes of the three-point linkage.

90 100 110 120 130 140 150 160 170 180
0

20

40

60

80

100

120

140

160

180

200

α3 [◦]

E
ig

en
fr

eq
ue

nc
y

[H
z]

Figure 6. Configuration dependent natural frequencies of vibration modes from one to three of the
three-point linkage, as function of the angle α3 of the input crank. First natural frequency ( );
Second natural frequency ( ); Third natural frequency ( ).

The results highlight the dependency of the natural frequencies on the configuration.
Moreover, Figures 7–9 show the displacements of nodes E1, E2, V1 and V2 for the first three
mode shapes of the linkage in three different configurations.
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Figure 7. Mode 1 in three different configurations. (Left) α3 = 90◦. (Middle) α3 = 140◦.
(Right) α3 = 180◦. ( ) Undeformed model; ( ) and ( ) extreme deformed configurations
during oscillation.

Figure 8. Mode 2 in three different configurations. (Left) α3 = 90◦. (Middle) α3 = 140◦.
(Right) α3 = 180◦. ( ) Undeformed model; ( ) and ( ) extreme deformed configurations
during oscillation.

Figure 9. Mode 3 in three different configurations. (Left) α3 = 90◦. (Middle) α3 = 140◦.
(Right) α3 = 180◦. ( ) Undeformed model; ( ) and ( ) extreme deformed configurations
during oscillation.

Note that the nodes are joined using straight lines, so that it is not possible to observe
the curvature of the different links. However, it is possible to have a quite clear idea about
how the linkage oscillates.

In order to check the correctness of the procedure and the quality of the approximation
due to the Craig-Bampton modal reduction of the subsystems, the assembled system in
the configuration with α3 = 140◦ is analyzed using a FE commercial software. The finite
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element model of the entire system has 250,000 nodes, and it is obtained by assembling the
finite element models of the component substructures. In Table 3, the natural frequencies
of modes in the plane XZ below 200 Hz are compared with those obtained using the
substructuring approach. The results highlight that the procedure is correctly implemented
and that the approximation with 20 Craig–Bampton modes is acceptable. Figure 10 shows
the mode shapes corresponding to modes 1, 2 and 3 of the assembled system in the
configuration with α3 = 140◦, computed using a FE commercial software. These mode
shapes appear to be well correlated with those obtained using the substructuring procedure
and shown in Figures 7–9.

Table 3. Natural frequencies.

Mode FE [Hz] Substructuring [Hz]

1 4.2 4.3
2 97.5 94.9
3 176.9 170.6

Figure 10. From left to right, mode shapes of the modes 1, 2 and 3 of the assembled system in the
configuration with α3 = 140◦, computed using a FE commercial software.

In order to quantify the computational burden of the proposed approach with respect
to a more traditional approach using a commercial FE software, we calculate the compu-
tational times spent to compute a prescribed number of frequency response functions of
the assembled systems in a given number of configurations and in a given frequency band
with an assigned frequency step. The following parameters are used for the comparison:

• number of frequency response functions: 11;
• number of configurations: 46;
• frequency band: 0–200 Hz;
• frequency step: 0.1 Hz;

The computational time necessary to obtain the FRFs using the substructuring proce-
dure is the sum of the following times:

1. the time spent to perform the Craig-Bampton modal reduction of all subsystem with
20 fixed interface modes using a commercial FE software (226 s);

2. the time spent to compute the full frequency response function matrix of the assembled
system in all the considered configurations (33 s).

The computational time necessary to obtain the FRFs using a commercial FE software
is the sum of the following times:

1. solution of the eigenvalue problem for each of the considered configuration using
20 modes (6113 s);

2. evaluation of the frequency response functions corresponding to a single excitation
point (89,240 s). Note that, for every configurations, the software evaluates the
frequency response functions at all the degrees of freedom.

For the considered system, the configuration-dependent substructuring approach
provides frequency response functions that are 368 times faster than when using a tradi-
tional approach.



Machines 2022, 10, 1146 11 of 12

6. Conclusions

In this paper, the substructuring approach is extended to the vibrational analysis of
mechanisms. The proposed approach is applied to predict the natural frequencies, the mode
shapes and the frequency response functions of a three-point linkage for a set of different po-
sitions of the input link. The approach cannot be seen as an alternative to multibody system
analysis but rather as a technique providing different and complementary information.

For the considered system, three frequency ranges where system resonances are possi-
ble are found; the first three mode shapes and their dependence on the configuration are
shown, the frequency response functions of the system are evaluated for each configuration
and the drive-point frequency response function of the end-point of the lower link is ob-
served. This kind of result can be exploited in the preliminary design stages to highlight a
possible cluster of frequencies that should be avoided as exciting frequencies or vice-versa
to modify the system to move the cluster of natural frequencies of the mechanism away
from the excitation frequencies.

In order to validate the effectiveness of the procedure and to quantify the compu-
tational burden, a commercial FE software is used to compute the natural frequencies,
the mode shapes and the frequency response functions. The results provided by the sub-
structuring approach are correlated with the reference results provided by the full FE
model. Moreover, the computational burden required to obtain the solution using the
substructuring approach is significantly lower than that using a traditional approach.

The potential applications of configuration-dependent substructuring in the dynamic
analysis of a mechanism and in mechanism design are very promising.
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