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Abstract: Collision-free path planning of manipulators is becoming indispensable for space explo-
ration and on-orbit operation. Manipulators in these scenarios are restrained in terms of computing
resources and storage, so the path planning method used in such tasks is usually limited in its oper-
ating time and the amount of data transmission. In this paper, a heuristically constructed network
(HCN) construction strategy is proposed. The HCN construction contains three steps: determining
the number of hub configurations and selecting and connecting hub configurations. Considering
the connection time and connectivity of HCN, the number of hub configurations is determined first.
The selection of hub configurations includes the division of work space and the optimization of the
hub configurations. The work space can be divided by considering comprehensively the similarity
among the various configurations within the same region, the dissimilarity among all regions, and
the correlation among adjacent regions. The hub configurations can be selected by establishing and
solving the optimization model. Finally, these hub configurations are connected to obtain the HCN.
The simulation indicates that the path points number and the planning time is decreased by 45.5%
and 48.4%, respectively, which verify the correctness and effectiveness of the proposed path planning
strategy based on the HCN.

Keywords: manipulator; path planning; work space

1. Introduction

Due to unique operational flexibility, manipulators are widely used in space explo-
ration and on-orbit operation [1–3]. To execute tasks quickly and accurately, manipulators
should be able to plan a path independently [4]. During the process, obstacles should be
taken into consideration for the safety of manipulators. Many scholars have studied this
problem in recent years.

On collision-free path planning of a manipulator, Dijkstra algorithm and A-star (A*)
algorithm are typically used algorithms [5–7]. Because the heuristic function introduced by
A* algorithm can indicate search direction for the points selection, A* algorithm has higher
efficiency than Dijkstra algorithm [8]. A* algorithm has been continuously improved by
many scholars since it was created. Trovato et al. [9] proposed an improved differential
A* algorithm, which can achieve better real-time performance than the traditional A*
algorithm. Das et al. [10] proposed an online path planning of mobile robots in a grid-
map environment using a modified real-time A* algorithm, which can minimize time,
energy, and distance while searching the path. Fu et al. [11] proposed an improved A*
algorithm, which can obtain a shorter and smoother path. The above research aims at
improving some characteristics of the A* algorithm, such as path search and reconstruction.
All of them search paths through grid-based maps by default. The grid-based map is
constructed by decomposing the work space of a manipulator into interconnected and
non-overlapping grids according to a certain granularity [12,13]. However, the side length
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of grids is artificially set in this process. If the side length of grids is small, the occupied
storage space during path search will increase exponentially. Therefore, in the collision-free
path planning of a manipulator based on A* algorithm, it is necessary to avoid being
entangled with these issues caused by using a grid-based map.

The essence of building a grid-based map is to represent the work space of the manip-
ulator, namely all possible positions and orientations of the manipulator [14]. Besides the
grid method, the visibility graph method, free space method, and Voronoi diagram method
are commonly used methods for work space representation in path planning [15]. Visibility
graph method uses polygons (two-dimensional space) or polyhedrons (three-dimensional
space) to characterize obstacles [16,17]; free space method characterizes the obstacle space
and free space by mapping the collision-free path planning problem to joint space [18,19];
Voronoi diagram method divides the planning space into several regions, each containing
only one obstacle, to realize the representation of the work space [20–22]. As we can see,
the above three algorithms represent the work space by constructing an irregular network.
Compared with the grid-based map, they can better fit obstacle information and occupy
less storage space. However, when the path planning of a manipulator is carried out in
the joint space, the obstacles are not continuous when they are mapped to the joint space
of the manipulator. Considering the advantages of an irregular network, a path planning
strategy based on the heuristically constructed network (HCN) will be proposed in this
paper, which uses a connected irregular polygon instead of a regular grid to represent the
work space.

In the process of a network construction, the key step is nodes determination [23–25].
Legowski et al. [26] mapped the path points in the task space to the joint space using inverse
kinematics, but this method takes much more time and computational memory on inverse
kinematics of manipulators. Qureshi et al. [27] proposed the potential function RRT*-based
that incorporates the artificial potential field algorithm in RRT*, which artificially set the
number of nodes and selected these nodes randomly. Gang et al. [28] proposed a node
enhancing method to optimize the path searched by PRM algorithm. Matteo et al. [29]
generated a cloud of safe via points around the workpiece and then searched the suboptimal
safe path between the two positions based on graph theory and the Dijkstra algorithm. They
consume undesired memory as well as time due to the number of nodes being artificially
generated and the nodes being selected randomly [30]. In practice, computing resources
and storage may be restrained in special application scenarios. Teleoperation is one of the
common operations in space exploration and on-orbit operations. Due to limitations such
as the data transfer window, the amount of the data transfer should be reduced as much as
possible. In this paper, the nodes of networks will be selected scientifically, and it contains
two keys: determining the nodes number and selecting the nodes. To avoid unwarranted
nodes, the performance of nodes needs to be evaluated. Based on these nodes, we will
obtain more efficient memory utilization.

In summary, a network that simplifies the amount of data is studied in this paper to
represent the work space of manipulators. To achieve the goal, it is necessary to determine
nodes reasonably. For this reason, this paper puts forward a path planning strategy based
on the heuristically constructed network (HCN) and proposes a strategy to construct a HCN.
The process of the HCN construction consists of three phases: nodes number determination,
nodes selection, and nodes connection. Considering the connection time and connectivity
of HCN, the nodes number is determined first. Then, the selection of nodes is decomposed
into two processes: work space division and nodes optimization, where these nodes are
called hub configurations. In this paper, considering the connection time and connectivity
of HCN, the nodes number is determined first. Three indexes are established to evaluate
the quality of hub configurations. Based on these indexes, considering constraints of nodes
number and joint angle limits, K-means algorithm and genetic algorithm are used to select
hub configurations optimally. Finally, these hub configurations are connected to obtain the
HCN. The contributions of this paper mainly include the following points:
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(1) For the storage and computational resources problems caused by randomly generated
nodes, a path planning strategy based on the heuristically constructed network (HCN)
and a construction strategy for HCN are put forward to represent the work space for
collision-free path planning. This operation can reduce the amount of data storage
and data transmission, which is more suitable for resource-constrained conditions
such as space exploration and on-orbit operation.

(2) The nodes number of HCN is determined by quantitatively describing the connection
time and connectivity of the network. The model of work space division and a hub
configurations optimization model are established and solved to select the nodes. The
above work can realize the heuristic selection of points. Based on these nodes, the
HCN can get more efficient memory utilization.

(3) By considering the similarity among the various configurations within the same region,
the dissimilarity among all regions, and the correlation among adjacent regions, the
evaluation indexes of regional properties are established for the work space division.
These regions obtained can get better performance for connectivity, which can be used
as the basis for hub configuration optimization.

The rest of the paper is organized as follows. In Section 2, the network-based collision-
free path planning problem of manipulators is analyzed. In Section 3, the construction
strategy for HCN is introduced, and then the work space of manipulators is represented by
constructing HCN. In Section 4, simulations are carried out to verify the effectiveness of
the proposed algorithm. In Section 5, the research results of this paper are presented.

2. Network-Based Collision-Free Path Planning Problem of Manipulators Analysis

The network-based collision-free path planning of manipulators can be described
as follows, and each node in the network represents a configuration of the manipulator.
Definitions of frequently used variables are as follows (Table 1):

Table 1. Definitions of some variables.

Variable Definition

n the degrees-of-freedom (DOF) of a manipulator
qi the angle of the ith joint, i = 1,2, . . . , n

P = [q1, . . . , qn]
T ∈ <n a configuration, i.e., joint angles of the manipulator

M = {P1, P2, . . . , Pm} a set consisting of m configurations
H ∈ <n a hub configuration

PH =
{

H1, H2, . . . , Hp
}

a set consisting of p hub configurations
Ωi= {P1, . . . , PN_gi

}
a set consisting of N_gi configurations, i = 1,2, . . . , p

wi = [qw1, . . . , qwn]
T ∈ <n the center configuration in the region Ωi, i = 1,2, . . . , p

PC =
{

w1, w2, . . . , wp
}

a set consisting of p center configurations

Suppose a set M contains m configurations, and these configurations do not collide
with obstacles. There are p(p ≤ m) configurations from the set M that can minimize
Equation (1). The p configurations are called hub configurations, and they play a similar role
as bus stops. Let PH be the set of p hub configurations. It is assumed that each configuration
of M can only be transformed from one hub configuration, where the transformation
between two configurations refers to the existence of a collision-free path between them.
Then, the selection of hub configurations can be expressed as Equation (1).

min

(
m
∑

i=1

m
∑

j=1
xiaijdist(Pi, Pj)

)
s.t.

m
∑

i=1
aij = 1, j = 1, 2, . . . , m

m
∑

i=1
xi = p, p ≤ m

(1)
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where Pi(i = 1, . . . , m), Pj(j = 1, . . . , m)∈M; xi denotes whether the configuration Pi is a
hub configuration; dist (Pi,Pj) denotes the distance between configuration Pi = [qi1, . . . , qin]

T

and Pj =
[
qj1, . . . , qjn

]T in the joint space, is calculated as Equation (2); aij denotes whether
the configuration Pi is transformed from configuration Pj; and

dist(P1, P2) =
n

∑
i=1
|q1i − q2i| (2)

aij =

{
1, configuration Pi canbetransformedfromconfiguration Pj
0, otherwise

(3)

xi =

{
1, cconfiguration Pi isthehubconfiguration
0, otherwise

(4)

Since it is assumed that each configuration of M can only be transformed from one hub
configuration, the above problem (Equation (1)) can be transformed as shown in Figure 1.
The configurations that can be transformed from the same hub configuration are stored
in one set. Furthermore, the determination of hub configurations can be transformed into
dividing the m configurations into p groups and selecting one configuration in each group
as a hub configuration. The sum of the distance from the hub configuration to the rest of
the configurations in the same group is minimum. The problem can be derived as

min

 p

∑
i=1

∑
Pj∈Ωi

dist(Hi, Pj)

 (5)

where Ωi(i = 1, . . . , p) denotes a set after the division of the set M, and Hi(i = 1, . . . , p)
denotes the hub configuration in set Ωi(i = 1, . . . , p).
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denotes a configuration of the manipulator. The
blue line indicates that there are possible collision-free paths between two configurations.

According to the above ideas, the joint space path planning from Pinitial to Pgoal can
be divided into three segments: planning path from the Pinitial to the Hinitial in the set
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Ωinitial, planning path from the Hinitial in the set Ωinitial to the Hgoal in the set Ωgoal, and
planning path from the Hgoal in the set Ωgoal to the Pgoal, as shown in Figure 2. Pinitial
and Pgoal represent the start configuration and the end configuration of path planning,
respectively. Ωinitial and Ωgoal denotes the set that Pinitial and Pgoal belong, respectively,
in the above manner. Hinitial and Hgoal denote the hub configuration in the set Ωinitial and
Ωgoal, successively. Each segment of the path can be obtained by existing collision-free path
planning algorithms.

Machines 2022, 10, 71 6 of 21 
 

 

Hinitial

Pinitial

HgoalPgoal

Ωgoal

Ωinitial

 

Figure 2. Schematic diagram of the joint space path planning from P
initial - to P

goal
-based network. 

As mentioned above, the network construction strategy consists of three parts: deter-

mining hub configurations number, selecting hub configurations, and connecting hub 

configurations. Additionally, the selection of hub configurations should be based on the 

work space division. 

3. Construction of HCN 

To characterize work space in the collision-free path planning of manipulators, this 

section proposes a construction strategy for HCN. Additionally, the determination of hub 

configurations number, selection of hub configurations, and connection of hub configura-

tions are carried out. 

For an n-DOF manipulator, the work space of manipulators can be expressed as 

M P P P
1 2
{ , ,..., }

m  (6) 

3.1. Determination of Hub Configurations Number 

The nodes of the HCN are hub configurations, and the number of hub configurations 

is equal to the number of groups, as mentioned in Section 2. With the number of groups 

increasing, the number of hub configurations increases, which could increase the connec-

tion time of HCN. 

The connection of HCN is mainly realized by the existing path planning algorithms, 

and the time complexity of algorithms can reflect the magnitude of the program execution 

time changing with the input scale. Therefore, the paper chooses the time complexity of 

algorithms to measure the connection time of HCN. If the time of the basic operation ex-

ecution is considered as unit time 1, the overall running time can be simply expressed as 

time complexity. The time complexity of existing path planning algorithms often appears 

as (log )O n , ( )O n , ( log )O n n , 2( )O n , and 3( )O n . Their size relationship is 
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As mentioned above, the network construction strategy consists of three parts: de-
termining hub configurations number, selecting hub configurations, and connecting hub
configurations. Additionally, the selection of hub configurations should be based on the
work space division.

3. Construction of HCN

To characterize work space in the collision-free path planning of manipulators, this
section proposes a construction strategy for HCN. Additionally, the determination of hub
configurations number, selection of hub configurations, and connection of hub configura-
tions are carried out.

For an n-DOF manipulator, the work space of manipulators can be expressed as

M = {P1, P2, . . . , Pm} (6)

3.1. Determination of Hub Configurations Number

The nodes of the HCN are hub configurations, and the number of hub configurations
is equal to the number of groups, as mentioned in Section 2. With the number of groups
increasing, the number of hub configurations increases, which could increase the connection
time of HCN.
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The connection of HCN is mainly realized by the existing path planning algorithms,
and the time complexity of algorithms can reflect the magnitude of the program execution
time changing with the input scale. Therefore, the paper chooses the time complexity
of algorithms to measure the connection time of HCN. If the time of the basic operation
execution is considered as unit time 1, the overall running time can be simply expressed as
time complexity. The time complexity of existing path planning algorithms often appears as
O(log n), O(n), O(n log n), O(n2), and O(n3). Their size relationship is O(log n) < O(n) <
O(n log n) < O(n2) < O(n3). To select the number of groups that can meet most of the
usage requirements, a function h1(p) is generated as

h1(p) =
p!

2!(p− 2)!
Nele_total

3 =
p(p− 1)

2
Nele_total

3 =
Nele_total

3 p2 − Nele_total
3 p

2
(7)

where Nele_total represents the sum of the link number of the manipulator and the number
of obstacles; two configurations are selected among p hub configurations to plan path, and
then the number of the possible situation is p!

2!(p−2)! .
As the number of groups increases, the regions are more elaborate, and the difference

among configurations in each region gradually decreases, which means the connectivity of
HCN can be better.

To reflect the relationship between the number of groups and the configuration proper-
ties in each region, the error square sum is chosen to measure the relationship and generate
a function h2(p) as

h2(p) =
p

∑
i=1

∑
P∈Ωi

dist(P, wi) (8)

where Ωi =
{

P1, . . . , PN_gi

}
(i = 1, . . . , p) represents the ith region; P ∈ <n represents any

one configuration in the region Ωi; and wi = [qw1, . . . , qwn]
T can be calculated as

wi =
1

N_gi

N_gi

∑
j=1

Pj (9)

As the number of groups increases, the performance reflected by the h1(p) increases,
and the performance reflected by the h2(p) decreases. To consider h1(p) and h2(p) compre-
hensively, a function h(p) is built as

h(p) = µ1h1(p) + µ2h2(p) (10)

where µ1 and µ2 are weighting coefficients, which are set according to the actual require-
ments. When storage is sufficient, the value of µ2 can be set relatively small; when comput-
ing resources are sufficient, the value of µ1 can be set relatively small.

Select the p corresponding to the minimum of the h(p) as the number of groups, and
the hub configurations number can be determined.

3.2. Selection of Hub Configurations
3.2.1. Establishment of Evaluation Indexes for Region Connectivity

The result of the work space division is some regions. Additionally, the properties of
the regions influence the performance of the HCN. The HCN connection can be affected
by the internal attribute of the region which the configuration belongs to, the attribute of
adjacent regions, and the attribute of non-adjacent regions. Considering the above, three
indexes are established to evaluate the regions.

• The similarity index R1: This index is calculated by the mean of the total distance from
all configurations to the corresponding regional center. It represents the dispersion
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of configurations. The smaller the R1, the higher the similarity of configurations
corresponding to the same region.

R1 =
1
p

p

∑
i=1

ri, ri =
1

N_gi
∑

P∈Ωi

dist(P, wi) (11)

• The dissimilarity index R2: This index is calculated by the mean distance between the
center configuration of two regions. It reflects the dissimilarity between these regions.
The higher the R2, the higher the difference between regions.

R2 =
2

p2 − p

p−1

∑
i=1

p

∑
j=i+1

dist(wi, wj) (12)

• The correlation index R3: This index is calculated by the spatial statistical correlation
matrix corresponding to the spatial information contained in these regions. It reflects
the adjacency relation of regions composed of some configurations represented by the
sequence of joint angles in the manipulator joint space. The smaller the R3, the higher
the quality of regions.

R3 =
p

p
∑

i=1

p
∑

j=1
ωij

·

p
∑

i=1

p
∑

j=1
ωij(wi −w)T(wj −w)

p
∑

i=1
(wi −w)T(wi −w)

=

p
∑

i=1

p
∑
j 6=i

ωij(wi −w)T(wj −w)

S2
p
∑

i=1

p
∑
j 6=i

ωij

(13)

where ωij represents the element of row i and column j in matrix W; S2 = 1
p

p
∑

i=1
(wi −w)T

(wi −w); w = 1
p

p
∑

i=1
wi.

The matrix W indicates the adjacency relationship of p regions, as shown in Equation (14).

W =



ω11 ω12 · · · ω1p
ω21 ω22 · · · ω2p
· · ·
· · ·
· · ·

ωp1 ωp2 · · · ωpp

 (14)

where ωij denotes the adjacency relationship between the ith region and the jth region, and

ωij =

{
1 , whenregioniandregionjareadjacent
0 , else

(15)

Based on definitions of the above three indexes, the similarity index R1, the dissimilar-
ity index R2, and the correlation index R3 are used to evaluate the properties of regions.
When the connectivity of HCN is good, R1, R2, and R3 are close to a fixed value.

3.2.2. Division of Work Space Based on K-Means Clustering Algorithm

Based on the above, the model of work space division can be built.
Suppose p is a known positive integer as the number of groups, and a set M contains

m configurations. Divide the set M into p subset Ω1, . . . , Ωp to minimize the value of the
objective function. The objective function is

f
(
Ω1, . . . , Ωp

)
=

m

∑
i=1

min
C∈PC

dist(Pi, w) (16)
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where the set PC contains p center configurations w1, . . . , wp; w ∈ PC denotes any one of
configurations in the set PC.

K-means clustering algorithm is chosen to solve the work space division model,
considering that K-means clustering algorithm can solve clustering problems with the
linear magnitude of time complexity [31–33].

The process of work space division using K-means clustering algorithm is as follows.
Step 1: Select p initial center configurations w1, . . . , wp randomly to form a set PC,

denoted as PC =
{

w1, . . . , wp
}

. Generate p sets, and denote them as Ω1, . . . , Ωp. Put initial
center configurations wi(i = 1, . . . , p) into Ωi(i = 1, . . . , p) in order.

Step 2: Choose one configuration P ∈ (M− PC), and calculate its distance to each
configuration in the set PC.

Select the configuration w ∈ PC corresponding to the minimum distance, and put the
configuration P into the set Ω corresponding to the configuration w.

Step 3: Repeat Step 2. When all the configurations of the set (M− PC) are traversed,
go to Step 4.

Step 4: Recalculate the center configuration of each region with Equation (17). Update
the set PC =

{
w1, . . . , wp

}
.

wi = ∑
P∈Ωi

P
N_gi

(i = 1, . . . , p) (17)

where P ∈ Ωi denotes any one configuration in the set Ωi.
Step 5: Use indexes R1, R2, and R3 to evaluate Ω1, . . . , Ωp.
Step 6: Judge whether indexes R1, R2, and R3 meets the threshold setting. If so, the

process of work space division is over. Otherwise, go to Step 2.
Based on the above steps, the optimized Ω1, . . . , Ωp can be obtained.

3.2.3. Hub Configurations Optimization

To select hub configurations, a hub configurations optimization model is established
based on comprehensive quality index for joint travel and planning time and constrains
including joint angles ranges. Then, the genetic algorithm is used to solve the model.

Suppose a set Ω contains N_g configurations, and there is a configuration H from the
set Ω to minimize the function. The objective function U(H) can be expressed as

U(H) =
N_g

∑
i=1

u(H, Pi) (18)

where Pi(i = 1, . . . , N_g) ∈ Ω; u(H, Pi) = λ1D(H, Pi) + λ2T(H, Pi); u(H, Pi) denotes the
synthesis of joint travel and planning time from configuration H to configuration Pi and
represents the comprehensive quality index for joint travel and planning time; D(H, Pi)
denotes the joint travel from configuration H to configuration Pi; T(H, Pi) denotes the
planning time from configuration H to configuration Pi; and λ1 and λ2 are weighting
coefficients for joint travel and planning time, respectively, λ1 + λ2 = 1, and 0 ≤ λ1, λ2 ≤ 1.
When storage is sufficient, the value of λ1 can be set relatively small; when computing
resources are sufficient, the value of λ2 can be set relatively small.

Any produced configuration during the optimization process should meet the limits
of joint angle ranges. 

q1 ∈ [qmin_1, qmax_1]
q2 ∈ [qmin_2, qmax_2]

·
·
·

qn ∈ [qmin_n, qmax_n]

(19)

where [qmin_i, qmax_i](i = 1, . . . , n) is the joint angle range of the ith joint.
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Based on the above mentioned, the selection of hub configurations can be converted
into the minimization of the comprehensive quality index for joint travel and planning time
under the constrain of joint angle ranges. Then, the above optimization can be described as

minU(H) =
N_g
∑

i=1
u(H, Pi)

s.t.



q1 ∈ [qmin_1, qmax_1]
q2 ∈ [qmin_2, qmax_2]

·
·
·

qn ∈ [qmin_n, qmax_n]

(20)

Genetic algorithm is a widely used optimization-problem-solving method, and it
combines generation and test to simulate Darwin’s biological evolution theory and genetic
mechanism for optimal solution search. Compared with the traditional optimization
methods (enumeration method, heuristic method, etc.), genetic algorithm is based on
biological evolution and has good convergence. When the accuracy of calculation is met,
the calculation time is smaller, and the robustness is higher. Then, based on the optimization
model, the genetic algorithm is chosen to optimize the hub configuration of each region.

The selection of hub configuration in a region Ω is taken as an example to illustrate
the process.

Step 1: Initialization. When a hub configuration is selected optimally, search space is
the joint space represented by N_g configurations in the set Ω. Each configuration can be
expressed as

H = [q1, . . . , qn]
T ∈ <n (21)

Then, the encoding mechanism is determined as float point number encoding. Set the
generation of evolution to t = 0, set the maximum generation of evolution, and set the
range of joint angles.

Initial population has Npop configurations; each individual has a structure as in
Equation (21).

Step 2: Individual evaluation. Fitness function can be determined by the objective
function, as Equation (20). Set the weight coefficients according to the requirements in the
actual application process.

min
H∈Ω

U(H) =
N_g
∑

i=1
u(H, Pi)

u(H, Pi) = λ1D(H, Pi) + λ2T(H, Pi)

(22)

Step 3: Selection. The selection operator is applied to all configurations of the region
Ω, and the optimized configuration can be directly inherited to the next generation. The
roulette wheel selection method is used to select a configuration, that is, the configuration
with the highest fitness is selected, and the selection probability of each configuration is
proportional to the fitness value.

The selection probability of each configuration can be calculated as

pχ =
U(Hχ)

Npop

∑
j=1

U(Hj)

(χ = 1, . . . , N_pop) (23)

Then, the cumulative probability can be calculated as

gχ =
χ

∑
j=1

pj(χ = 1, . . . , N_pop) (24)
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Then, random numbers r11, . . . , r1N_pop are generated between [0,1]. The interval
needs to be determined sequentially, which each random number r1k(k = 1, . . . , N_pop)
belongs to. When gχ−1 ≤ r1k ≤ gχ, the configuration Pχ can be selected.

Step 4: Crossover. The crossover operation is applied to all configurations of the
region. Select the parent according to the cross probability PC ∈ (0, 1], and produce a new
configuration based on the crossover operator c ∈ (0, 1]. The linear crossover is used, that
is, every part of the father and mother is linearly crossed to produce new configurations.

Then, random numbers r21, . . . , r2N_pop are generated between [0,1]. When r2k
(k = 1, . . . , N_pop) > PC, the current individual is selected as father, and the next
individual is selected as mother for crossover operation.{

Pnew
f ather = c× P f ather + (1− c)× Pmother

Pnew
mother = (1− c)× P f ather + c× Pmother

(25)

Step 5: Mutation. The mutation operation is applied on all configurations of the region.
Select the variant according to the mutation probability PM ∈ (0, 1], and mutate the joint
angle based on the mutation operator m ∈ (0, 1].

Then, random numbers r31, . . . , r3N_pop are generated between [0,1]. When r3k
(k = 1, . . . , N_pop) > PM, the current individual is selected for mutation operation. The
random integer rrandom_1 is generated between (0,1], and the random number rrandom_2 is
generated between (0,1]. The random numbers rrandom_1 and rrandom_2 are used for mutation.{

Pnew = P + m× (Pmax − P)× rrandom_2, rrandom_1( )%2 = 0
Pnew = P−m× (Pmax − P)× rrandom_2, rrandom_1( )%2 6= 0

(26)

where rrandom_1( )%2 denotes the remainder of the integer rrandom_1 divided by 2;
Pmax = [qmax_1, . . . , qmax_n]

T.
Step 6: Judgment of the termination condition. Determine whether the generation

of evolution reaches the maximum that was set in Step 1. If the condition is satisfied, the
configuration with the greatest fitness in the evolution process is taken as the optimal
situation, that is, the hub configuration of this region. Otherwise, turn to Step 2.

By performing the above optimization process in region Ω1, . . . , Ωp obtained by
Section 3.2.2, the optimized p hub configurations can be obtained heuristically.

3.3. Connection of Hub Configurations

After hub configurations selection, the HCN can be constructed by connecting these
hub configurations. The connection of hub configurations is achieved using existing path
planning algorithms to find a feasible path among the hub configurations of each region
and saving these paths. In this subsection, a strategy is proposed for connecting hub
configurations.

First, this paper will attempt to connect hub configurations in sequence. If the feasible
path can be found, then save it as the edge of the HCN. Otherwise, connect it to the hub
configuration of the adjacent region, and then try to connect the selected hub configuration
with the target hub configuration, as shown in Figure 3.

In Figure 3, black solid ellipses denote obstacles, dotted lines indicate the region
boundary, black dots indicate the hub configuration of each region, the pentagram repre-
sents the target hub configuration Hb, and the black solid line indicates the searched path.
The region boundary is obtained by the envelope of these sets Ω1, . . . , Ωp. As shown in
Figure 3, the hub configuration Ha to Hb cannot be reached directly due to the obstacles.
Then, the Ha is connected with the adjacent region hub configuration Hc. Next, the Hc
is connected with Hb, and the optimal path needs to be selected as the side of Ha to Hb
according to joint travel and planning time.
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As shown in Figure 4, the process of HCN construction is as follows. Firstly, the
connection time function of HCN and the configuration properties function in each region
are generated to evaluate the influence of the number of regions on the properties of the
HCN. Secondly, three indexes are proposed to evaluate the properties of the regions, which
represent the similarity among the various configurations within the same region, the
dissimilarity among all regions, and the correlation among adjacent regions, respectively.
Thirdly, a work space division model is designed and solved. Further, based on the
above three sections, the number of regions and the regions can be selected. Next, a hub
configuration optimization algorithm is solved based on genetic algorithm. Finally, a
strategy for connecting hub configurations is proposed.

4. Simulation and Discussion

To verify the effectiveness of the proposed construction strategy of HCN, this paper
uses the 3-DOF manipulator for simulation verification, as shown in Figure 5, which is
convenient to show work space representation. Its DH parameters are shown in Table 2.
Additionally, the obstacles setting is shown in Table 3.
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Table 2. DH parameter of the manipulator.

Link i α (◦) A (mm) θ (◦) d (mm)

1 0 0 0 1000
2 90 0 −90 0
3 0 550 0 0
E 90 0 0 550
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Table 3. Obstacle Setting.

Obstacle Center (mm) Radius (mm)

1 [−400; 400; −400] 300

Set the range of joint angles to be θ1 ∈ [−π, π](rad), θ2 ∈ [−π/6, π/2](rad), θ3 ∈
[−π/3, π/3](rad). Additionally, the step size is set to ε = π/18(rad), which is used to
obtain the work space. Then, the work space of the manipulator in Cartesian space can be
shown in Figure 6. Figure 6a shows the three-dimensional workspace of the manipulator,
and Figure 6b shows the top view of the three-dimensional workspace, as shown in
Figure 6a. It is worth noting that the circular vacancy in Figure 6b is caused by the structure
and joint limit of the manipulator, not obstacles.
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This paper uses the function h(p) and set µ1 = 0.1, µ2 = 1 to determine the number of
hub configurations. At the same time, the work space of manipulators is divided based
on the evaluation indexes for properties of regions. As shown in Figure 7, p is determined
as 21. Additionally, the results of space dividing are shown in Figure 8. Figure 8 shows a
separate display of the three-dimensional envelope surface of the 21 regions.
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Then, hub configurations are selected in each region based on genetic algorithm. The
selection result is shown in Figure 9. Figure 9 shows the overall display of the three-
dimensional envelope surface of the 21 regions in the joint space, and the red dots indicate
the hub configurations selected by each region.

By connecting these hub configurations, the HCN can be shown in Figure 10. In
Figure 10, the blue lines indicate the path between hub configurations.

In the case that the manipulator parameters and the working environment of manip-
ulators are mentioned above, 100 different path planning tasks are generated randomly.
This paper uses the A* algorithm based on the grid map and the A* algorithm based on the
HCN to perform these path planning tasks. The comparison of planning results is shown
in Figure 11 and Table 4.

In Table 4, columns 3 and 4, respectively, show the experimental results of the A*
algorithm based on the grid map and the HCN for manipulator path planning, and column
5 shows the comparison results of the two experiments. In Figure 11, Figure 11a shows the
comparison of planning time, and Figure 11b shows the comparison of path points number.
As we can see, through planning time comparison, the usage of the HCN can shorten the
planning time by 48.4%. Through the comparison of the number of path points in the path,
the usage of the HCN can reduce the path point by 45.5%. The planning step length of the
manipulator is the same, and the number of path points in the path can also reflect the
length of the path. In summary, the correctness and effectiveness of the proposed strategy
of HCN construction are verified.
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Table 4. The comparison between the experiments.

Experiment 1 Experiment 2 Lower than
Experiment 1

Planning
time/(s)

Max 33.994 0.435 0.992646
Min 0.219 0.172 0.002571

Average 2.585619 0.26566 0.484

Path points
Max 39 23 0.615385
Min 20 10 0.30303

Average 29.19 15.93 0.455

5. Conclusions

For the collision-free path planning of manipulators, this paper proposes a path
planning strategy based on the heuristically constructed network (HCN) and a construction
strategy for HCN. First, the number of hub configurations was determined. Secondly,
the evaluation indexes for properties of regions were established, and the work space
was divided based on these indexes. Next, a hub configuration optimization model was
established, and the hub configurations were obtained by solving the model. Finally, the
HCN was constructed for the path planning of manipulators. To validate the strategy
proposed in this paper, a 3-DOF manipulator was used for simulation. The simulation
result shows that the proposed strategy can greatly improve the efficiency of collision-
free path planning of manipulators. The contributions of this paper mainly include the
following points:

1. A path planning strategy based on the heuristically constructed network (HCN)
and a construction strategy for HCN are put forward to represent the work space for
collision-free path planning, which aims at dealing with the storage and computational
resources problems caused by randomly generated nodes.

2. By considering the relationship among different configurations, the work space di-
vision based on evaluation indexes of regional properties can realize the heuristic
determination of nodes number, and the selection of hub configurations can realize
the heuristic search for network nodes, which can make searching a path based on
this network faster and use fewer path points.

3. The use of HCN in collision-free path planning of manipulators can reduce the
average number of path points of the path by 45.5% and reduce the average time of
path planning by 48.4%, which greatly improves the efficiency of path planning under
resource constraints.

The proposed network and strategy only carry out simulation verification with 3-DOF
manipulator and A* algorithm, but its concept can be extended to other manipulators and
path planning algorithms. Furthermore, by designing dynamic adjustment strategies, the
proposed strategy can be used for dynamic and unknow situation.
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