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Abstract: Point cloud is a versatile geometric representation that could be applied in computer
vision tasks. On account of the disorder of point cloud, it is challenging to design a deep neural
network used in point cloud analysis. Furthermore, most existing frameworks for point cloud
processing either hardly consider the local neighboring information or ignore context-aware and
spatially-aware features. To deal with the above problems, we propose a novel point cloud processing
architecture named TR-Net, which is based on transformer. This architecture reformulates the
point cloud processing task as a set-to-set translation problem. TR-Net directly operates on raw
point clouds without any data transformation or annotation, which reduces the consumption of
computing resources and memory usage. Firstly, a neighborhood embedding backbone is designed
to effectively extract the local neighboring information from point cloud. Then, an attention-based
sub-network is constructed to better learn a semantically abundant and discriminatory representation
from embedded features. Finally, effective global features are yielded through feeding the features
extracted by attention-based sub-network into a residual backbone. For different downstream tasks,
we build different decoders. Extensive experiments on the public datasets illustrate that our approach
outperforms other state-of-the-art methods. For example, our TR-Net performs 93.1% overall accuracy
on the ModelNet40 dataset and the TR-Net archives a mIou of 85.3% on the ShapeNet dataset for
part segmentation.

Keywords: point cloud; deep learning; classification; part segmentation; transformer

1. Introduction

Point cloud is a set of points in 3D space that can be viewed as a representation of
object surface. Due to greatly compensating for the lack of spatial structure information
of 2D images, point cloud has been extensively used in various fields such as automatic
drive [1], virtual reality [2], and intelligent robot technology [3,4]. These contemporary
applications usually call for advanced processing methods of point cloud. As is well
known, point cloud is unordered and irregular [5], which is distinct from 2D images. All
algorithms for point cloud feature extraction, therefore, must be independent of the order
of input points and point cloud is a collection of uneven sampling points. On one hand,
it makes the relationship between points difficult to be used for extracting features. On
the other hand, convolutional neural networks, which have already been applied in image
and video processing, are not applicable to be used in point cloud processing directly. This
research focuses on shape classification and part segmentation of point cloud, which are
two basic and challenging tasks that have received a lot of attention from researchers in
point cloud processing.

In the early stages of point cloud research, most researchers usually convert point
cloud data into regular 3D voxel grids [6] or a collection of images before feeding them into
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a convolutional neural network. Voxelization is a simple method of transforming a sparse
and uneven point cloud to a conventional grid structure, which can be fed to standard
CNNs to extract features. Voxnet [7] vowelizes the point cloud into a volumetric grid that
denotes spatial occupancy for each voxel, then uses a standard 3D CNN (Convolutional
Neural Network) to predict the categories of objects based on the occupied voxels. For
high spatial resolution, it is obvious that sparsely-occupied volumetric grid consumes
a lot of memory and incurs vast computational costs. Therefore, several improvements
are mentioned to work out the scarcity issue. Kd-net [8] constructs an efficient 3D space
division structure using kd-tree [9], along with a deep neural architecture to learn point
cloud representations. Analogously, in OctNet [10], 3D CNN is applied to a hybrid grid-
octree structure produced from a collection of shallow octrees, which makes it capable of
achieving high resolution. The octree structure is effectively encoded using a bit string
format, and each voxel’s feature vector is indexed by plain mathematics. OctNet [10]
requires substantially less memory and expense for high-resolution point clouds than a
baseline network based on dense input grids. Nevertheless, this data conversion not only
makes the generated data unnecessarily large, but also introduces quantization artifacts
that may overshadow the natural inflexibility of the data.

In recent years, as a groundbreaking work, PointNet [11] directly applied convolu-
tional neural network on the raw point cloud. To extract global features, an MLP (Multi-
Layer Perceptron) module and a symmetric function are applied to each point. This method
comes up with a useful way for the representation of unstructured point cloud; however, the
architecture only deals with independent points without cogitating connections between
points in local regions so that local feature is not captured effectively. On the foundation
of PointNet, PointNet++ [12] is a hierarchical neural network that exploits local represen-
tations by repeatedly applying PointNet with a sampling layer and a grouping layer. In
order to better aggregate each point and the matching edges connected to adjacent pairs,
DGCNN [13] tries to extend PointNet according to the edge convolutional neural network
practical operation (EdgeConv) designed to be applied to edge features. Capitalizing on
the advantages of typical CNN practice, PointCNN [14] transforms the given chaotic point
set to a latent canonical order by learning a χ-convolutional operator, and then selects a
standard CNN architecture to capture local features.

Transformer has been proved to be effectual in various practical application including
machine translation tasks [15,16], computer vision tasks [17–19], and graph-based tasks [20].
Nowadays, transformer has been introduced in many specific yields such as remote sens-
ing, cultural heritage, urban environments, and so on. For the purpose of learning the
fine-grained local features of point cloud, a variety of attempts for point cloud segmentation
have been made to extract spatial relationships between points through applying attention
mechanism. The recently successful approaches [21–23] further improve semantic segmen-
tation accuracy by ignoring immaterial information and focusing on crucial information.
For example in [22], combining transformer with the random sampling algorithm, it is
suitable for lightweight point cloud semantic segmentation of large-scale 3D point cloud.
However, such approaches have not made it possible to learn more about the structural
links between neighboring points.

Inspired by PCT [24] and GRNet [25], we propose a novel architecture TR-Net based
on transformer for point cloud processing. In natural language processing, positional
encoding module is usually used to express the word order in a sentence. It can show
the positional relationship between words at the same time as discriminating the same
word in different positions. However, there is no constant order in point cloud data. The
raw positional encoding and the input embedding are combined into a coordinate-based
input embedding module, which is considered as a viable solution. Because each point has
distinct coordinates that describe their spatial placements, it may create distinguishable
features. By capitalizing on the idea of PCT [24], we introduce the neighbor embedding
strategy to ameliorate the point embedding to enhance the capability of local feature extrac-
tion. Furthermore, we employ the encoder-decoder architecture to convert fundamental
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tasks of point cloud processing as a set-to-set translation issue. The encoder of TR-Net
initially embeds the input three-dimensional coordinates into a high dimensional feature
space. Then the embedded features are used as input of an attention-based sub-network to
learn a semantically abundant representation for each point. It lowers the effect of noise
and sharpens attention weights, which is advantageous for downstream tasks. To learn
context-aware and spatially-aware features of point cloud, we design a residual neural
network which generates global features used for the decoder input. For different specific
tasks, the respective decoders have been designed to adaptively respond to task demands.
More details about decoder are shown in Section 3.

The major contributions of this work are are summarized as follows:

• We propose a novel network architecture named TR-Net, which directly works on raw
point cloud, reducing the memory usage.

• We design a residual backbone with skip connections to learn context-aware and
spatial-aware features.

• Extensive experiments demonstrate that the TR-Net achieves state-of-the-art perfor-
mance on shape classification and part segmentation.

2. Related Work
2.1. Projection-Based Methods

For handling irregular inputs such as point cloud, an intuitive solution is to convert
the irregular representation to a regular one. With the success of 2D CNNs in mind, some
methods [26,27] use multi-view projections in which 3D point cloud is projected into
multiple image planes. Then, in order to generate the final output representations, 2D
CNNs are employed to extract feature representations in these image planes, followed
by multi-view feature fusion. TangentConv [28] uses a similar method to project local
surface geometry onto a tangent plane on each point, resulting in tangent images that can
be processed by 2D CNNs. Nevertheless, this approach has a heavy reliance on tangent
estimation. For the projection-based frameworks, the geometric information inside the
point cloud is collapsed in the projection phase. When creating dense pixel grids on
projection planes, these methods may underutilize the sparsity of point cloud.

2.2. Point-Based Methods

PointNet [11] is a pioneering work that deals with point sets directly. PointNet++ [12]
learns features from local geometric structures and abstracts local features layer by layer
by stacking multiple set abstraction levels. Many networks have been constructed using
PointNet [11] because of its simplicity and powerful representation capabilities. Mo-
Net [29] has a similar design to PointNet, but it requires a finite collection of moments as
input. Point Attention Transformers (PATs) [30] learns high-dimensional features using
MLP and represents each point by its own absolute and relative locations with regard to its
neighbors. Then, to learn hierarchical features, a permutation invariant, differentiable, and
trainable end-to-end Gumbel Subset Sampling (GSS) layer is constructed, which captures
relations between points using Group Shuffle Attention (GSA). PointWeb [31], based on
PointNet++ [12], adopts Adaptive Feature Adjustment to improve point features in the
context of the local neighborhood (AFA). Designed a Structural Relational Network (SRN),
Duan et al. [32] employ MLP to exploit structural relational features between distinct local
structures. Lin et al. [33] build a lookup table to speed up the inference process for both the
input and function spaces learned by PointNet.

2.3. Transformer in NLP

Transformers [16] are first introduced as an attention-based architecture for machine
translation in Natural Language Processing (NLP). Furthermore, Transformer models often
utilize the encoder-decoder structure and are characterized by both self-attention and
cross-attention mechanisms, without any recurrence or convolution operators. It has been
proven that transformer models are very helpful to the tasks, which involve long sequences
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thanks to the self-attention mechanism. The cross-attention mechanism in the decoder learn
the attention map of query features by exploiting the encoder information, which makes
transformers efficient in generation tasks. By taking the advantages of both self-attention
and cross-attention mechanisms, transformers have a mighty capability to handle long
sequence input and enhance information communications between the encoder and the
decoder. More recently, transformers have began to dominate the tasks that take long
sequences as input, while gradually replacing RNNs in many domains.

2.4. Transformer in Vision

Now they begin their journey in computer vision. Multiple studies have introduced
attention into computer vision tasks. The pioneering work of ViT [18] based on patch
encoding and transformer, which is directly applied on nonoverlapping medium-sized
image patches for image classification. Compared to convolutional networks, it achieves
an powerful speed-accuracy tradeoff on image classification. While ViT requires large-
scale training datasets to perform well, DeiT [19] introduces some training strategies
that allow ViT to also be effectual using the smaller training datasets. The results of ViT
on image classification are encouraging, however, ViT only focuses on the global patch
aggregation without considering its internal interaction. To solve this problem, Transformer-
IN-Transformer (TNT) [34] aggregates both patch and pixel-level representations, which
is similar to Network In Network (NIN) series [35]. In more detail, each layer of TNT is
comprised of two successive blocks, an inner block models the pixel-wise interaction within
each patch, and an outer block extracts the global information from patch embeddings.
They are linked by a linear projection layer that maps the pixels to their corresponding
patch. Therefore, TNT preserves much richer local features at the shallow layer than before.

3. Materials and Methods

In this section, we expound how our TR-Net can be used in some basic tasks of point
cloud processing involving shape classification and part segmentation. The design details
of TR-Net are also presented systematically.

Let X =
{

xi ∈ R1×F, i = 0, 1, 2, 3, . . . , N
}

be a sequence of unordered points, with
F-dimension, where N represents the number of input points, and xi is treated as a feature
vector containing coordinates (x, y, z) in 3D space. In this work, we define F = 3 and use
3D coordinates as input.

3.1. TR-Net Architecture

The overall architecture of TR-Net is presented in Figure 1, including a neighborhood
embedding backbone, an attention-based sub-network, a residual backbone, and decoders
for different tasks. TR-Net shares similar principles to Transformer, which initially encodes
the input features into a new high dimensional feature space. By this means, the semantic
affinities between points are represented for various point cloud processing tasks. It firstly
embeds the input coordinates of point cloud into a new space to learn the local neighboring
information. The attention-based sub-network is comprised of four stacked offset-attention
layers, which makes it better learn semantically abundant and discriminatory representa-
tion for each point. Then, we take the output feature of attention-based sub-network into
residual backbone to exploit context information of point cloud, followed by a max pooling
layer to yield global feature used for downstream tasks.
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Figure 1. The architecture of TR-Net. The decoder of TR-Net consists of classification (top branch)
and segmentation (bottom branch). C means concatenate operator. FCBR consists of fully connected
layer, batch normalization and ReLU. FCBRD stands FCBR followed by a Dropout layer with rate 0.5.

In the classification task. To recognize Nc object categories in point cloud P, the global
feature is fed into the classification decoder, which contains MLP layers (1024, 512, 256,
Nc) and dropout operation with a invariable probability of 0.5 to convert global feature to
Nc object categories. In addition, we use the activation function LeakyReLU with batch
normalization in each layer. Other hyperparameters are chosen in a similar way. The
top-scoring category is determined as the category label of this point cloud.

In the part segmentation task. Aiming to segment the point cloud into Ns parts (e.g.,
cub handle, plane wings; a part hardly request to be contiguous), we need to obtain the
specific semantic label for each point. As presented in Figure 1, the global feature created
by residual backbone is fed to the part segmentation decoder, which includes three shared
full-connected layers (512, 256, Ns) to classify each point. In more detail, the first full-
connected layer is followed by the activation function ReLU and a dropout layer with
probability 0.5. Only the activation function ReLU is applied on the second full-connected
layer. Furthermore, all layers are batch normalized.

3.2. Point Cloud Sampling

The raw point cloud data could not represent the relations between neighboring points.
So we design a neighborhood embedding backbone that is mainly used for point cloud
sampling. However, point embedding is not the same as word embedding in NLP. For
word embedding, similar words are placed closer to each other in the embedding space.
This approach disregards interactions between points, which is quite important for point
cloud learning. To enhance the ability of local feature extraction, we adopt a neighborhood
embedding strategy [24] in the locally adjacent points. This module first uses two cascaded
1D convolutional layers, each of which is followed by a universal batch normalization layer
and the activation function ReLU to embed point cloud coordinates into a high-dimensional
space. To develop the ability of local feature expression, the KNN (K-nearest neighbors)
algorithm is utilized to search for the k nearest points on each point during point cloud
sampling. Using Euclidean distance, KNN finds an inflexible quantity of neighboring
points, then these points will be formed as a k-neighborhood structure. In contrast to
coordinate-based point embedding in transform [16], our sampling strategy considers the
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local neighbor information on each point, thus we can capture point-to-point relations in
the local region.

In more detail, we assume the input point cloud P contains N points, which are fed
into two convolutional layers to generate corresponding features F. Then, point cloud
P is down sampled to Ps by adopting the farthest point sampling (FPS) algorithm. For
each sampled point P ∈ Ps, we assign KNN(p, P) to its k-nearest neighbors in P, which
aggregates the local neighboring features. Finally, we obtain the output features Fs from
sampled point cloud P.

3.3. Attention-Based Sub-Network

In Figure 2, the attention-based sub-network is comprised of four stacked offset-
attention layers to better learn a semantically abundant and discriminatory representation
for each point. The attention mechanism could powerfully capture valuable information
by paying different attention to different features, which has performed advantages in
various tasks. Self-attention [16], also called intra-attention, is a mechanism for connecting
different positions in a sequence together to receive a representation of the sequence. It
considers self-geometric information for each individual point to learn self-coefficients.
Furthermore, the study in PCT indicates that self-attention ignores the relationship between
points which makes it inadequate to learn a semantically abundant and discriminatory
representation from the embedded features effectively. Our work draws upon the idea
of offset-attention [24] which is advantageous to downstream tasks by diminishing the
influence of noise and sharpening the attention weights.

Figure 2. (a) is the description of offset-attention. (b) is the structure of attention-based sub-network.

Generally, an attention function may be described as a vector that maps a query and
a pair of key values to an output, in which the query, key, value, and output are vectors.
The output is calculated as a weighted sum of the values, in which the weight assigned
to each value is calculated by querying a compatible function with the corresponding
key. Specifically, the offset-attention following the terminology in transformer [16] uses
Q, K, V to represent the query, key and value metrices, respectively, produced by linear
transformations of the input features Fin in Equation (1).

(Q, K, V) = Fin · (Conv1, Conv2, Conv3),

Fin, V ∈ RN×de , Q, K ∈ RN×da (1)

where Convi (i = 1, 2, 3) means 1D-convolution, and they are different with each other.
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Then, using the query matrix and the key matrix, the weight of attention is calculated
by matrix point product as follows:

Ã = (ãi,j) = Q · KT (2)

There are two widely employed attention functions, which are additive attention and
dot-product attention. Dot-product attention is very analogous to algorithm. Additive
attention is paid to compute compatibility functions using feed-forward networks with a
single hidden layer. Although the theoretical complexity of them is similar, dot-product
attention is significantly faster and less space-using by using highly optimized matrix
multiplication code in practice. The input involves queries and keys of dimension dk, and
values of dimension dv. If dk is too large, dot products may grow rapidly in magnitude
and force the softmax function into areas with extremely tiny gradients. To minimize such
impact, these weights are normalized to obtain A = (a)i,j refer to Equations (3) and (4).

ai,j = so f tmax(ãi,j) =
exp(ãi,j)

∑k exp(ãi,j)
, (3)

ai,j =
ai,j

∑k ai,k
(4)

It is evident that the normalization in offset-attention is different from traditional
self-attention that scales the first dimension by 1/

√
da and normalizes the second dimen-

sion with softmax. For the sake of normalizing the attention map in the offset-attention
mechanism, the softmax operator is used on the first dimension, while a L1-norm is applied
on the second dimension.

Because the input feature Fin and shared matching linear transformation matrices
determine the query, key, and value matrices, all of them are independent of order. In
addition, both softmax and weighted sum are independent of permutations. As a result,
the entire offset-attention process is permutation-invariant which makes it very suitable
for the unordered, irregular domain shown by point cloud. Inspired by Laplacian matrix
in Graph convolution networks [36], the offset-attention output features Fout are shown
in Equation (5). In this stage, we obtain the augmented feature that will be fed to the
residual backbone.

Fout = FCR(Fin − Fa) + Fin, (5)

Fa = A ·V (6)

where FCR denotes a full-connected layer linear layer with the activation function ReLU.

3.4. Residual Backbone

Traditional deep neural networks may cause a vanishing gradient problem. To address
this, we thus design a residual backbone with skip connection following the attention-based
sub-network to capture context information in the global space. As shown in Figure 3,
the whole convolutional layers are 1D convolution layer. The left convolutional layers
are followed by BLM, but the right is BR. It has been proven by Szegedy [37] that the
batch normalization could accelerate network convergence and lower the complexity in
training stage, thus, a batch normalization layer is used after each 1D convolution. The
leakyReLU activation function is chosen to avoid jaggedness problem in gradient direction.
A rectified linear unit layer (ReLU) is added after the left BachNorm layer to avoid gradient
disappearance. The maximum pooling is to fuse the information of each point in point
cloud. Finally, we obtain the output global features with context information as the input
of decoder.
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Figure 3. The architecture of residual backbone. BLM combines BachNorm, LeakyReLU and Max-
Pooling layers. BR combines BachNorm and ReLU layers.

4. Experiments and Analysis

In this section, to properly evaluate the performance of our network, we cover three
public datasets for both shape classification and part segmentation tasks. Then, we show
how TR-Net could be trained to execute shape classification and part segmentation. In the
end, we compare our model with other existing methods quantitatively and qualitatively.

4.1. Datasets
4.1.1. ModelNet40 Dataset

We evaluate the proposed architecture TR-Net on the opening dataset ModelNet40 [38]
for three-dimensional pattern recognition severally. ModelNet40 is offered by Princeton
University. There are 12,311 CAD models from 40 object categories, of which 9843 models
are used for training and 2468 for testing. The sampling strategy we used is the same
as PointNet [11]. For each model, we sample each object to 1024 points uniformly, and
the point cloud is realigned to adjust to the unit sphere. Only the 3D spatial coordinates
of the sampled points are utilized, while the initial meshes are discarded. At the train-
ing process, we extend the data by randomly scaling objects and perturbing the object
and point locations. No data augmentation or voting approaches were used during the
testing procedure.

4.1.2. ScanObjectNN Dataset

ModelNet40 [38] is the de-facto standard benchmark for point cloud classification;
however, owing to its synthetic nature and the rapid evolution of point cloud research, it
may not match the requirements of newer approaches. For this purpose, we also make
experiments on the ScanObjectNN [39] that is a LiDAR point clouds dataset. ScanObjectNN
is a new Real-World data benchmark dataset and classification model based on scanned
indoor scene data. It is a new point cloud benchmark that has 15,000 objects divided into
15 classes and 2902 distinct object instances in the actual world. Among them, 12,000 objects
are used as the training set and 3000 objects as the testing set. Since objects in real-world
scans are often cluttered with background and partially present due to occlusion, this
dataset poses a great challenge to existing point cloud classification techniques. In our
experiments, we choose the most disturbing variety (PB T50 RS).

4.1.3. ShapeNet Dataset

Point cloud segmentation is often seen as a challenging fine-grained 3D recognition
task which is aimed at dividing a 3D object into various meaningful parts. For example,
given a 3D scan or a mesh model, the task is to attach part category label (e.g., desk leg, plane
wing) to each point. We conducted several experiments on the ShapeNet Parts dataset [40],
which involves 16,880 3D models with a training to testing split of 14,006 to 2874. There are
16 object categories and 50 part labels in this dataset; each instance comprises at least two
parts and ground truth annotations are labeled on sampled points on the shapes. Following
PointNet, 2048 points are sampled from each training model, and greatly sampled point
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collections are labeled with fewer than six parts. We supplement the input data with
random translation in [−0.2, 0.2] and random anisotropic scaling in [0.67, 1.5] during
training. We employed a multi-scale testing technique during testing, with scales ranging
from [0.7, 1.4] with a 0.1 step.

4.2. Experimental Setup

The experiments were implemented in the server with the Ubuntu 20.04 LTS system.
The server GPU was GeForce RTX 2080Ti 12 GB, the CPU was Intel(R) Xeon(R) Silver 4210
CPU @ 2.20 GHz, and the RAM size was 128 GB. The main installation packages required
by the executing environment of the program are listed in Table 1.

Table 1. Main installation packages required by the running environment.

Package Name Version

Python 3.8.12
Cuda 10.2

Opencv-python 4.5.5.62
Pytorch 1.8.2

Torchvision 0.9.2
Tensorboard 2.8.0

Tqdm 4.62.3
H5py 3.6.0

Numba 0.55.1
Numpy 1.21.5

Json 0.9.6
Pillow 8.4.0

The TR-Net was trained in an end-to-end pattern. For each dataset, we picked 80%
as the training set, and we used the remaining 20% as the test set. Following the previous
methods [11–13], this separation for each dataset is fixed and is not a random procedure.
As shown in Table 2, for the ModelNet40 dataset, we used the Adam optimizer. The initial
learning rate and weight decay of the network were set to 0.0001 and 0.00005, respectively.
We trained the model on ModelNet40 up to 300 epochs with a batch size of 32. The training
configuration of ScanObjectNN followed that of ModelNet40. For the ShapeNet dataset,
the network parameters were optimized by the SGD method during network training. The
initial learning rate we used was 0.1, and the momentum was 0.9. Furthermore, we used
cosine annealing to lower the learning rate to 0.001. The batch normalization decay was
not used in this work. The model was trained for 300 epochs with a batch size of 24 on
ShapeNet dataset. Furthermore, the neighbors of each point is 32 in KNN search.

Table 2. Hyperparameter settings of our model.

Parameter Value

ModelNet40 ScanObjectNN ShapeNet

Optimizer Adam Adam SGD
Learning rate 0.0001 0.0001 0.001

Epoch 300 300 300
Batch size 32 32 24

4.3. Results and Analysis
4.3.1. Classification on ModelNet40 dataset

As shown in Table 3, we compare our proposed TR-Net with a series of previous repre-
sentative approaches. To quantitatively evaluate the merits of our approach, we choose OA
(overall accuracy) and mAcc (mean classification accuracy) as evaluation metrics. As shown
in Table 3, experimental results indicate that TR-Net achieves the best result of 90.4% mean
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class accuracy and the overall accuracy we achieved is 93.1%. Compared to PointNet++ [12]
and DGCNN [13], TR-Net makes a 2.4% and 0.2% improvement, respectively. It can be
seen that our method demonstrates a clear advantage over other approaches in terms of 3D
object classification.

Table 3. Comparison with other approaches on ModelNet40 classification dataset. OA indicates
overall accuracy. mAcc denotes mean class accuracy.

Method OA mAcc

A-SCN [41] 89.8% -
3D-A-Nets [42] 90.5% 80.1%

VoxNet [7] 83.0% -
Kd-Net [8] 91.8% -

VIPGAN [43] 91.8% 89.2%
PointNet [11] 89.2% -

PointNet++ [12] 90.7% -
PCNN [44] 92.3% -

P2Sequence [45] 92.6% -
SPNet [46] 92.6% 85.2%

RS-CNN [5] 92.9% -
PANORAMA-NN [47] 90.7% 83.5%

DGCNN [13] 92.9% 90.2%

TR-Net(ours) 93.1% 90.4%

4.3.2. Classification on ScanObjectNN dataset

In Table 4, we compare our TR-Net with the other state-of-the-art methods on the
ScanObjectNN benchmark quantitatively. TR-Net achieves state-of-the-art performance and
makes a significant improvement on class mean accuracy (mAcc). For example, we obtain
comparable OA compared to GBNet while outperforming it 1.4% mAcc. Furthermore,
we observe that our TR-Net produces the smallest gap between mAcc and OA. This
phenomenon demonstrates that our approach did not favor one category, demonstrating
its robustness.

Table 4. Classification results on ScanObjectNN dataset.

Methods OA mAcc

PointNet [11] 68.2% 63.4%
PointNet++ [12] 77.9% 75.4%

3DmFV [48] 63.0% 58.1%
SpiderCNN [49] 73.7% 69.8%

DGCNN [13] 78.1% 73.6%
PointCNN [14] 78.5% 75.1%

BGA-DGCNN [39] 79.7% 75.7%
BGA-PN++ [39] 80.2% 77.5%

PCT [24] 80.0% 77.3%
DRNet [50] 80.3% 78.0%
GBNet [51] 80.5% 77.8%

TR-Net(ours) 80.5% 79.2%

4.3.3. Part Segmentation on ShapeNet Dataset

We express part segmentation as a per-point classification issue. The mIoU on points
is adopted as an evaluation metric. We string along with the identical evaluation scheme
as PointNet. To calculate the shape’s mIoU for each shape S in category C, we compute
the IoU between ground truth and prediction for each part type in shape S. We count part
IoU as 1 if the union of ground truth and prediction points is empty. We average IoUs of
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all part types to obtain mIoU for that shape. To calculate mIoU for a category, we take the
average of mIoUs for all shapes in that category.

The quantitative evaluations of the experimental results are presented in Table 5.
Metrics for each category are also provided. We can see that the proposed TR-Net performs
better than most of the other methods overall. Our approach achieves the state-of-the-art
result with 85.3% part average Intersection-over-Union (mIoU). Compared to PointNet++
and DGCNN, however, we make an improvement of 0.2% and 0.1%, respectively. In
addition, we achieve considerable gains in airplane, chair, guitar, laptop and table. These
results demonstrate that TR-Net is capable of recognizing a diverse range of fine-grained
shapes. The visualization of part segmentation is shown in Figure 4.

Figure 4. The visualization of object part segmentation results on the ShapeNet dataset. GT denotes
Ground Truth.
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Table 5. Comparison on the ShapeNet part segmentation dataset.

Method mIoU Air-
Plane Bag Cap Car Chair Ear-

Phone Guitar Knife Lamp Laptop Motor-
Bike Mug Pistol Rocket Skate-

Board Table

#Shapes - 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet [11] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [12] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
Kd-Net [8] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
PCNN [44] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
SO-Net [52] 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
DGCNN [13] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

TR-Net(ours) 85.3 84.2 82.4 82.8 79.1 91.0 66.0 91.6 86.6 82.3 95.7 66.3 94.5 81.7 61.7 75.2 83.1

4.4. Model Complexity

We now compare the complexity of TR-Net with previous state-of-the-art methods on
ModelNet40. The input of model is a sample with 1024 points. As shown in Table 6, our
approach achieves the best tradeoff between the model size (number of parameters), FLOPs
(floating-point operations required), computational complexity (measured as forward
pass time), and the resulting classification accuracy. TR-Net has a relatively low memory
requirement with 17Mb parameters and also puts a low load on the processor of only
2.52 GFLOPs, yet obtains high accuracy. These qualities make it well-suited for deployment
on mobile devices.

Table 6. The comparison with different models on complexity, forward time, and accuracy.

Method Model Size
(Mb) FLOPs Times (ms) Accuracy

PointNet [11] 40 0.89G 6.8 89.2%
PointNet++ [12] 12 1.69G 163.2 90.7%

PCNN [44] 94 3.65G 117.0 92.3%
DGCNN [13] 21 4.78G 27.2 92.9%

TR-Net(ours) 17 2.52G 21.3 93.1%

5. Ablation Study

To further investigate our proposed approach, we carried out massive experiments on
the ModelNet40 dataset. Implementation details remained the same as those given in the
experimental section unless otherwise indicated. Without voting strategy, all of the ablative
studies were executed.

5.1. Number of Stacked Offset-Attention Layers

There are multiple tasks that have researched the effect of network depth on model
performance. We assume that m represents the number of stacked offset-attention layers.
As a rule of thumb, we vary the network depth by setting m to 1, 2, 3, 4, 5, and 6. We still
adopt OA and mAcc as evaluation metrics. The results of different network depths on the
ModelNet40 benchmark are shown in Table 7. At first view, we observe that just increasing
the depth cannot always lead to better performance; a proper depth would be an excellent
solution. For example, We achieve the best performance with 93.1% OA and 90.4% mAcc
when the value of m is 4. The accuracy of the model increases when m is less than 4, and it
tends to decrease when m is greater than 4. It is worth noting that we consistently achieve
comparable results regardless of the number of hidden layers.
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Table 7. Ablation study: classification accuracy of TR-Net on ModelNet40 test set using m stacked
offset-attention layers.

Number of Offset-Attention
Layers (m) OA mAcc

1 92.5% 89.3%
2 92.8% 89.5%
3 92.6% 89.8%
4 93.1% 90.4%
5 92.4% 88.4%
6 92.5% 89.0%

5.2. Number of Neighbors

The setting of neighbors k determines the local neighborhood around each point,
which would have an influence on model accuracy. In the phase of this experiment, we
still adopt four stacked offset-attention layers in the attention-based sub-network. The
quantitative results are displayed in Table 8, and the resulting curves are provided in
Figure 5. From the resulting curves with different neighbors, we find that models with
more neighbors reach the fitness peak more quickly. When k is set to 32, the best result
is obtained. When the value of k is 4, 8, 16 that the neighborhood is smaller, it leads to
inadequate local feature extraction. When k is set to 48, 64 that the neighborhood is larger,
each offset-attention layer is provided with a great deal of neighborhood data points, many
of which may be more distant and less relevant. This may cause too much noise in the
processing and thus reduce the accuracy of model. Furthermore, the loss curves are shown
in Figure 6. It illustrates that TR-Net with a larger the value of k could converge faster.

Table 8. Ablation study: classification accuracy of TR-Net on ModelNet40 test set with k neighbors in
the definition of local neighborhoods.

Number of Neighbors (k) OA mAcc

4 91.0% 86.1%
8 91.7% 87.6%
16 92.3% 88.4%
32 93.1% 90.4%
48 92.3% 89.0%
64 92.7% 88.5%

5.3. Component Ablation Study

We only remain the point cloud sampling backbone in TR-Net and test it on the
ModelNet40 dataset. The overall accuracy is 91.9%, which is 1.2% less than the base
architecture. It indicates that the attention module is effective in improving the accuracy of
the network
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Figure 5. Six run results (OA) of TR-Net with different neighbors on ModelNet40 test dataset. We
use k to denote the number of neighborhood point sets sampled for each point.

Figure 6. The loss of TR-Net with different neighbors during each testing phase.

.
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6. Conclusions

In this paper, we propose a new architecture named TR-Net, which is based on
transformer for learning on point cloud. By adopting the neighborhood embedding strategy
and residual backbone, TR-Net could exploit context-aware and spatially-aware features.
Experiments show that our approach outperforms voxel-based, MLP-based, and graph-
based frameworks and achieves state-of-the-art performance on classification and part
segmentation benchmarks. This is due to the fact that the coordinates of point cloud
contain spatial location information, and the offset-attention operator sharpens the attention
weights to critical information when extracting global features.

Our experiments also suggest that the embedded features can be equally valuable
if not more valuable than point coordinates. Developing a practical and theoretically-
justified architecture for balancing global and local information in a learning pipeline will
require insight from theory and practice in the attention mechanism. Given this, we will
think about taking inspiration from image processing and natural language processing.
Compared to natural language and 2D image, the available point cloud datasets are very
limited nowadays. In the future, we will train it on larger datasets and compare it to
other representative frameworks to observe what benefits and limitations it has. Another
viable extension is to design a lightweight transformer network that reduces the amount of
operations in the reasoning process, making it possible to apply in edge devices.
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